1
|
Pappas C, Bauer CE, Zachariou V, Libecap TJ, Rodolpho B, Sudduth TL, Nelson PT, Jicha GA, Hartz AM, Shao X, Wang DJJ, Gold BT. Synergistic effects of plasma S100B and MRI measures of cerebrovascular disease on cognition in older adults. GeroScience 2025:10.1007/s11357-024-01498-1. [PMID: 39907937 DOI: 10.1007/s11357-024-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
There is growing interest in studying vascular contributions to cognitive impairment and dementia (VCID) and developing biomarkers to identify at-risk individuals. A combination of biofluid and neuroimaging markers may better profile early stage VCID than individual measures. Here, we tested this possibility focusing on plasma levels of S100 calcium-binding protein B (S100B), which has been linked with blood-brain-barrier (BBB) integrity, and neuroimaging measures assessing BBB function (water exchange rate across the BBB (kw)) and cerebral small vessel disease (white matter hyperintensities (WMHs)). A total of 74 older adults without dementia had plasma samples collected and underwent cognitive assessment. A subsample had neuroimaging data including diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) for assessment of BBB kw and T2-weighted fluid-attenuated inversion recovery (FLAIR) for quantification of WMHs. Results indicated that higher plasma S100B levels were associated with poorer episodic memory performance (β = - .031, SE = .008, p < .001). Moreover, significant interactions were observed between plasma S100B levels and parietal lobe BBB kw (interaction β = .095, SE = .042, p = .028) and between plasma S100B levels and deep WMH volume (interaction β = - .025, SE = .009, p = .007) for episodic memory. Individuals with the poorest memory performance showed both high plasma S100B and either low BBB kw in the parietal lobe or increased deep WMH burden. Taken together, our results provide support for the combined use of biofluid and neuroimaging markers in the study of VCID.
Collapse
Affiliation(s)
- Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Valentinos Zachariou
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - T J Libecap
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Beatriz Rodolpho
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Anika Ms Hartz
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Xingfeng Shao
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Patel R, Marrie RA, Bernstein CN, Bolton JM, Graff LA, Marriott JJ, Figley CR, Kornelsen J, Mazerolle EL, Helmick C, Uddin MN, Fisk JD. Vascular Disease Is Associated With Differences in Brain Structure and Lower Cognitive Functioning in Inflammatory Bowel Disease: A Cross-Sectional Study. Inflamm Bowel Dis 2024; 30:1309-1318. [PMID: 37740523 PMCID: PMC11291614 DOI: 10.1093/ibd/izad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Vascular disease and cognitive impairment have been increasingly documented in inflammatory bowel disease (IBD), and both have been individually correlated with changes in brain structure. This study aimed to determine if both macro- and microstructural brain changes are prevalent in IBD and whether alterations in brain structure mediate the relationship between vascular disease and cognitive functioning. METHODS Eighty-four IBD participants underwent multimodal magnetic resonance imaging. Volumetric and mean diffusivity measures of the thalamus, hippocampus, normal-appearing white matter, and white matter lesions were converted to age- and sex-adjusted z scores. Vascular comorbidity was assessed using a modified Framingham Risk Score and cognition was assessed using a battery of neuropsychological tests. Test scores were standardized using local regression-based norms. We generated summary statistics for the magnetic resonance imaging metrics and cognitive tests, and these were examined using canonical correlation analysis and linear regression modeling. RESULTS Greater vascular comorbidity was negatively correlated with thalamic, normal-appearing white matter, and white matter lesion volumes. Higher Framingham Risk Score were also correlated with lower processing speed, learning and memory, and verbal fluency. Increased vascular comorbidity was predictive of poorer cognitive functioning, and this effect was almost entirely mediated (94.76%) by differences in brain structure. CONCLUSIONS Vascular comorbidity is associated with deleterious effects on brain structure and lower cognitive functioning in IBD. These findings suggest that proper identification and treatment of vascular disease is essential to the overall management of IBD, and that certain brain areas may serve as critical targets for predicting the response to therapeutic interventions.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, MB, Canada
| | - Lesley A Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J Marriott
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Erin L Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - John D Fisk
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Zhao X, Ji C, Zhang C, Huang C, Zhou Y, Wang L. Transferability and sustainability of process-based multi-task adaptive cognitive training in community-dwelling older adults with mild cognitive impairment: a randomized controlled trial. BMC Psychiatry 2023; 23:418. [PMID: 37308857 PMCID: PMC10259063 DOI: 10.1186/s12888-023-04917-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Cognitive training shows promising effects for improving cognitive domains in individuals with mild cognitive impairment (MCI), including the crucial predictive factor of executive function (EF) for dementia prognosis. Few studies have paid sufficient emphasis on the training-induced effects of cognitive training programs, particularly with regards to targeting EF. A process-based multi-task adaptive cognitive training (P-bM-tACT) program targeting EF is required to examine direct, transfer, and sustainability effects in older adults with MCI. OBJECTIVE This study aimed to evaluate the direct effects of a P-bM-tACT program on EF, the transfer effects on untrained cognitive domains, and further explore the sustainability of training gains for older adults with MCI in the community. METHODS In a single-blind, randomized controlled trial, 92 participants with MCI were randomly assigned to either the intervention group, participating in a P-bM-tACT program (3 training sessions/week, 60 min/session for 10 weeks) or the wait-list control group, accepting a health education program on MCI (1 education session/ twice a week, 40-60 min/session for 10 weeks). The direct and transfer effects of the P-bM-tACT program were assessed at baseline, immediately after 10 weeks of training, and the 3-month follow-up. Repeated measures analysis of variance and a simple effect test were used to compare the direct and transfer effects over the 3-time points between the two groups. RESULTS The P-bM-tACT program yielded a greater benefit of direct and transfer effects in the intervention group participants than in the wait-list control group. Combined with the results of simple effect tests, the direct and transfer effects of participants in the intervention group significantly increased immediately after 10 weeks of training compared to the baseline (F = 14.702 ~ 62.905, p < 0.05), and these effects were maintained at the 3-month follow-up (F = 19.595 ~ 122.22, p < 0.05). Besides, the acceptability of the cognitive training program was established with a high adherence rate of 83.4%. CONCLUSIONS The P-bM-tACT program exerted positive direct and transfer effects on the improvement of cognitive function, and these effects were sustained for 3 months. The findings provided a viable and potential approach to improving cognitive function in older adults with MCI in the community. TRIAL REGISTRATION The trial was registered at Chinese Clinical Trials Registry on 09/01/2019 ( www.chictr.org.cn ; Number Registry: ChiCTR1900020585).
