1
|
Alotaibi S, Alamri S, Alsaleh A, Meyer G. Neural adaptations in short-term learning of sign language revealed by fMRI and DTI. Sci Rep 2025; 15:5345. [PMID: 39948087 PMCID: PMC11825837 DOI: 10.1038/s41598-024-84468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025] Open
Abstract
While vocal articulation is a unique feature of spoken languages, signed languages use facial expressions and hand movements for communication. Despite this substantial difference, neuroimaging studies show that spoken and sign language rely on similar areas of the brain in the frontal and parietal regions. However, little is known about the specific roles of these areas and how early they get involved. In the present study, we investigate the impact of short-term training-related changes in learners of British sign language (BSL). Pre- and post-training functional magnetic resonance imaging (fMRI) and diffusion tensor imaging scans were taken from twenty-six right-handed healthy volunteers. During the training course, participants were taught to discriminate and sign basic sentences using BSL for three consecutive days (1 h per day). fMRI results show increasing brain activity in the right cerebellum and cerebral brain areas including bilateral middle temporal gyrus, left angular gyrus, left middle and inferior frontal gyrus. Moreover, functional connectivity increased significantly after training between these areas. Microstructural findings show significant mean diffusivity and radial diffusivity reductions in the left angular gyrus, which are significantly correlated with behavioural improvement. These results reveal a high degree of similarity in the neural activity underlying signed and spoken languages. The rapid microstructural changes, identify the left angular gyrus as a structure that rapidly adapts to newly learnt visual-semantic associations.
Collapse
Affiliation(s)
- Sahal Alotaibi
- Radiological Sciences Department, Applied Medical Sciences, Taif University, Taif, 21944, Kingdom of Saudi Arabia.
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.
| | - Sultan Alamri
- Radiological Sciences Department, Applied Medical Sciences, Taif University, Taif, 21944, Kingdom of Saudi Arabia
| | - Alanood Alsaleh
- Radiological Sciences Department, Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Georg Meyer
- Clinical and Cognitive Neuroscience Group, Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK.
- Virtual Engineering Centre, Digital Innovation Facility, University of Liverpool, Liverpool, L69 3RF, UK.
- Hanse Wissenschaftskolleg, Lehmkuhlenbusch 4, 27753, Delmenhorst, Germany.
| |
Collapse
|
2
|
Alwashmi K, Rowe F, Meyer G. Multimodal MRI analysis of microstructural and functional connectivity brain changes following systematic audio-visual training in a virtual environment. Neuroimage 2025; 305:120983. [PMID: 39732221 DOI: 10.1016/j.neuroimage.2024.120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks. Here we show for the first time that learning-induced microstructural change in WM tracts, quantified with diffusion tensor and kurtosis imaging (DTI, DKI) is linked to functional connectivity changes in brain areas that use these tracts to communicate. Twenty healthy participants engaged in a month of virtual reality (VR) systematic audiovisual (AV) training. DTI analysis using repeated-measures ANOVA unveiled a decrease in mean diffusivity (MD) in the SLF II, alongside a significant increase in fractional anisotropy (FA) in optic radiations post-training, persisting in the follow-up (FU) assessment (post: MD t(76) = 6.13, p < 0.001, FA t(76) = 3.68, p < 0.01, FU: MD t(76) = 4.51, p < 0.001, FA t(76) = 2.989, p < 0.05). The MD reduction across participants was significantly correlated with the observed behavioural performance gains. A functional connectivity (FC) analysis showed significantly enhanced functional activity correlation between primary visual and auditory cortices post-training, which was evident by the DKI microstructural changes found within these two regions as well as in the sagittal stratum including WM tracts connecting occipital and temporal lobes (mean kurtosis (MK): cuneus t(19)=2.3 p < 0.05, transverse temporal t(19)=2.6 p < 0.05, radial kurtosis (RK): sagittal stratum t(19)=2.3 p < 0.05). DTI and DKI show complementary data, both of which are consistent with the task-relevant brain networks. The results demonstrate the utility of multimodal imaging analysis to provide complementary evidence for brain changes at the level of networks. In summary, our study shows the complex relationship between microstructural adaptations and functional connectivity, unveiling the potential of multisensory integration within immersive VR training. These findings have implications for learning and rehabilitation strategies, facilitating more effective interventions within virtual environments.
Collapse
Affiliation(s)
- Kholoud Alwashmi
- Faculty of Health and Life Sciences, University of Liverpool, United Kingdom; Department of Radiology, Princess Nourah bint Abdulrahman University, Saudi Arabia.
| | - Fiona Rowe
- IDEAS, University of Liverpool, United Kingdom.
| | - Georg Meyer
- Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany.
| |
Collapse
|
3
|
Hong J, Chen J, Li C, Zhao F, Zhang J, Shan Y, Wen H. High-frequency rTMS alleviates cognitive impairment and regulates synaptic plasticity in the hippocampus of rats with cerebral ischemia. Behav Brain Res 2024; 467:115018. [PMID: 38678971 DOI: 10.1016/j.bbr.2024.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Fei Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jiantao Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
4
|
Davidson B, Vetkas A, Germann J, Tang-Wai D, Lozano AM. Deep brain stimulation for Alzheimer's disease - current status and next steps. Expert Rev Med Devices 2024; 21:285-292. [PMID: 38573133 DOI: 10.1080/17434440.2024.2337298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) requires novel therapeutic approaches due to limited efficacy of current treatments. AREAS COVERED This article explores AD as a manifestation of neurocircuit dysfunction and evaluates deep brain stimulation (DBS) as a potential intervention. Focusing on fornix-targeted stimulation (DBS-f), the article summarizes safety, feasibility, and outcomes observed in phase 1/2 trials, highlighting findings such as cognitive improvement, increased metabolism, and hippocampal growth. Topics for further study include optimization of electrode placement, and the role of stimulation-induced autobiographical-recall. Nucleus basalis of Meynert (DBS-NBM) DBS is also discussed and compared with DBS-f. Challenges with both DBS-f and DBS-NBM are identified, emphasizing the need for further research on optimal stimulation parameters. The article also reviews alternative DBS targets, including medial temporal lobe structures and the ventral capsule/ventral striatum. EXPERT OPINION Looking ahead, a phase-3 DBS-f trial, and the prospect of closed-loop stimulation using EEG-derived biomarkers or hippocampal theta activity are highlighted. Recent FDA-approved therapies and other neuromodulation techniques like temporal interference and low-intensity ultrasound are considered. The article concludes by underscoring the importance of imaging-based diagnosis and staging to allow for circuit-targeted therapies, given the heterogeneity of AD and varied stages of neurocircuit dysfunction.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - David Tang-Wai
- Krembil Research Institute, Toronto, ON, Canada
- Department of Neurology, Toronto Western Hospital, University Health Network, Toronto, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
5
|
Klimecki OM, Liebscher M, Gaubert M, Hayek D, Zarucha A, Dyrba M, Bartels C, Buerger K, Butryn M, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Glanz W, Hetzer S, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Spruth EJ, Spottke A, Teipel SJ, Wiltfang J, Wolfsgruber S, Yakupov R, Düzel E, Jessen F, Wagner M, Roeske S, Wirth M. Long-term environmental enrichment is associated with better fornix microstructure in older adults. Front Aging Neurosci 2023; 15:1170879. [PMID: 37711996 PMCID: PMC10498282 DOI: 10.3389/fnagi.2023.1170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Sustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer's disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults. Methods N = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status. Results Reported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized β = 0.117, p = 0.033) and lower MD (β = -0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = -0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts. Conclusion Our findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.
Collapse
Affiliation(s)
- Olga M Klimecki
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Malo Gaubert
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neuroradiology, Rennes University Hospital Centre Hospitalier Universitaire (CHU), Rennes, France
| | - Dayana Hayek
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexis Zarucha
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- Magnetic Resonance (MR)-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Silka Dawn Freiesleben
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Peters
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and United Kingdom Dementia Research Institute (UK DRI), Edinburgh, United Kingdom
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
6
|
Liu Z, Shu K, Geng Y, Cai C, Kang H. Deep brain stimulation of fornix in Alzheimer's disease: From basic research to clinical practice. Eur J Clin Invest 2023; 53:e13995. [PMID: 37004153 DOI: 10.1111/eci.13995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases associated with the degradation of memory and cognitive ability. Current pharmacotherapies show little therapeutic effect in AD treatment and still cannot prevent the pathological progression of AD. Deep brain stimulation (DBS) has shown to enhance memory in morbid obese, epilepsy and traumatic brain injury patients, and cognition in Parkinson's disease (PD) patients deteriorates during DBS off. Some relevant animal studies and clinical trials have been carried out to discuss the DBS treatment for AD. Reviewing the fornix trials, no unified conclusion has been reached about the clinical benefits of DBS in AD, and the dementia ratings scale has not been effectively improved in the long term. However, some patients have presented promising results, such as improved glucose metabolism, increased connectivity in cognition-related brain regions and even elevated cognitive function rating scale scores. The fornix plays an important regulatory role in memory, attention, and emotion through its complex fibre projection to cognition-related structures, making it a promising target for DBS for AD treatment. Moreover, the current stereotaxic technique and various evaluation methods have provided references for the operator to select accurate stimulation points. Related adverse events and relatively higher costs in DBS have been emphasized. In this article, we summarize and update the research progression on fornix DBS in AD and seek to provide a reliable reference for subsequent experimental studies on DBS treatment of AD.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yumei Geng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Cai
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei Province, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun 2023; 14:3184. [PMID: 37268628 DOI: 10.1038/s41467-023-38910-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | | | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Marcus Meinzer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Hoffman LJ, Ngo CT, Canada KL, Pasternak O, Zhang F, Riggins T, Olson IR. The fornix supports episodic memory during childhood. Cereb Cortex 2022; 32:5388-5403. [PMID: 35169831 PMCID: PMC9712741 DOI: 10.1093/cercor/bhac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Episodic memory relies on the coordination of widespread brain regions that reconstruct spatiotemporal details of an episode. These topologically dispersed brain regions can rapidly communicate through structural pathways. Research in animal and human lesion studies implicate the fornix-the major output pathway of the hippocampus-in supporting various aspects of episodic memory. Because episodic memory undergoes marked changes in early childhood, we tested the link between the fornix and episodic memory in an age window of robust memory development (ages 4-8 years). Children were tested on the stories subtest from the Children's Memory Scale, a temporal order memory task, and a source memory task. Fornix streamlines were reconstructed using probabilistic tractography to estimate fornix microstructure. In addition, we measured fornix macrostructure and computed free water. To assess selectivity of our findings, we also reconstructed the uncinate fasciculus. Findings show that children's memory increases from ages 4 to 8 and that fornix micro- and macrostructure increases between ages 4 and 8. Children's memory performance across nearly every memory task correlated with individual differences in fornix, but not uncinate fasciculus, white matter. These findings suggest that the fornix plays an important role in supporting the development of episodic memory, and potentially semantic memory, in early childhood.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology, Temple University, 1701 North 13th St., Philadelphia, PA 19122, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Kelsey L Canada