Collapse
Affiliation(s)
- Xia Zhao
- Department of Geriatric Psychiatry, Suzhou Guangji Hospital, JiangSu, China
- School of Medicine, Huzhou University, Zhejiang, China
| | - Caifang Ji
- Department of Geriatric Psychiatry, Suzhou Guangji Hospital, JiangSu, China
| | - Chen Zhang
- Department of general medicine, Community health service center of Binhu Street, Zhejiang, China
| | - Cheng Huang
- School of Medicine, Huzhou University, Zhejiang, China
| | - Yuanyuan Zhou
- School of Nursing, Jiangsu College of Nursing, JiangSu, China
| | - Lina Wang
- School of Medicine, Huzhou University, Zhejiang, China.
| |
Collapse
|
4
|
Frank B, Ally M, Tripodis Y, Puzo C, Labriolo C, Hurley L, Martin B, Palmisano J, Chan L, Steinberg E, Turk K, Budson A, O’Connor M, Au R, Qiu WQ, Goldstein L, Kukull W, Kowall N, Killiany R, Stern R, Stein T, McKee A, Mez J, Alosco M. Trajectories of Cognitive Decline in Brain Donors With Autopsy-Confirmed Alzheimer Disease and Cerebrovascular Disease. Neurology 2022; 98:e2454-e2464. [PMID: 35444054 PMCID: PMC9231841 DOI: 10.1212/wnl.0000000000200304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebrovascular disease (CBVD) is frequently comorbid with autopsy-confirmed Alzheimer disease (AD), but its contribution to the clinical presentation of AD remains unclear. We leveraged the National Alzheimer's Coordinating Center (NACC) uniform and neuropathology datasets to compare the cognitive and functional trajectories of AD+/CBVD+ and AD+/CBVD- brain donors. METHODS The sample included NACC brain donors with autopsy-confirmed AD (Braak stage ≥3, Consortium to Establish a Registry for Alzheimer's Disease score ≥2) and complete Uniform Data Set (UDS) evaluations between 2005 and 2019, with the most recent UDS evaluation within 2 years of autopsy. CBVD was defined as moderate to severe arteriosclerosis or atherosclerosis. We used propensity score weighting to isolate the effects of comorbid AD and CBVD. This method improved the balance of covariates between the AD+/CBVD+ and AD+/CBVD- groups. Longitudinal mixed-effects models were assessed with robust bayesian estimation. UDS neuropsychological test and the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores were primary outcomes. RESULTS Of 2,423 brain donors, 1,476 were classified as AD+/CBVD+. Compared with AD+/CVBD- donors, the AD+/CBVD+ group had accelerated decline (i.e., group × time effects) on measures of processing speed (β = -0.93, 95% CI -1.35, -0.51, Bayes factor [BF] 130.75), working memory (β = 0.05, 95% CI 0.02, 0.07, BF 3.59), verbal fluency (β = 0.10, 95% CI 0.04, 0.15, BF 1.28), naming (β = 0.09, 95% CI 0.03, 0.16, BF = 0.69), and CDR-SB (β = -0.08, 95% CI -0.12, -0.05, BF 18.11). Effects ranged from weak (BFs <3.0) to strong (BFs <150). We also found worse performance in the AD+/CBVD+ group across time on naming (β = -1.04, 95% CI -1.83, -0.25, BF 2.52) and verbal fluency (β = -0.73, 95% CI -1.30, -0.15, BF 1.34) and more impaired CDR-SB scores (β = 0.45, 95% CI 0.01, 0.89, BF 0.33). DISCUSSION In brain donors with autopsy-confirmed AD, comorbid CBVD was associated with an accelerated functional and cognitive decline, particularly on neuropsychological tests of attention, psychomotor speed, and working memory. CBVD magnified effects of AD neuropathology on semantic-related neuropsychological tasks. Findings support a prominent additive and more subtle synergistic effect for comorbid CBVD neuropathology in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Alosco
- From the Boston University Alzheimer's Disease Center and CTE Center (B.F., M. Ally, Y.T., C.P., C.L., B.M., J.P., L.C., E.S., K.T., A.B., M.O., R.A., W.Q.Q., L.G., N.K., R.K., R.S., T.S., A.M., J.M., M. Alosco), Boston University School of Medicine; Veteran Affairs Bedford Healthcare System (B.F., M.O., T.S., A.M.), Bedford; Department of Biostatistics (Y.T.), Boston University School of Public Health, MA; Yale School of Public Health (L.H.), New Haven, CT; Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Department of Neurology (K.T., A.B., R.A., N.K., R.S., A.M., J.M., M. Alosco), Boston University School of Medicine; Veterans Affairs Boston Healthcare System (K.T., A.B., N.K., T.S., A.M); Department of Anatomy & Neurobiology (R.A., R.K., R.S.), Boston University School of Medicine; MA; Framingham Heart Study (R.A.), National Heart, Lung, and Blood Institute, Bethesda, MD; Department of Epidemiology (R.A.), Boston University School of Public Health; Department of Psychiatry (W.Q.Q.), Boston University School of Medicine; Department of Pharmacology & Experimental Therapeutics (W.Q.Q.), Boston University School of Medicine; Department of Pathology and Laboratory Medicine (L.G.), Boston University School of Medicine; Departments of Psychiatry and Ophthalmology (L.G.), Boston University School of Medicine; Departments of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering, MA; National Alzheimer's Coordinating Center (W.K.), Department of Epidemiology, University of Washington, Seattle; Center for Biomedical Imaging (R.K.), and Boston University School of Medicine; Department of Neurosurgery (R.S.), Boston University School of Medicine, MA.
| |
Collapse
|
5
|
Boutzoukas EM, O'Shea A, Kraft JN, Hardcastle C, Evangelista ND, Hausman HK, Albizu A, Van Etten EJ, Bharadwaj PK, Smith SG, Song H, Porges EC, Hishaw A, DeKosky ST, Wu SS, Marsiske M, Alexander GE, Cohen R, Woods AJ. Higher white matter hyperintensity load adversely affects pre-post proximal cognitive training performance in healthy older adults. GeroScience 2022; 44:1441-1455. [PMID: 35278154 PMCID: PMC9213634 DOI: 10.1007/s11357-022-00538-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive training has shown promise for improving cognition in older adults. Age-related neuroanatomical changes may affect cognitive training outcomes. White matter hyperintensities are one common brain change in aging reflecting decreased white matter integrity. The current study assessed (1) proximal cognitive training performance following a 3-month randomized control trial and (2) the contribution of baseline whole-brain white matter hyperintensity load, or total lesion volume (TLV), on pre-post proximal training change. Sixty-two healthy older adults were randomized to either adaptive cognitive training or educational training control interventions. Repeated-measures analysis of covariance revealed two-way group × time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (total training composite) and sub-composite (processing speed training composite, working memory training composite) measures compared to education training counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on processing speed training sub-composite (β = -0.19, p = 0.04), but not other composite measures. These findings demonstrate the utility of cognitive training for improving post-intervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appears to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Collapse
Affiliation(s)
- Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Pradyumna K Bharadwaj
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Samantha G Smith
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hyun Song
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alex Hishaw
- Department Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Asci F, Scardapane S, Zampogna A, D’Onofrio V, Testa L, Patera M, Falletti M, Marsili L, Suppa A. Handwriting Declines With Human Aging: A Machine Learning Study. Front Aging Neurosci 2022; 14:889930. [PMID: 35601625 PMCID: PMC9120912 DOI: 10.3389/fnagi.2022.889930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHandwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders.Materials and MethodsOne-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm.ResultsStroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and AUC = 0.84), MA vs. OA (sensitivity = 84%, specificity = 56%, PPV = 78%, NPV = 73%, accuracy = 74%, and AUC = 0.7), and YA vs. MA (sensitivity = 75%, specificity = 82%, PPV = 79%, NPV = 83%, accuracy = 79%, and AUC = 0.83).DiscussionHandwriting progressively declines with human aging. The effect of physiological aging on handwriting abilities can be detected remotely and objectively by using machine learning algorithms.