- Institute of Gerontology, Wayne State University, 87 East Ferry St., Detroit, MI 48202, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston MA 02115, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston MA 02115, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, 4094 Campus Dr., College Park, MD, 20742, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 North 13th St., Philadelphia, PA 19122, USA
| |
Collapse
|
9
|
Sugimoto H, Otake-Matsuura M. Tract-Based Spatial Statistics Analysis of Diffusion Tensor Imaging in Older Adults After the PICMOR Intervention Program: A Pilot Study. Front Aging Neurosci 2022; 14:867417. [PMID: 35721023 PMCID: PMC9204185 DOI: 10.3389/fnagi.2022.867417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) enables the investigation of white matter properties in vivo by applying a tensor model to the diffusion of water molecules in the brain. Using DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), an attempt has been made to detect age-related alterations in the white matter microstructure in aging research. However, the use of comprehensive DTI measures to examine the effects of cognitive intervention/training on white matter fiber health in older adults remains limited. Recently, we developed a cognitive intervention program called Photo-Integrated Conversation Moderated by Robots (PICMOR), which utilizes one of the most intellectual activities of daily life, conversations. To examine the effects of PICMOR on cognitive function in older adults, we conducted a randomized controlled trial and found that verbal fluency task scores were improved by this intervention. Based on these behavioral findings, we collected in this pilot study diffusion-weighted images from the participants to identify candidate structures for white matter microstructural changes induced by this intervention. The results from tract-based spatial statistics analyses showed that the intervention group, who participated in PICMOR-based conversations, had significantly higher FA values or lower MD, AD, or RD values across various fiber tracts, including the left anterior corona radiata, external capsule, and anterior limb of the internal capsule, compared to the control group, who participated in unstructured free conversations. Furthermore, a larger improvement in verbal fluency task scores throughout the intervention was associated with smaller AD values in clusters, including the left side of these frontal regions. The present findings suggest that left frontal white matter structures are candidates for the neural underpinnings responsible for the enhancement of verbal fluency. Although our findings are limited by the lack of comparable data at baseline, we successfully confirmed the hypothesized pattern of group differences in DTI indices after the intervention, which fits well with the results of other cognitive intervention studies. To confirm whether this pattern reflects intervention-induced white matter alterations, longitudinal data acquisition is needed in future research.
Collapse
|
10
|
Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, Pera G, García-Molina A, Tormos JM, Montero-Alía P, Heras-Tébar A, Soriano-Raya JJ, Cáceres C, Domènech S, Via M, Erickson KI, Mataró M. Molecular and Brain Volume Changes Following Aerobic Exercise, Cognitive and Combined Training in Physically Inactive Healthy Late-Middle-Aged Adults: The Projecte Moviment Randomized Controlled Trial. Front Hum Neurosci 2022; 16:854175. [PMID: 35529777 PMCID: PMC9067321 DOI: 10.3389/fnhum.2022.854175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Behavioral interventions have shown promising neuroprotective effects, but the cascade of molecular, brain and behavioral changes involved in these benefits remains poorly understood. Projecte Moviment is a 12-week (5 days per week—45 min per day) multi-domain, single-blind, proof-of-concept randomized controlled trial examining the cognitive effect and underlying mechanisms of an aerobic exercise (AE), computerized cognitive training (CCT) and a combined (COMB) groups compared to a waitlist control group. Adherence was > 80% for 82/109 participants recruited (62% female; age = 58.38 ± 5.47). In this study we report intervention-related changes in plasma biomarkers (BDNF, TNF-α, HGF, ICAM-1, SDF1-α) and structural-MRI (brain volume) and how they related to changes in physical activity and individual variables (age and sex) and their potential role as mediators in the cognitive changes. Our results show that although there were no significant changes in molecular biomarker concentrations in any intervention group, changes in ICAM-1 and SDF1-α were negatively associated with changes in physical activity outcomes in AE and COMB groups. Brain volume changes were found in the CCT showing a significant increase in precuneus volume. Sex moderated the brain volume change in the AE and COMB groups, suggesting that men may benefit more than women. Changes in molecular biomarkers and brain volumes did not significantly mediate the cognitive-related benefits found previously for any group. This study shows crucial initial molecular and brain volume changes related to lifestyle interventions at early stages and highlights the value of examining activity parameters, individual difference characteristics and using a multi-level analysis approach to address these questions.
Collapse
Affiliation(s)
- Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- *Correspondence: Rosalía Dacosta-Aguayo,
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Alberto García-Molina
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Maria Tormos
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pilar Montero-Alía
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Antonio Heras-Tébar
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Juan José Soriano-Raya
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Cynthia Cáceres
- Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sira Domènech
- Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
11
|
Jeon S, Lee Y, Ryu D, Cho YK, Lee Y, Jun SB, Ji CH. Implantable Optrode Array for Optogenetic Modulation and Electrical Neural Recording. MICROMACHINES 2021; 12:mi12060725. [PMID: 34205473 PMCID: PMC8234104 DOI: 10.3390/mi12060725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
During the last decade, optogenetics has become an essential tool for neuroscience research due to its unrivaled feature of cell-type-specific neuromodulation. There have been several technological advances in light delivery devices. Among them, the combination of optogenetics and electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a novel design of an optrode array was proposed for realizing optical modulation and electrophysiological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the effectiveness of optical activation and neural recording.