Collapse
Affiliation(s)
| | - Simone Scardapane
- Department of Information, Electronic and Communication Engineering (DIET), Sapienza University of Rome, Rome, Italy
| | | | | | - Lucia Testa
- Department of Informatic, Automatic and Gestional Engineering (DIAG), Sapienza University of Rome, Rome, Italy
| | - Martina Patera
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Falletti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Antonio Suppa
- IRCCS Neuromed Institute, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- *Correspondence: Antonio Suppa,
| |
Collapse
|
7
|
Schwarz C, Benson GS, Horn N, Wurdack K, Grittner U, Schilling R, Märschenz S, Köbe T, Hofer SJ, Magnes C, Stekovic S, Eisenberg T, Sigrist SJ, Schmitz D, Wirth M, Madeo F, Flöel A. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2213875. [PMID: 35616942 PMCID: PMC9136623 DOI: 10.1001/jamanetworkopen.2022.13875] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Importance Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration ClinicalTrials.gov Identifier: NCT03094546.
Collapse
Affiliation(s)
- Claudia Schwarz
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gloria S. Benson
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nora Horn
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Wurdack
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Köbe
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH–Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Stephan J. Sigrist
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miranka Wirth
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Agnes Flöel
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers. Eur Radiol 2022; 32:7833-7842. [PMID: 35486172 PMCID: PMC9668758 DOI: 10.1007/s00330-022-08798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Established visual brain MRI markers for dementia include hippocampal atrophy (mesio-temporal atrophy MTA), white matter lesions (Fazekas score), and number of cerebral microbleeds (CMBs). We assessed whether novel quantitative, artificial intelligence (AI)-based volumetric scores provide additional value in predicting subsequent cognitive decline in elderly controls. METHODS A prospective study including 80 individuals (46 females, mean age 73.4 ± 3.5 years). 3T MR imaging was performed at baseline. Extensive neuropsychological assessment was performed at baseline and at 4.5-year follow-up. AI-based volumetric scores were derived from 3DT1: Alzheimer Disease Resemblance Atrophy Index (AD-RAI), Brain Age Gap Estimate (BrainAGE), and normal pressure hydrocephalus (NPH) index. Analyses included regression models between cognitive scores and imaging markers. RESULTS AD-RAI score at baseline was associated with Corsi (visuospatial memory) decline (10.6% of cognitive variability in multiple regression models). After inclusion of MTA, CMB, and Fazekas scores simultaneously, the AD-RAI score remained as the sole valid predictor of the cognitive outcome explaining 16.7% of its variability. Its percentage reached 21.4% when amyloid positivity was considered an additional explanatory factor. BrainAGE score was associated with Trail Making B (executive functions) decrease (8.5% of cognitive variability). Among the conventional MRI markers, only the Fazekas score at baseline was positively related to the cognitive outcome (8.7% of cognitive variability). The addition of the BrainAGE score as an independent variable significantly increased the percentage of cognitive variability explained by the regression model (from 8.7 to 14%). The addition of amyloid positivity led to a further increase in this percentage reaching 21.8%. CONCLUSIONS The AI-based AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs. KEY POINTS • AD-RAI score at baseline was associated with Corsi score (visuospatial memory) decline. • BrainAGE score was associated with Trail Making B (executive functions) decrease. • AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and number of CMBs.
Collapse
|
9
|
Guo Z, Meng Z, Mu R, Qin X, Zhuang Z, Zheng W, Liu F, Zhu X. Amide Proton Transfer MRI Could Be Used to Evaluate the Pathophysiological Status of White Matter Hyperintensities. J Magn Reson Imaging 2021; 56:301-309. [PMID: 34854519 DOI: 10.1002/jmri.28013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The pathophysiology of white matter hyperintensities (WMH) remains unclear, investigations of amide proton transfer (APT) signals in WMH disease may provide relevant pathophysiological information. PURPOSE To evaluate the APT signals differences and heterogeneity of WMH and adjacent normal-appearing white matter (NAWM) at different Fazekas grades and different locations. STUDY TYPE Prospective. POPULATION In all, 180 WMH patients (age, 40-76; male/female, 77/103) and 59 healthy controls (age, 42-70; male/female, 23/36). FIELD STRENGTH/SEQUENCE A 3 T; 3D fluid-attenuated inversion recovery (FLAIR), 3D APT-weighted (APTw). ASSESSMENT The mean APTw values (APTwmean ) and the APTw signals heterogeneity (APTwmax-min ) among different grades WMH and NAWM and the APTwmean of the same grade deep WMH (DWMH) and paraventricular WMH (PWMH) were calculated and compared. Regions of interests were delineated on WMH lesions, NAWM and healthy white matter. STATISTICAL TESTS One-way analysis of variance (ANOVA); independent sample t test; Chi-square test. Significance level: P < 0.05. RESULTS APTwmean among different grade WMH (from grade 0 to 3, 0.58 ± 0.14% vs. 0.29 ± 0.23% vs. 0.37 ± 0.24% vs. 0.61 ± 0.22%, respectively) were significantly different except between grade 1 and 2 (P = 0.27) and between grade 0 and 3 (P = 0.97). The differences in APTwmean between WMH and NAWM were significant (WMH vs. NAWM from grade 1 to 3, 0.29% ± 0.23% vs. 0.55% ± 0.27%; 0.37% ± 0.24% vs. 0.59% ± 0.22%; 0.61% ± 0.22% vs. 0.42% ± 0.24%, respectively). Lower APTwmean values were found only in grade 3 NAWM than other grades NAWM and controls. The APTwmax-min values of grade 1-3 WMH (0.38% ± 0.27% vs. 0.51% ± 0.31% vs. 0.67% ± 0.34%, respectively) were significantly different. Higher APTmean values were found only in grade 2 PWMH (0.47% ± 0.22% vs. 0.32% ± 0.24%). DATA CONCLUSION Significant differences of APT signals were found in WMH of different Fazekas grades and different locations. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Zixuan Guo
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zhuoni Meng
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ronghua Mu
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaoyan Qin
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zeyu Zhuang
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wei Zheng
- Department of Medical Imaging, Guilin Medical University, Guilin, China.,Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Fuzhen Liu
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiqi Zhu
- Department of Medical Imaging, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
10
|
Jung Y, Viviano RP, van Rooden S, van der Grond J, Rombouts SARB, Damoiseaux JS. White Matter Hyperintensities and Apolipoprotein E Affect the Association Between Mean Arterial Pressure and Objective and Subjective Cognitive Functioning in Older Adults. J Alzheimers Dis 2021; 84:1337-1350. [PMID: 34657884 DOI: 10.3233/jad-210695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) show a robust relationship with arterial pressure as well as objective and subjective cognitive functioning. In addition, APOE ɛ4 carriership may influence how arterial pressure affects cognitive functioning. OBJECTIVE To determine the role of region-specific WMH burden and APOE ɛ4 carriership on the relationship between mean arterial pressure (MAP) and cognitive function as well as subjective cognitive decline (SCD). METHODS The sample consisted of 87 cognitively unimpaired middle-aged to older adults aged 50-85. We measured WMH volume for the whole brain, anterior thalamic radiation (ATR), forceps minor, and superior longitudinal fasciculus (SLF). We examined whether WMH burden mediated the relationship between MAP and cognition (i.e., TMT-A score for processing speed; Stroop performance for executive function) as well as SCD (i.e., Frequency of Forgetting (FoF)), and whether APOE ɛ4 carriership moderated that mediation. RESULTS WMH burden within SLF mediated the effect of MAP on Stroop performance. Both whole brain and ATR WMH burden mediated the effect of MAP on FoF score. In the MAP-WMH-Stroop relationship, the mediation effect of SLF WMH and the effect of MAP on SLF WMH were significant only in APOE ɛ4 carriers. In the MAP-WMH-FoF relationship, the effect of MAP on whole brain WMH burden was significant only in ɛ4 carriers. CONCLUSION WMH burden and APOE genotype explain the link between blood pressure and cognitive function and may enable a more accurate assessment of the effect of high blood pressure on cognitive decline and risk for dementia.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI, USA.,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Raymond P Viviano
- Department of Psychology, Wayne State University, Detroit, MI, USA.,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI, USA.,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Herrmann FR, Montandon ML, Garibotto V, Rodriguez C, Haller S, Giannakopoulos P. Determinants of Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study in a Community-based Cohort. Curr Alzheimer Res 2021; 18:482-491. [PMID: 34602046 DOI: 10.2174/1567205018666210930111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The determinants of the progressive decrement of cognition in normal aging are still a matter of debate. Alzheimer disease (AD)-signature markers and vascular lesions, but also psychological variables such as personality factors, are thought to have an impact on the longitudinal trajectories of neuropsychological performances in healthy elderly individuals. OBJECTIVE The current research aimed to identify the main determinants associated with cognitive trajectories in normal aging. METHODS We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, medial temporal atrophy (MTA), number of cerebral microbleeds (CMB), and white matter hyperintensities (WMH) at inclusion, visual rating of amyloid and FDG PET at follow-up, and APOE genotyping. Personality factors were assessed at baseline using the NEO-PIR. Univariate and backward stepwise regression models were built to explore the association between the continuous cognitive score (CCS) and both imaging and personality variables. RESULTS The number of strictly lobar CMB at baseline (4 or more) was related to a significant increase in the risk of cognitive decrement. In multivariable models, amyloid positivity was associated with a 1.73 unit decrease of the CCS at follow-up. MTA, WMH and abnormal FDG PET were not related to the cognitive outcome. Among personality factors, only higher agreeableness was related to better preservation of neuropsychological performances. CONCLUSION CMB and amyloid positivity are the only imaging determinants of cognitive trajectories in this highly selected series of healthy controls. Among personality factors, higher agreeableness confers a modest but significant protection against the decline of cognitive performances.