Collapse
Affiliation(s)
- Saeyeong Jeon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (S.J.); (D.R.)
| | - Youjin Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (Y.K.C.); (Y.L.); (S.B.J.)
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Korea
| | - Daeho Ryu
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (S.J.); (D.R.)
| | - Yoon Kyung Cho
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (Y.K.C.); (Y.L.); (S.B.J.)
| | - Yena Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (Y.K.C.); (Y.L.); (S.B.J.)
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (Y.K.C.); (Y.L.); (S.B.J.)
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Chang-Hyeon Ji
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.L.); (Y.K.C.); (Y.L.); (S.B.J.)
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Korea
- Correspondence: ; Tel.: +82-2-3277-3895
| |
Collapse
|
12
|
Chamberlain JD, Turney IC, Goodman JT, Hakun JG, Dennis NA. Fornix white matter microstructure differentially predicts false recollection rates in older and younger adults. Neuropsychologia 2021; 157:107848. [PMID: 33838146 DOI: 10.1016/j.neuropsychologia.2021.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Healthy aging is accompanied by increased false remembering in addition to reduced successful remembering in older adults. Neuroimaging studies implicate age-related differences in the involvement of medial temporal lobe and fronto-parietal regions in mediating highly confident false recollection. However, no studies have directly examined the relationship between white matter microstructure and false recollection in younger and older adults. Using diffusion-weighted imaging and probabilistic tractography, we examined how white matter microstructure within tracts connecting the hippocampus and the fronto-parietal retrieval network contribute to false recollection rates in healthy younger and older adults. We found only white matter microstructure within the fornix contributed to false recollection rates, and this relationship was specific to older adults. Fornix white matter microstructure did not contribute to true recollection rate, nor did common white matter contribute to false recollection, suggesting fornix microstructure is explicitly associated with highly confident false memories in our sample of older adults. These findings underlie the importance of examining microstructural correlates associated with false recollection in younger and older adults.
Collapse
Affiliation(s)
- Jordan D Chamberlain
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Indira C Turney
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA; Department of Neurology, University of Columbia Medical Center, New York, NY, USA
| | - Jordan T Goodman
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan G Hakun
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA; Department of Neurology, The Pennsylvania State University Hershey Medical Center, Hershey, PA, USA
| | - Nancy A Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Hu Y, Ji G, Li G, Manza P, Zhang W, Wang J, Lv G, He Y, Zhang Z, Yuan K, von Deneen KM, Chen A, Cui G, Wang H, Wiers CE, Volkow ND, Nie Y, Zhang Y, Wang GJ. Brain Connectivity, and Hormonal and Behavioral Correlates of Sustained Weight Loss in Obese Patients after Laparoscopic Sleeve Gastrectomy. Cereb Cortex 2021; 31:1284-1295. [PMID: 33037819 PMCID: PMC8179510 DOI: 10.1093/cercor/bhaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The biological mediators that support cognitive-control and long-term weight-loss after laparoscopic sleeve gastrectomy (LSG) remain unclear. We measured peripheral appetitive hormones and brain functional-connectivity (FC) using magnetic-resonance-imaging with food cue-reactivity task in 25 obese participants at pre, 1 month, and 6 month after LSG, and compared with 30 normal weight controls. We also used diffusion-tensor-imaging to explore whether LSG increases brain structural-connectivity (SC) of regions involved in food cue-reactivity. LSG significantly decreased BMI, craving for high-calorie food cues, ghrelin, insulin, and leptin levels, and increased self-reported cognitive-control of eating behavior. LSG increased FC between the right dorsolateral prefrontal cortex (DLPFC) and the pregenual anterior cingulate cortex (pgACC) and increased SC between DLPFC and ACC at 1 month and 6 month after LSG. Reduction in BMI correlated negatively with increased FC of right DLPFC-pgACC at 1 month and with increased SC of DLPFC-ACC at 1 month and 6 month after LSG. Reduction in craving for high-calorie food cues correlated negatively with increased FC of DLPFC-pgACC at 6 month after LSG. Additionally, SC of DLPFC-ACC mediated the relationship between lower ghrelin levels and greater cognitive control. These findings provide evidence that LSG improved functional and structural connectivity in prefrontal regions, which contribute to enhanced cognitive-control and sustained weight-loss following surgery.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ganggang Lv
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Zhida Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Antao Chen
- Department of Psychology, Southwest University, Chongqing 400715, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Aloufi AE, Rowe FJ, Meyer GF. Behavioural performance improvement in visuomotor learning correlates with functional and microstructural brain changes. Neuroimage 2020; 227:117673. [PMID: 33359355 DOI: 10.1016/j.neuroimage.2020.117673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
A better understanding of practice-induced functional and structural changes in our brains can help us design more effective learning environments that provide better outcomes. Although there is growing evidence from human neuroimaging that experience-dependent brain plasticity is expressed in measurable brain changes that are correlated with behavioural performance, the relationship between behavioural performance and structural or functional brain changes, and particularly the time course of these changes, is not well characterised. To understand the link between neuroplastic changes and behavioural performance, 15 healthy participants in this study followed a systematic eye movement training programme for 30 min daily at home, 5 days a week and for 6 consecutive weeks. Behavioural performance statistics and eye tracking data were captured throughout the training period to evaluate learning outcomes. Imaging data (DTI and fMRI) were collected at baseline, after two and six weeks of continuous training, and four weeks after training ended. Participants showed significant improvements in behavioural performance (faster task completion time, lower fixation number and fixation duration). Spatially overlapping reductions in microstructural diffusivity measures (MD, AD and RD) and functional activation increases (BOLD signal) were observed in two main areas: extrastriate visual cortex (V3d) and the frontal part of the cerebellum/Fastigial Oculomotor Region (FOR), which are both involved in visual processing. An increase of functional activity was also recorded in the right frontal eye field. Behavioural, structural and functional changes were correlated. Microstructural change is a better predictor for long-term behavioural change than functional activation is, whereas the latter is superior in predicting instantaneous performance. Structural and functional measures at week 2 of the training programme also predict performance at week 6 and 10, which suggests that imaging data at an early stage of training may be useful in optimising practice environments or rehabilitative training programmes.