Collapse
Affiliation(s)
- François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Sven Haller
- CIMC - Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
| | | |
Collapse
|
12
|
Ferreira S, Pitman KA, Summers BS, Wang S, Young KM, Cullen CL. Oligodendrogenesis increases in hippocampal grey and white matter prior to locomotor or memory impairment in an adult mouse model of tauopathy. Eur J Neurosci 2021; 54:5762-5784. [PMID: 32181929 PMCID: PMC8451881 DOI: 10.1111/ejn.14726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Myelin and axon losses are associated with cognitive decline in healthy ageing but are worse in people diagnosed with tauopathy. To determine whether tauopathy is also associated with enhanced myelin plasticity, we evaluated the behaviour of OPCs in mice that expressed a human pathological variant of microtubule-associated protein tau (MAPTP301S ). By 6 months of age (P180), MAPTP301S mice overexpressed hyperphosphorylated tau and had developed reactive gliosis in the hippocampus but had not developed overt locomotor or memory impairment. By performing cre-lox lineage tracing of adult OPCs, we determined that the number of newborn oligodendrocytes added to the hippocampus, entorhinal cortex and fimbria was equivalent in control and MAPTP301S mice prior to P150. However, between P150 and P180, significantly more new oligodendrocytes were added to these regions in the MAPTP301S mouse brain. This large increase in new oligodendrocyte number was not the result of increased OPC proliferation, nor did it alter oligodendrocyte density in the hippocampus, entorhinal cortex or fimbria, which was equivalent in P180 wild-type and MAPTP301S mice. Furthermore, the proportion of hippocampal and fimbria axons with myelin was unaffected by tauopathy. However, the proportion of myelinated axons that were ensheathed by immature myelin internodes was significantly increased in the hippocampus and fimbria of P180 MAPTP301S mice, when compared with their wild-type littermates. These data suggest that MAPTP301S transgenic mice experience significant oligodendrocyte turnover, with newborn oligodendrocytes compensating for myelin loss early in the development of tauopathy.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kimberley A. Pitman
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Benjamin S. Summers
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Shiwei Wang
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Kaylene M. Young
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Carlie L. Cullen
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
13
|
Samboju V, Cobigo Y, Paul R, Naasan G, Hillis M, Tsuei T, Javandel S, Valcour V, Milanini B. Cerebrovascular Disease Correlates With Longitudinal Brain Atrophy in Virally Suppressed Older People Living With HIV. J Acquir Immune Defic Syndr 2021; 87:1079-1085. [PMID: 34153014 PMCID: PMC8547347 DOI: 10.1097/qai.0000000000002683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mild cognitive difficulties and progressive brain atrophy are observed in older people living with HIV (PLWH) despite persistent viral suppression. Whether cerebrovascular disease (CVD) risk factors and white matter hyperintensity (WMH) volume correspond to the observed progressive brain atrophy is not well understood. METHODS Longitudinal structural brain atrophy rates and WMH volume were examined among 57 HIV-infected participants and 40 demographically similar HIV-uninfected controls over an average (SD) of 3.4 (1.7) years. We investigated associations between CVD burden (presence of diabetes, hypertension, hyperlipidemia, obesity, smoking history, and atrial fibrillation) and WMH with atrophy over time. RESULTS The mean (SD) age was 64.8 (4.3) years for PLWH and 66.4 (3.2) years for controls. Participants and controls were similar in age and sex (P > 0.05). PLWH were persistently suppressed (VL <375 copies/mL with 93% <75 copies/mL). The total number of CVD risk factors did not associate with atrophy rates in any regions of interests examined; however, body mass index independently associated with progressive atrophy in the right precentral gyrus (β = -0.30; P = 0.023), parietal lobe (β = -0.28; P = 0.030), and frontal lobe atrophy (β = -0.27; P = 0.026) of the HIV-infected group. No associations were found in the HIV-uninfected group. In both groups, baseline WMH was associated with progressive atrophy rates bilaterally in the parietal gray in the HIV-infected group (β = -0.30; P = 0.034) and the HIV-uninfected participants (β = -0.37; P = 0.033). CONCLUSIONS Body mass index and WMH are associated with atrophy in selective brain regions. However, CVD burden seems to partially contribute to progressive brain atrophy in older individuals regardless of HIV status, with similar effect sizes. Thus, CVD alone is unlikely to explain accelerated atrophy rates observed in virally suppressed PLWH. In older individuals, addressing modifiable CVD risk factors remains important to optimize brain health.