Collapse
Affiliation(s)
- A E Aloufi
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool L69 7ZA, UK
| | - F J Rowe
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - G F Meyer
- Department of Psychology, University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool L69 7ZA, UK.
| |
Collapse
|
15
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Hayek D, Thams F, Flöel A, Antonenko D. Dentate Gyrus Volume Mediates the Effect of Fornix Microstructure on Memory Formation in Older Adults. Front Aging Neurosci 2020; 12:79. [PMID: 32265687 PMCID: PMC7098987 DOI: 10.3389/fnagi.2020.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline.
Collapse
Affiliation(s)
- Dayana Hayek
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Ma Q, Geng Y, Wang HL, Han B, Wang YY, Li XL, Wang L, Wang MW. High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice. Front Aging Neurosci 2019; 11:235. [PMID: 31619982 PMCID: PMC6759649 DOI: 10.3389/fnagi.2019.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Normal aging is accompanied by hippocampus-dependent cognitive impairment, which is a risk factor of Alzheimer’s disease. This study aims to investigate the effect of high frequency-repetitive transcranial magnetic stimulation (HF-rTMS) on hippocampus-dependent learning and memory in aged mice and explore its underlying mechanisms. Forty-five male Kunming mice (15 months old) were randomly divided into three groups: aged sham, 5 Hz rTMS, and 25 Hz rTMS. Two sessions of 5 Hz or 25 Hz rTMS comprising 1,000 pulses in 10 trains were delivered once a day for 14 consecutive days. The aged sham group was treated by the reverse side of the coil. In the adult sham group, 15 male Kunming mice (3 months old) were treated the same way as the aged sham group. A Morris water maze (MWM) was conducted following the stimulation, and synaptic ultrastructure was observed through a transmission electron microscope. HF-rTMS improved spatial learning and memory impairment in the aged mice, and 5 Hz was more significant than 25 Hz. Synaptic plasticity-associated gene profiles were modified by HF-rTMS, especially neurotrophin signaling pathways and cyclic adenosine monophosphate response element binding protein (CREB) cofactors. Compared to the aged sham group, synaptic plasticity-associated proteins, i.e., synaptophysin (SYN) and postsynaptic density (PSD)-95 were increased; brain-derived neurotrophic factor (BDNF) and phosphorylated CREB (pCREB) significantly increased after the 5 Hz HF-rTMS treatment. Collectively, our results suggest that HF-rTMS ameliorated cognitive deficits in naturally aged mice. The 5 Hz rTMS treatment significantly enhanced synaptic structural plasticity and activated the BDNF/CREB pathway in the hippocampus.
Collapse
Affiliation(s)
- Qinying Ma
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Yuan Geng
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Hua-Long Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Bing Han
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Yan-Yong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| | - Xiao-Li Li
- Department of Neurology, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Lin Wang
- Emergency Department, CNPC Central Hospital, Langfang, China
| | - Ming-Wei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, China.,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China
| |
Collapse
|
18
|
Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging 2019; 80:56-70. [PMID: 31103633 PMCID: PMC6683729 DOI: 10.1016/j.neurobiolaging.2019.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
There is increasing interest in factors that may modulate white matter (WM) breakdown and, consequentially, age-related cognitive and behavioral deficits. Recent diffusion tensor imaging studies have examined the relationship of such factors with WM microstructure. This review summarizes the evidence regarding the relationship between WM microstructure and recognized modifiable factors, including hearing loss, hypertension, diabetes, obesity, smoking, depressive symptoms, physical (in) activity, and social isolation, as well as sleep disturbances, diet, cognitive training, and meditation. Current cross-sectional evidence suggests a clear link between loss of WM integrity (lower fractional anisotropy and higher mean diffusivity) and hypertension, obesity, diabetes, and smoking; a relationship that seems to hold for hearing loss, social isolation, depressive symptoms, and sleep disturbances. Physical activity, cognitive training, diet, and meditation, on the other hand, may protect WM with aging. Preliminary evidence from cross-sectional studies of treated risk factors suggests that modification of factors could slow down negative effects on WM microstructure. Careful intervention studies are needed for this literature to contribute to public health initiatives going forward.