Collapse
Affiliation(s)
- Vishal Samboju
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| | - Robert Paul
- Missouri Institute of Mental Health, University of
Missouri, St. Louis, MO, USA
| | - Georges Naasan
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
- Global Brain Health Institute, University of California,
San Francisco, CA, USA
- The Barbara and Maurice Deanne Center for Wellness and
Cognitive Health, Department of Neurology, Mount Sinai, Icahn School of Medicine,
NY, USA
| | - Madeline Hillis
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| | - Torie Tsuei
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| | - Shireen Javandel
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
- Global Brain Health Institute, University of California,
San Francisco, CA, USA
| | - Benedetta Milanini
- Memory and Aging Center, Department of Neurology,
University of California San Francisco, CA, USA
| |
Collapse
|
14
|
Giannakopoulos P, Montandon ML, Rodriguez C, Haller S, Garibotto V, Herrmann FR. Prediction of Subtle Cognitive Decline in Normal Aging: Added Value of Quantitative MRI and PET Imaging. Front Aging Neurosci 2021; 13:664224. [PMID: 34322007 PMCID: PMC8313279 DOI: 10.3389/fnagi.2021.664224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
Quantitative imaging processing tools have been proposed to improve clinic-radiological correlations but their added value at the initial stages of cognitive decline is still a matter of debate. We performed a longitudinal study in 90 community-dwelling elders with three neuropsychological assessments during a 4.5 year follow-up period, and visual assessment of medial temporal atrophy (MTA), white matter hyperintensities, cortical microbleeds (CMB) as well as amyloid positivity, and presence of abnormal FDG-PET patterns. Quantitative imaging data concerned ROI analysis of MRI volume, amyloid burden, and FDG-PET metabolism in several AD-signature areas. Multiple regression models, likelihood-ratio tests, and areas under the receiver operating characteristic curve (AUC) were used to compare quantitative imaging markers to visual inspection. The presence of more or equal to four CMB at inclusion and slight atrophy of the right MTL at follow-up were the only parameters to be independently related to the worst cognitive score explaining 6% of its variance. This percentage increased to 24.5% when the ROI-defined volume loss in the posterior cingulate cortex, baseline hippocampus volume, and MTL metabolism were also considered. When binary classification of cognition was made, the area under the ROC curve increased from 0.69 for the qualitative to 0.79 for the mixed imaging model. Our data reveal that the inclusion of quantitative imaging data significantly increases the prediction of cognitive changes in elderly controls compared to the single consideration of visual inspection.
Collapse
Affiliation(s)
- Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Louise Montandon
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Medical Direction, Geneva University Hospitals, Geneva, Switzerland
| | - Sven Haller
- Department of Neuroradiology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
- CIRD—Centre d’Imagerie Rive Droite, Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François R. Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Boutzoukas EM, O'Shea A, Albizu A, Evangelista ND, Hausman HK, Kraft JN, Van Etten EJ, Bharadwaj PK, Smith SG, Song H, Porges EC, Hishaw A, DeKosky ST, Wu SS, Marsiske M, Alexander GE, Cohen R, Woods AJ. Frontal White Matter Hyperintensities and Executive Functioning Performance in Older Adults. Front Aging Neurosci 2021; 13:672535. [PMID: 34262445 PMCID: PMC8273864 DOI: 10.3389/fnagi.2021.672535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Frontal lobe structures decline faster than most other brain regions in older adults. Age-related change in the frontal lobe is associated with poorer executive function (e.g., working memory, switching/set-shifting, and inhibitory control). The effects and presence of frontal lobe white matter hyperintensities (WMH) on executive function in normal aging is relatively unknown. The current study assessed relationships between region-specific frontal WMH load and cognitive performance in healthy older adults using three executive function tasks from the NIH Toolbox (NIHTB) Cognition Battery. A cohort of 279 healthy older adults ages 65-88 completed NIHTB and 3T T1-weighted and FLAIR MRI. Lesion Segmentation Toolbox quantified WMH volume and generated lesion probability maps. Individual lesion maps were registered to the Desikan-Killiany atlas in FreeSurfer 6.0 to define regions of interest (ROI). Independent linear regressions assessed relationships between executive function performance and region-specific WMH in frontal lobe ROIs. All models included age, sex, education, estimated total intracranial volume, multi-site scanner differences, and cardiovascular disease risk using Framingham criteria as covariates. Poorer set-shifting performance was associated with greater WMH load in three frontal ROIs including bilateral superior frontal (left β = -0.18, FDR-p = 0.02; right β = -0.20, FDR-p = 0.01) and right medial orbitofrontal (β = -0.17, FDR-p = 0.02). Poorer inhibitory performance associated with higher WMH load in one frontal ROI, the right superior frontal (right β = -0.21, FDR-p = 0.01). There were no significant associations between working memory and WMH in frontal ROIs. Our study demonstrates that location and pattern of frontal WMH may be important to assess when examining age-related differences in cognitive functions involving switching/set-shifting and inhibition. On the other hand, working memory performance was not related to presence of frontal WMH in this sample. These data suggest that WMH may contribute selectively to age-related declines in executive function. Findings emerged beyond predictors known to be associated with WMH presence, including age and cardiovascular disease risk. The spread of WMH within the frontal lobes may play a key role in the neuropsychological profile of cognitive aging. Further research should explore whether early intervention on modifiable vascular factors or cognitive interventions targeted for executive abilities may help mitigate the effect of frontal WMH on executive function.
Collapse
Affiliation(s)
- Emanuel M. Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nicole D. Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Hanna K. Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Emily J. Van Etten
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Samantha G. Smith
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Hyun Song
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Eric C. Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alex Hishaw
- Department Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Steven T. DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Samuel S. Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Gene E. Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, United States
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Oh DJ, Han JW, Bae JB, Kim TH, Kwak KP, Kim BJ, Kim SG, Kim JL, Moon SW, Park JH, Ryu SH, Youn JC, Lee DY, Lee DW, Lee SB, Lee JJ, Jhoo JH, Kim KW. Executive dysfunction and risk of suicide in older adults: a population-based prospective cohort study. J Neurol Neurosurg Psychiatry 2021; 92:528-533. [PMID: 33563806 DOI: 10.1136/jnnp-2020-324390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE It is uncertain what factors increases the risk of suicide in older adults without depression, and it is unknown whether executive dysfunction (ED) is one of those factors. We aimed to examine the effect of ED on the risk of suicide in non-demented older adults without depression. METHODS In an ongoing population-based prospective cohort of Korean older adults, we identified suicide using the National Mortality Database and suicidal ideation or attempt (SIA) based on the Korean version of the Mini International Neuropsychiatric Interview. We defined ED as performing below -1.5 SD of age-adjusted, gender-adjusted and education-adjusted norms in any of following tests: Frontal Assessment Battery, Trail Making Test A, Digit Span Test or Verbal Fluency Test. RESULTS The mean age of the 4791 participants at baseline was 69.7 (SD 6.4) years, and 57.1% of them were women (mean follow-up duration=4.9 years). ED at baseline increased the risk of suicide by about seven times (HR 7.20, 95% CI 1.84 to 28.12, p=0.005) but did not change the risk of SIA. However, cognitive impairment without ED did not change the risks of suicide and SIA. In participants with ED, being aged 75 years or above, living alone, and having a low socioeconomic status were associated with the risk of suicide. CONCLUSION ED is a strong risk factor of late life suicide independent from depression, particularly in very old adults living in disadvantaged environments.