Collapse
Affiliation(s)
- Thomas M Wassenaar
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, John Radcliffe Hospital, UK
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center, MC, Amsterdam, the Netherlands
| | - Claire E Sexton
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|
19
|
McPhee GM, Downey LA, Stough C. Effects of sustained cognitive activity on white matter microstructure and cognitive outcomes in healthy middle-aged adults: A systematic review. Ageing Res Rev 2019; 51:35-47. [PMID: 30802543 DOI: 10.1016/j.arr.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/27/2023]
Abstract
Adults who remain cognitively active may be protected from age-associated changes in white matter (WM) and cognitive decline. To determine if cognitive activity is a precursor for WM plasticity, the available literature was systematically searched for Region of Interest (ROI) and whole-brain studies assessing the efficacy of cognitive training (CT) on WM microstructure using Diffusion Tensor Imaging (DTI) in healthy adults (> 40 years). Seven studies were identified and included in this review. Results suggest there are beneficial effects to WM microstructure after CT in frontal and medial brain regions, with some studies showing improved performance in cognitive outcomes. Benefits of CT were shown to be protective against age-related WM microstructure decline by either maintaining or improving WM after training. These results have implications for determining the capacity for training-dependent WM plasticity in older adults and whether CT can be utilised to prevent age-associated cognitive decline. Additional studies with standardised training and imaging protocols are needed to confirm these outcomes.
Collapse
|
20
|
Davis SW, Szymanski A, Boms H, Fink T, Cabeza R. Cooperative contributions of structural and functional connectivity to successful memory in aging. Netw Neurosci 2018; 3:173-194. [PMID: 31139760 PMCID: PMC6516741 DOI: 10.1162/netn_a_00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/09/2018] [Indexed: 11/14/2022] Open
Abstract
Understanding the precise relation between functional connectivity and structural (white matter) connectivity and how these relationships account for cognitive changes in older adults are major challenges for neuroscience. We investigate these issues using an approach in which structural equation modeling (SEM) is employed to integrate functional and structural connectivity data from younger and older adults (n = 62), analyzed with a common framework based on regions connected by canonical tract groups (CTGs). CTGs (e.g., uncinate fasciculus) serve as a common currency between functional and structural connectivity matrices, and ensure equivalent sparsity in connectome information. We used this approach to investigate the neural mechanisms supporting memory for items and memory for associations, and how they are affected by healthy aging. We found that different structural and functional CTGs made independent contributions to source and item memory performance, suggesting that both forms of connectivity underlie age-related differences in specific forms of memory. Furthermore, the relationship between functional and structural connectivity was best explained by a general relationship between latent constructs—a relationship absent in any specific CTG group. These results provide insights into the relationship between structural and functional connectivity patterns, and elucidate their relative contribution to age-related differences in source memory performance. Aging is associated with profound changes in how neural systems adapt to perform the same mental operations in youth. Memory functioning, in particular, demonstrates enormous neuroplastic changes in the pattern of distributed, connected networks that enable older adults to perform the same mnemonic operations. However, the relationship between the structural and functional connections supporting these operations is poorly understood. Here we develop a novel algorithm for comparing structural and functional connectivity, and use a comprehensive structural equation model (SEM) to show how these network characteristics contribute to behavioral performance in two forms of episodic memory retrieval. These results suggest that healthy aging is associated with specific ensembles of cooperative contributions from both functional and structural tract groups.
Collapse
Affiliation(s)
- Simon W Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Amanda Szymanski
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Homa Boms
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Thomas Fink
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Na HR, Lim JS, Kim WJ, Jang JW, Baek MJ, Kim J, Park YH, Park SY, Kim S. Multimodal Assessment of Neural Substrates in Computerized Cognitive Training: A Preliminary Study. J Clin Neurol 2018; 14:454-463. [PMID: 30198220 PMCID: PMC6172514 DOI: 10.3988/jcn.2018.14.4.454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Several studies have validated the clinical efficacy of computerized cognitive training applications. However, few studies have investigated the neural substrates of these training applications using simultaneous multimodal neuroimaging modalities. We aimed to determine the effectiveness of computerized cognitive training and corresponding neural substrates through a multimodal approach. METHODS Ten patients with mild cognitive impairment (MCI), six patients with subjective memory impairment (SMI), and 10 normal controls received custom-developed computerized cognitive training in the memory clinic of a university hospital. All of the participants completed 24 sessions of computerized cognitive training, each lasting 40 minutes and performed twice weekly. They were assessed using neuropsychological tests (both computerized and conventional), electroencephalography, fluorodeoxyglucose positron-emission tomography (FDG-PET), volumetric magnetic resonance imaging (MRI), and diffusion-tensor imaging (DTI) at pre- and posttraining. RESULTS The patients with MCI exhibited significant improvements in the trail-making test-black & white-B, and memory domain of the computerized cognitive assessment. Subjects with normal cognition exhibited significant improvements in scores in the language and attention-/psychomotor-speed domains. There were no significant changes in subjects with SMI. In the pre- and posttraining evaluations of the MCI group, FDG-PET showed focal activation in the left anterior insula and anterior cingulate after training. Volumetric MRI showed a focal increase in the cortical thickness in the rostral anterior cingulate. DTI revealed increased fractional anisotropy in several regions, including the anterior cingulate. CONCLUSIONS The anterior cingulate and anterior insula, which are parts of the salience network, may be substrates for the improvements in cognitive function induced by computerized cognitive training.
Collapse
Affiliation(s)
- Hae Ri Na
- Department of Neurology, Bobath Memorial Hospital, Seongnam, Korea
| | - Jae Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Woo Jung Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jae Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
| | - Min Jae Baek
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeongeun Kim
- Department of Neurology, Gangnam-gu Haengbok Convalescence Hospital, Seoul, Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - So Young Park
- Department of Neurology, Incheon Sarang General Hospital, Incheon, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
22
|
Multimodal Assessment of Recurrent MTBI across the Lifespan. J Clin Med 2018; 7:jcm7050095. [PMID: 29723976 PMCID: PMC5977134 DOI: 10.3390/jcm7050095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022] Open
Abstract
Recurrent mild traumatic brain injuries (mTBI) and its neurological sequelae have been the focus of a large number of studies, indicating cognitive, structural, and functional brain alterations. However, studies often focused on single outcome measures in small cohorts of specific populations only. We conducted a multimodal evaluation of the impact of recurrent mTBI on a broad range of cognitive functions, regional brain volume, white matter integrity, and resting state functional connectivity (RSFC) in young and older adults in the chronic stage (>6 months after the last mTBI). Seventeen young participants with mTBI (age: 24.2 ± 2.8 (mean ± SD)) and 21 group-wise matched healthy controls (age: 25.8 ± 5.4 (mean ± SD)), as well as 17 older participants with mTBI (age: 62.7 ± 7.7 (mean ± SD)) and 16 group-wise matched healthy controls (age: 61.7 ± 5.9 (mean ± SD)) were evaluated. We found significant differences in the verbal fluency between young participants with mTBI and young healthy controls. Furthermore, differences in the regional volume of precuneus and medial orbitofrontal gyrus between participants with mTBI and controls for both age groups were seen. A significant age by group interaction for the right hippocampal volume was noted, indicating an accelerated hippocampal volume loss in older participants with mTBI. Other cognitive parameters, white matter integrity, and RSFC showed no significant differences. We confirmed some of the previously reported detrimental effects of recurrent mTBI, but also demonstrated inconspicuous findings for the majority of parameters.
Collapse
|
23
|
Gerischer LM, Fehlner A, Köbe T, Prehn K, Antonenko D, Grittner U, Braun J, Sack I, Flöel A. Combining viscoelasticity, diffusivity and volume of the hippocampus for the diagnosis of Alzheimer's disease based on magnetic resonance imaging. NEUROIMAGE-CLINICAL 2017. [PMID: 29527504 PMCID: PMC5842309 DOI: 10.1016/j.nicl.2017.12.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dementia due to Alzheimer's Disease (AD) is a neurodegenerative disease for which treatment strategies at an early stage are of great clinical importance. So far, there is still a lack of non-invasive diagnostic tools to sensitively detect AD in early stages and to predict individual disease progression. Magnetic resonance elastography (MRE) of the brain may be a promising novel tool. In this proof-of-concept study, we investigated whether multifrequency-MRE (MMRE) can detect differences in hippocampal stiffness between patients with clinical diagnosis of dementia due to AD and healthy controls (HC). Further, we analyzed if the combination of three MRI-derived parameters, i.e., hippocampal stiffness, hippocampal volume and mean diffusivity (MD), improves diagnostic accuracy. Diagnostic criteria for probable dementia due to AD were in line with the NINCDS-ADRDA criteria and were verified through history-taking (patient and informant), neuropsychological testing, routine blood results and routine MRI to exclude other medical causes of a cognitive decline. 21 AD patients and 21 HC (median age 75 years) underwent MMRE and structural MRI, from which hippocampal volume and MD were calculated. From the MMRE-images maps of the magnitude |G*| and phase angle φ of the complex shear modulus were reconstructed using multifrequency inversion. Median values of |G*| and φ were extracted within three regions of interest (hippocampus, thalamus and whole brain white matter). To test the predictive value of the main outcome parameters, we performed receiver operating characteristic (ROC) curve analyses. Hippocampal stiffness (|G*|) and viscosity (φ) were significantly lower in the patient group (both p < 0.001). ROC curve analyses showed an area under the curve (AUC) for | G*| of 0.81 [95%CI 0.68–0.94]; with sensitivity 86%, specificity 67% for cutoff at |G*| = 980 Pa) and for φ an AUC of 0.79 [95%CI 0.66–0.93]. In comparison, the AUC of MD and hippocampal volume were 0.83 [95%CI 0.71–0.95] and 0.86 [95%CI 0.74–0.97], respectively. A combined ROC curve of |G*|, MD and hippocampal volume yielded a significantly improved AUC of 0.90 [95%CI 0.81–0.99]. In conclusion, we demonstrated reduced hippocampal stiffness and reduced hippocampal viscosity, as determined by MMRE, in patients with clinical diagnosis of dementia of the AD type. Diagnostic sensitivity was further improved by the combination with two other MRI-based hippocampal parameters. These findings motivate further investigation whether MMRE can detect decreased brain stiffness already in pre-dementia stages, and whether these changes predict cognitive decline. Non-invasive methods for early detection of AD are lacking. MRE of the brain is a promising new non-invasive diagnostic tool. We demonstrate reduced hippocampal stiffness (|G*|) in AD patients. |G*| distinguishes healthy and demented with 86% sensitivity and 67% specificity. Combining hippocampal stiffness, MD and volume improved diagnostic accuracy.
Collapse
Affiliation(s)
- Lea M Gerischer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Andreas Fehlner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany
| | - Theresa Köbe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Kristin Prehn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Daria Antonenko
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany; University Medicine Greifswald, Department of Neurology, Greifswald, Germany
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Biostatistics and Clinical Epidemiology, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany
| | - Agnes Flöel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany; University Medicine Greifswald, Department of Neurology, Greifswald, Germany.