Collapse
Affiliation(s)
- Dae Jong Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of).,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Korea (the Republic of)
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Tae Hui Kim
- Department of Psychiatry, Yonsei University Wonju Severance Christian Hospital, Wonju, Korea (the Republic of)
| | - Kyung Phil Kwak
- Department of Psychiatry, Dongguk University Gyeongju Hospital, Gyeongju, Korea (the Republic of)
| | - Bong Jo Kim
- Department of Psychiatry, Gyeongsang National University School of Medicine, Jinju, Korea (the Republic of)
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Korea (the Republic of)
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, Korea (the Republic of)
| | - Seok Woo Moon
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Chungju Hospital, Chungju, Korea (the Republic of)
| | - Joon Hyuk Park
- Department of Neuropsychiatry, Jeju National University Hospital, Jeju, Korea (the Republic of)
| | - Seung-Ho Ryu
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Medical Center, Seoul, Korea (the Republic of)
| | - Jong Chul Youn
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Korea (the Republic of)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of).,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Dong Woo Lee
- Department of Neuropsychiatry, Inje University Sanggye Paik Hospital, Seoul, Korea (the Republic of)
| | - Seok Bum Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Korea (the Republic of)
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Korea (the Republic of)
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University, School of Medicine, Chuncheon, Korea (the Republic of)
| | - Ki Woong Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (the Republic of) .,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of).,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea (the Republic of)
| |
Collapse
|
17
|
Qiu Y, Yu L, Ge X, Sun Y, Wang Y, Wu X, Xu Q, Zhou Y, Xu J. Loss of Integrity of Corpus Callosum White Matter Hyperintensity Penumbra Predicts Cognitive Decline in Patients With Subcortical Vascular Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:605900. [PMID: 33679371 PMCID: PMC7930322 DOI: 10.3389/fnagi.2021.605900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
Loss of white matter (WM) integrity contributes to subcortical vascular mild cognitive impairment (svMCI). Diffusion tensor imaging (DTI) has revealed damage beyond the area of WM hyperintensity (WMH) including in normal-appearing WM (NAWM); however, the functional significance of this observation is unclear. To answer this question, in this study we investigated the relationship between microstructural changes in the WMH penumbra (WMH-P) and cognitive function in patients with svMCI by regional tract-based analysis. A total of 111 patients with svMCI and 72 patients with subcortical ischemic vascular disease (SIVD) without cognitive impairment (controls) underwent DTI and neuropsychological assessment. WMH burden was determined before computing mean values of fractional anisotropy (FA) and mean diffusivity (MD) within WMHs and WMH-Ps. Pearson’s partial correlations were used to assess the relationship between measurements showing significant intergroup differences and composite Z-scores representing global cognitive function. Multiple linear regression analysis was carried out to determine the best model for predicting composite Z-scores. We found that WMH burden in the genu, body, and splenium of the corpus callosum (GCC, BCC, and SCC respectively); bilateral anterior, superior, and posterior corona radiata; left sagittal stratum was significantly higher in the svMCI group than in the control group (p < 0.05). The WMH burden of the GCC, BCC, SCC, and bilateral anterior corona radiata was negatively correlated with composite Z-scores. Among diffusion parameters showing significant differences across the 10 WM regions, mean FA values of WMH and WMH-P of the BCC were correlated with composite Z-scores in svMCI patients. The results of the multiple linear regression analysis showed that the FA of WMH-P of the BCC and WMH burden of the SCC and GCC were independent predictors of composite Z-score, with the FA of WMH-P of the BCC making the largest contribution. These findings indicate that disruption of the CC microstructure—especially the WMH-P of the BCC—may contribute to the cognitive deficits associated with SIVD.
Collapse
Affiliation(s)
- Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Ge
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Oliveira CRD, Lima MMBMPD, Barroso SM, Argimon IIDL. Psychometric properties of the Dysexecutive Questionnaire (DEX): a study with Brazilian older adults. PSICO-USF 2021. [DOI: 10.1590/1413-8271202126nesp10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to verify the psychometric properties of the Dysexecutive Questionnaire (DEX) through exploratory factor analysis (EFA), evidence of reliability, and convergent validity, in a sample of neurologically preserved older adults. Participants were 345 older adults who answered, in addition to DEX, a sociodemographic and clinical questionnaire, the Mini-Mental State Examination (MMSE), and two verbal fluency tasks. The EFA was conducted through Parallel Analysis based on the generation of a polychoric correlation matrix, as well as Pearson’s correlation between the DEX scores, age, education, MMSE, and verbal fluency tasks. According to the EFA, the extraction of two factors (“Inhibition” and “Social Regulation and Planning”) was suggested and DEX was negatively associated with age and MMSE. In conclusion, DEX presented a satisfactory factorial structure for older adults, which can be considered a reliable self-report measure for complaints of executive functions.
Collapse
|
19
|
Ferreira S, Pitman KA, Wang S, Summers BS, Bye N, Young KM, Cullen CL. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J Neurosci Res 2020; 98:1905-1932. [PMID: 32557778 PMCID: PMC7540704 DOI: 10.1002/jnr.24672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid β impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB‐APPSw.Ind, also known as J20 mice). PDGFB‐APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60‐P180 PDGFB‐APPSw.Ind transgenic mice and, by performing whole‐cell patch‐clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB‐APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB‐APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB‐APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.
Collapse
Affiliation(s)
- Solène Ferreira
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shiwei Wang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin S Summers
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Wang S, Jiaerken Y, Yu X, Shen Z, Luo X, Hong H, Sun J, Xu X, Zhang R, Zhou Y, Lou M, Huang P, Zhang M. Understanding the association between psychomotor processing speed and white matter hyperintensity: A comprehensive multi-modality MR imaging study. Hum Brain Mapp 2020; 41:605-616. [PMID: 31675160 PMCID: PMC7267958 DOI: 10.1002/hbm.24826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
Cognitive processing speed is crucial for human cognition and declines with aging. White matter hyperintensity (WMH), a common sign of WM vascular damage in the elderly, is closely related to slower psychomotor processing speed. In this study, we investigated the association between WMH and psychomotor speed changes through a comprehensive assessment of brain structural and functional features. Multi-modal MRIs were acquired from 60 elderly adults. Psychomotor processing speeds were assessed using the Trail Making Test Part A (TMT-A). Linear regression analyses were performed to assess the associations between TMT-A and brain features, including WMH volumes in five cerebral regions, diffusivity parameters in the major WM tracts, regional gray matter volume, and brain activities across the whole brain. Hierarchical regression analysis was used to demonstrate the contribution of each index to slower psychomotor processing speed. Linear regression analysis demonstrated that WMH volume in the occipital lobe and fractional anisotropy of the forceps major, an occipital association tract, were associated with TMT-A. Besides, resting-state brain activities in the visual cortex connected to the forceps major were associated with TMT-A. Hierarchical regression showed fractional anisotropy of the forceps major and regional brain activities were significant predictors of TMT-A. The occurrence of WMH, combined with the disruption of passing-through fiber integrity and altered functional activities in areas connected by this fiber, are associated with a decline of psychomotor processing speed. While the causal relationship of this WMH-Tract-Function-Behavior link requires further investigation, this study enhances our understanding of these complex mechanisms.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yeerfan Jiaerken
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xinfeng Yu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zhujing Shen
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao Luo
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Hui Hong
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jianzhong Sun
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Ruiting Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Ying Zhou
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Min Lou
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
21
|
Montandon ML, Herrmann FR, Garibotto V, Rodriguez C, Haller S, Giannakopoulos P. Microbleeds and Medial Temporal Atrophy Determine Cognitive Trajectories in Normal Aging: A Longitudinal PET-MRI Study. J Alzheimers Dis 2020; 77:1431-1442. [PMID: 32925053 DOI: 10.3233/jad-200559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The cognitive trajectories in normal aging may be affected by medial temporal atrophy (MTA) and amyloid burden, as well as vascular pathologies such as cortical microbleeds (CMB) and white matter hyperintensities (WMH). OBJECTIVE We addressed here the role of imaging markers in their prediction in a real-world situation. METHODS We performed a 4.5-year longitudinal study in 90 older community-dwellers coupling two neuropsychological assessments, MTA estimated with the Schelten's scale, number of CMB, and WMH evaluated with the Fazekas score at inclusion and follow-up, visual rating of amyloid PET and glucose hypometabolism at follow-up, and APOE genotyping. Regression models were built to explore the association between the continuous cognitive score (CCS) and imaging parameters. RESULTS The number of strictly lobar CMB at baseline (4 or more) was related to a 5.5-fold increase of the risk of cognitive decrement. This association persisted in multivariable models explaining 10.6% of the CCS decrease variance. MTA, and Fazekas score at baseline and amyloid positivity or abnormal FDG PET, were not related to the cognitive outcome. The increase of right MTA at follow-up was the only correlate of CCS decrease both in univariate and multivariable models explaining 9.2% of its variance. CONCLUSION The present data show that the accumulation of more than four CMB is associated with significant cognitive decrement over time in highly educated elderly persons. They also reveal that the progressive deterioration of cognitive performance within the age-adjusted norms is also related to the increase of visually assessed MTA.
Collapse
Affiliation(s)
- Marie-Louise Montandon
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals and University of Geneva, Switzerland
| | - Cristelle Rodriguez
- Department of Psychiatry, University of Geneva, Switzerland
- Medical Direction, University of Geneva Hospitals, Geneva, Switzerland
| | - Sven Haller
- CIRD - Centre d'Imagerie Rive Droite in Geneva, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Department of Neuroradiology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Panteleimon Giannakopoulos
- Department of Psychiatry, University of Geneva, Switzerland
- Medical Direction, University of Geneva Hospitals, Geneva, Switzerland
| |
Collapse
|
22
|
Pelcher I, Puzo C, Tripodis Y, Aparicio HJ, Steinberg EG, Phelps A, Martin B, Palmisano JN, Vassey E, Lindbergh C, McKee AC, Stein TD, Killiany RJ, Au R, Kowall NW, Stern RA, Mez J, Alosco ML. Revised Framingham Stroke Risk Profile: Association with Cognitive Status and MRI-Derived Volumetric Measures. J Alzheimers Dis 2020; 78:1393-1408. [PMID: 33164933 PMCID: PMC7887636 DOI: 10.3233/jad-200803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Framingham Stroke Risk Profile (FSRP) was created in 1991 to estimate 10-year risk of stroke. It was revised in 2017 (rFSRP) to reflect the modern data on vascular risk factors and stroke risk. OBJECTIVE This study examined the association between the rFSRP and cognitive and brain aging outcomes among participants from the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS). METHODS Cross-sectional rFSRP was computed at baseline for 19,309 participants (mean age = 72.84, SD = 8.48) from the NACC-UDS [9,697 (50.2%) normal cognition, 4,705 (24.4%) MCI, 4,907 (25.4%) dementia]. Multivariable linear, logistic, or ordinal regressions examined the association between the rFSRP and diagnostic status, neuropsychological test performance, CDR® Sum of Boxes, as well as total brain volume (TBV), hippocampal volume (HCV), and log-transformed white matter hyperintensities (WMH) for an MRI subset (n = 1,196). Models controlled for age, sex, education, racial identity, APOEɛ4 status, and estimated intracranial volume for MRI models. RESULTS The mean rFSRP probability was 10.42% (min = 0.50%, max = 95.71%). Higher rFSRP scores corresponded to greater CDR Sum of Boxes (β= 0.02, p = 0.028) and worse performance on: Trail Making Test A (β= 0.05, p < 0.001) and B (β= 0.057, p < 0.001), and Digit Symbol (β= -0.058, p < 0.001). Higher rFSRP scores were associated with increased odds for a greater volume of log-transformed WMH (OR = 1.02 per quartile, p = 0.015). No associations were observed for diagnosis, episodic memory or language test scores, HCV, or TBV. CONCLUSION These results support the rFSRP as a useful metric to facilitate clinical research on the associations between cerebrovascular disease and cognitive and brain aging.
Collapse
Affiliation(s)
- Isabelle Pelcher
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Christian Puzo
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Hugo J. Aparicio
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Framingham Heart Study, National Heart, Lung, and Blood
| | - Eric G. Steinberg
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Alyssa Phelps
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA
| | - Joseph N. Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA
| | - Elizabeth Vassey
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
| | - Cutter Lindbergh
- Department of Neurology, University of California, San Francisco
| | - Ann C. McKee
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Departments of Pathology and Laboratory Medicine, Boston University School of Medicine
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Framingham Heart Study, National Heart, Lung, and Blood
- Departments of Pathology and Laboratory Medicine, Boston University School of Medicine
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Ronald J. Killiany
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine
| | - Rhoda Au
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Framingham Heart Study, National Heart, Lung, and Blood
- Department of Anatomy & Neurobiology, Boston University School of Medicine
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Neil W. Kowall
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
| | - Robert A. Stern
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University School of Medicine
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease Center and CTE Center, Boston University School of Medicine, Boston, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
23
|
Oschwald J, Mérillat S, Liem F, Röcke C, Martin M, Jäncke L. Lagged Coupled Changes Between White Matter Microstructure and Processing Speed in Healthy Aging: A Longitudinal Investigation. Front Aging Neurosci 2019; 11:298. [PMID: 31824294 PMCID: PMC6881240 DOI: 10.3389/fnagi.2019.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 10/16/2019] [Indexed: 01/16/2023] Open
Abstract
Age-related differences in white matter (WM) microstructure have been linked to lower performance in tasks of processing speed in healthy older individuals. However, only few studies have examined this link in a longitudinal setting. These investigations have been limited to the correlation of simultaneous changes in WM microstructure and processing speed. Still little is known about the nature of age-related changes in WM microstructure, i.e., regionally distinct vs. global changes. In the present study, we addressed these open questions by exploring whether previous changes in WM microstructure were related to subsequent changes in processing speed: (a) 1 year later; or (b) 2 years later. Furthermore, we investigated whether age-related changes in WM microstructure were regionally specific or global. We used data from four occasions (covering 4 years) of the Longitudinal Healthy Aging Brain (LHAB) database project (N = 232; age range at baseline = 64–86). As a measure of WM microstructure, we used mean fractional anisotropy (FA) in 10 major WM tracts averaged across hemispheres. Processing speed was measured with four cognitive tasks. Statistical analyses were conducted with bivariate latent change score (LCS) models. We found, for the first time, evidence for lagged couplings between preceding changes in FA and subsequent changes in processing speed 2 years, but not 1 year later in some of the WM tracts (anterior thalamic radiation, superior longitudinal fasciculus). Our results supported the notion that FA changes were different between regional WM tracts rather than globally shared, with some tracts showing mean declines in FA, and others remaining relatively stable across 4 years.
Collapse
Affiliation(s)
- Jessica Oschwald
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Susan Mérillat
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Franziskus Liem
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Christina Röcke
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Mike Martin
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.,Division of Gerontopsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland.,Division of Neuropsychology, Psychological Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Moreira HS, Costa AS, Machado Á, Castro SL, Lima CF, Vicente SG. Distinguishing mild cognitive impairment from healthy aging and Alzheimer's Disease: The contribution of the INECO Frontal Screening (IFS). PLoS One 2019; 14:e0221873. [PMID: 31504056 PMCID: PMC6736301 DOI: 10.1371/journal.pone.0221873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/17/2019] [Indexed: 11/18/2022] Open
Abstract
Executive functions are affected differently in healthy aging, Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD), and evaluating them is important for differential diagnosis. The INECO Frontal Screening (IFS) is a brief neuropsychological screening tool, developed to assess executive dysfunction in neurodegenerative disorders. GOALS We aimed to examine whether and how MCI patients can be differentiated from cognitively healthy controls (HC) and mild to moderate AD patients based on IFS performance. We also explored how IFS scores are associated with age, years of education, and depressive/anxious symptoms (as assessed by the Hospital Anxiety and Depression Scale). METHOD IFS total scores were compared between 26 HC, 32 MCI and 21 mild to moderate AD patients. The three groups were matched for age and education. The Area Under the Curve (AUC) was analyzed and optimal cut-offs were determined. RESULTS Healthy participants had higher IFS scores than both clinical groups, and MCI patients had higher scores than AD patients. IFS showed high diagnostic accuracy for the detection of MCI (AUC = .89, p < .001) and AD (AUC = .99, p < .001), and for the differentiation between the clinical groups (AUC = .76, p < .001). We provide optimal cut-offs for the identification of MCI and AD and for their differentiation. We also found that, in general, higher education predicted higher IFS scores (no associations with age and depressive/anxious symptoms were observed). Altogether, these findings indicate that evaluating executive functions with the IFS can be valuable for the identification of MCI, a high-risk group for dementia, and for differentiating this condition from healthy aging and AD.