| |
Collapse
|
24
|
Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 2017; 65:350-361. [PMID: 28610747 DOI: 10.1016/j.bbi.2017.06.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
A number of clinical and experimental studies have revealed a strong association between periodontitis and accelerated cognitive decline in Alzheimer's disease (AD); however, the mechanism of the association is unknown. In the present study, we tested the hypothesis that cathepsin (Cat) B plays a critical role in the initiation of neuroinflammation and neural dysfunction following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis (PgLPS) in mice (1mg/kg, daily, intraperitoneally). Young (2months old) and middle-aged (12months old) wild-type (WT; C57BL/6N) or CatB-deficient (CatB-/-) mice were exposed to PgLPS daily for 5 consecutive weeks. The learning and memory function were assessed using the passive avoidance test, and the expression of amyloid precursor protein (APP), CatB, TLR2 and IL-1β was analyzed in brain tissues by immunohistochemistry and Western blotting. We found that chronic systemic exposure to PgLPS for five consecutive weeks induced learning and memory deficits with the intracellular accumulation of Aβ in neurons in the middle-aged WT mice, but not in young WT or middle-aged CatB-/- mice. PgLPS significantly increased the expression of CatB in both microglia and neurons in middle-aged WT mice, while increased expression of mature IL-1β and TLR2 was restricted to microglia in the hippocampus of middle-aged WT mice, but not in that of the middle-aged CatB-/- ones. In in vitro studies, PgLPS (1µg/ml) stimulation upregulated the mean mRNA expression of IL-1β, TLR2 and downregulated the protein levels of IκBα in the cultured MG6 microglia as well as in the primary microglia from WT mice, which were significantly inhibited by the CatB-specific inhibitor CA-074Me as well as by the primary microglia from CatB-/- mice. Furthermore, the mean mRNA expression of APP and CatB were significantly increased in the primary cultured hippocampal neurons after treatment with conditioned medium from PgLPS-treated WT primary microglia, but not after treatment with conditioned medium neutralized with anti-IL-1beta, and not after treatment with conditioned medium from PgLPS-treated CatB-/- primary microglia or with PgLPS directly. Taken together, these findings indicate that chronic systemic exposure to PgLPS induces AD-like phenotypes, including microglia-mediated neuroinflammation, intracellular Aβ accumulation in neurons and impairment of the learning and memory functions in the middle-aged mice in a CatB-dependent manner. We propose that CatB may be a therapeutic target for preventing periodontitis-associated cognitive decline in AD.
Collapse
Affiliation(s)
- Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Japan.
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Jessica L Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Fumiko Takayama
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Alex Collcutt
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Paul Ibbett
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| |
Collapse
|
25
|
Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiol Aging 2017; 61:245-254. [PMID: 29050849 DOI: 10.1016/j.neurobiolaging.2017.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 11/21/2022]
Abstract
Strategies for memory enhancement, especially for the older population, are of great scientific and public interest. Here, we aimed at investigating neuronal and behavioral effects of transcranial direct current stimulation (tDCS) paired with memory training. Young and older adults were trained on an object-location-memory task on 3 consecutive days with either anodal or sham tDCS. Recall performance was assessed immediately after training, 1 day and 1 month later, as well as performance on trained function and transfer task. Resting-state functional magnetic resonance imaging was conducted at baseline and at 1-day follow-up to analyze functional coupling in the default mode network. Anodal tDCS led to superior recall performance after training, an associated increase in default mode network strength and enhanced trained function and transfer after 1 month. Our findings suggest that tDCS-accompanied multi-day training improves performance on trained material, is associated with beneficial memory network alterations, and transfers to other memory tasks. Our study provides insight into tDCS-induced behavioral and neuronal alterations and will help to develop interventions against age-related cognitive decline.
Collapse
|
26
|
ten Brinke LF, Davis JC, Barha CK, Liu-Ambrose T. Effects of computerized cognitive training on neuroimaging outcomes in older adults: a systematic review. BMC Geriatr 2017; 17:139. [PMID: 28693437 PMCID: PMC5504817 DOI: 10.1186/s12877-017-0529-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Worldwide, the population is aging and the number of individuals diagnosed with dementia is rising rapidly. Currently, there are no effective pharmaceutical cures. Hence, identifying lifestyle approaches that may prevent, delay, or treat cognitive impairment and dementia in older adults is becoming increasingly important. Computerized Cognitive Training (CCT) is a promising strategy to combat cognitive decline. Yet, the underlying mechanisms of the effect of CCT on cognition remain poorly understood. Hence, the primary objective of this systematic review was to examine peer-reviewed literature ascertaining the effect of CCT on both structural and functional neuroimaging measures among older adults to gain insight into the underlying mechanisms by which CCT may benefit cognitive function. METHODS In accordance with PRISMA guidelines, we used the following databases: MEDLINE, EMBASE, and CINAHL. Two independent reviewers abstracted data using pre-defined terms. These included: main study characteristics such as the type of training (i.e., single- versus multi-domain), participant demographics (age ≥ 50 years; no psychiatric conditions), and the inclusion of neuroimaging outcomes. The Physiotherapy Evidence Database (PEDro) scale was used to assess quality of all studies included in this systematic review. RESULTS Nine studies were included in this systematic review, with four studies including multiple MRI sequences. Results of this systematic review are mixed: CCT was found to increase and decrease both brain structure and function in older adults. In addition, depending on region of interest, both increases and decreases in structure and function were associated with behavioural performance. CONCLUSIONS Of all studies included in this systematic review, results from the highest quality studies, which were two randomized controlled trials, demonstrated that multi-domain CCT could lead to increases in hippocampal functional connectivity. Further high quality studies that include an active control, a sample size calculation, and an appropriate training dosage, are needed to confirm these findings and their relation to cognition.
Collapse
Affiliation(s)
- Lisanne F. ten Brinke
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| | - Jennifer C. Davis
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| | - Cindy K. Barha
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|