Collapse
Affiliation(s)
| | - Ana Sofia Costa
- Neurocognition Unit, Department of Neurology, Hospital de Braga, Braga, Portugal
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Aachen, Germany
| | - Álvaro Machado
- Neurocognition Unit, Department of Neurology, Hospital de Braga, Braga, Portugal
| | - São Luís Castro
- Centre for Psychology at University of Porto, Porto, Portugal
| | - César F. Lima
- Centre for Psychology at University of Porto, Porto, Portugal
- Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
| | - Selene G. Vicente
- Centre for Psychology at University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
25
|
Puzo C, Labriola C, Sugarman MA, Tripodis Y, Martin B, Palmisano JN, Steinberg EG, Stein TD, Kowall NW, McKee AC, Mez J, Killiany RJ, Stern RA, Alosco ML. Independent effects of white matter hyperintensities on cognitive, neuropsychiatric, and functional decline: a longitudinal investigation using the National Alzheimer's Coordinating Center Uniform Data Set. Alzheimers Res Ther 2019; 11:64. [PMID: 31351489 PMCID: PMC6661103 DOI: 10.1186/s13195-019-0521-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Longitudinal investigations are needed to improve understanding of the contributions of cerebral small vessel disease to the clinical manifestation of Alzheimer's disease, particularly in the early disease stages. This study leveraged the National Alzheimer's Coordinating Center Uniform Data Set to longitudinally examine the association between white matter hyperintensities and neuropsychological, neuropsychiatric, and functional decline among participants with normal cognition. METHODS The sample included 465 participants from the National Alzheimer's Coordinating Center Uniform Data Set who had quantitated volume of white matter hyperintensities from fluid-attenuated inversion recovery MRI, had normal cognition at the time of their MRI, and were administered the National Alzheimer's Coordinating Center Uniform Data Set neuropsychological test battery within 1 year of study evaluation and had at least two post-MRI time points of clinical data. Neuropsychiatric status was assessed by the Geriatric Depression Scale-15 and Neuropsychiatric Inventory-Questionnaire. Clinical Dementia Rating Sum of Boxes defined functional status. For participants subsequently diagnosed with mild cognitive impairment (MCI) or dementia, their impairment must have been attributed to Alzheimer's disease (AD) to evaluate the relationships between WMH and the clinical presentation of AD. RESULTS Of the 465 participants, 56 converted to MCI or AD dementia (average follow-up = 5 years). Among the 465 participants, generalized estimating equations controlling for age, sex, race, education, APOE ε4, and total brain and hippocampal volume showed that higher baseline log-white matter hyperintensities predicted accelerated decline on the following neuropsychological tests in rank order of effect size: Trails B (p < 0.01), Digit Symbol Coding (p < 0.01), Logical Memory Immediate Recall (p = 0.02), Trail Making A (p < 0.01), and Semantic Fluency (p < 0.01). White matter hyperintensities predicted increases in Clinical Dementia Rating Sum of Boxes (p < 0.01) and Geriatric Depression Scale-15 scores (p = 0.01). Effect sizes were comparable to total brain and hippocampal volume. White matter hyperintensities did not predict diagnostic conversion. All effects also remained after including individuals with non-AD suspected etiologies for those who converted to MCI or dementia. CONCLUSIONS In this baseline cognitively normal sample, greater white matter hyperintensities were associated with accelerated cognitive, neuropsychiatric, and functional decline independent of traditional risk factors and MRI biomarkers for Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Puzo
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Caroline Labriola
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Michael A Sugarman
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Eric G Steinberg
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ronald J Killiany
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
- Center for Biomedical Imaging, Boston University School of Medicine, Boston, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Departments of Neurosurgery and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, 72 E. Concord Street, Suite B7800, Boston, MA, 02118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Shao Y, Chen Z, Ming S, Ye Q, Shu Z, Gong C, Pang P, Gong X. Predicting the Development of Normal-Appearing White Matter With Radiomics in the Aging Brain: A Longitudinal Clinical Study. Front Aging Neurosci 2018; 10:393. [PMID: 30546304 PMCID: PMC6279861 DOI: 10.3389/fnagi.2018.00393] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Normal-appearing white matter (NAWM) refers to the normal, yet diseased tissue around the white matter hyperintensities (WMH) on conventional MR images. Radiomics is an emerging quantitative imaging technique that provides more details than a traditional visual analysis. This study aims to explore whether WMH could be predicted during the early stages of NAWM, using a textural analysis in the general elderly population. Methods: Imaging data were obtained from PACS between 2012 and 2017. The subjects (≥60 years) received two or more MRI exams on the same scanner with time intervals of more than 1 year. By comparing the baseline and follow-up images, patients with noted progression of WMH were included as the case group (n = 51), while age-matched subjects without WMH were included as the control group (n = 51). Segmentations of the regions of interest (ROIs) were done with the ITK software. Two ROIs of developing NAWM (dNAWM) and non-developing NAWM (non-dNAWM) were drawn separately on the FLAIR images of each patient. dNAWM appeared normal on the baseline images, yet evolved into WMH on the follow-up images. Non-dNAWM appeared normal on both the baseline and follow-up images. A third ROI of normal white matter (NWM) was extracted from the control group, which was normal on both baseline and follow-up images. Textural features were dimensionally reduced with ANOVA+MW, correlation analysis, and LASSO. Three models were built based on the optimal parameters of dimensional reduction, including Model 1 (NWM vs. dNAWM), Model 2 (non-dNAWM vs. dNAWM), and Model 3 (NWM vs. non-dNAWM). The ROC curve was adopted to evaluate the classification validity of these models. Results: Basic characteristics of the patients and controls showed no significant differences. The AUC of Model 1 in training and test groups were 0.967 (95% CI: 0.831–0.999) and 0.954 (95% CI: 0.876–0.989), respectively. The AUC of Model 2 were 0.939 (95% CI: 0.856–0.982) and 0.846 (95% CI: 0.671–0.950). The AUC of Model 3 were 0.713 (95% CI: 0.593–0.814) and 0.667 (95% CI: 0.475–0.825). Conclusion: Radiomics textural analysis can distinguish dNAWM from non-dNAWM on FLAIR images, which could be used for the early detection of NAWM lesions before they develop into visible WHM.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhonghua Chen
- Department of Radiology, Haining People's Hospital, Jiaxing, China
| | - Shuai Ming
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qin Ye
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cheng Gong
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China.,Institute of Artificial Intelligence and Remote Imaging, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|