1
|
Krivinko JM, Fan P, Sui Z, Happe C, Hensler C, Gilardi J, Ikonomovic MD, McKinney BC, Newman J, Ding Y, Wang L, Sweet RA, MacDonald ML. Age-related loss of large dendritic spines in the precuneus is statistically mediated by proteins which are predicted targets of existing drugs. Mol Psychiatry 2025; 30:2059-2067. [PMID: 39537705 DOI: 10.1038/s41380-024-02817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Preservation of dendritic spines is a putative mechanism of protection against cognitive impairment despite development of Alzheimer Disease (AD)-related pathologies. Aging, the chief late-onset AD risk factor, is associated with dendritic spine loss in select brain areas. However, no study to our knowledge has observed this effect in precuneus, an area selectively vulnerable to early accumulation of AD-related pathology. We therefore quantified dendritic spine density in precuneus from 98 subjects without evidence of neurocognitive decline, spanning ages 20-96, and found a significant negative correlation between age and large dendritic spine density. In these same subjects, we conducted liquid chromatography-tandem mass spectrometry of >5000 proteins and identified 203 proteins which statistically mediate the effect of age on large dendritic spine density. Using computational pharmacology, we identified ten drugs which are predicted to target these mediators, informing future studies designed to test their effects on age-related dendritic spine loss and cognitive decline.
Collapse
Affiliation(s)
- J M Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Fan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Z Sui
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - C Happe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Hensler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Gilardi
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B C McKinney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Newman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - L Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - M L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Di Lorenzo F, Esposito R, Maiella M, D'Acunto A, Ferraresi M, Mencarelli L, Pezzopane V, Motta C, Santarnecchi E, Bozzali M, Martorana A. Effects of 52 weeks of precuneus rTMS in Alzheimer's disease patients: a randomized trial. Alzheimers Res Ther 2025; 17:69. [PMID: 40176122 PMCID: PMC11963669 DOI: 10.1186/s13195-025-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Personalized repetitive transcranial magnetic stimulation (rTMS) of the precuneus (PC) is emerging as a new non-invasive therapeutic approach in treating Alzheimer's disease (AD). Here we sought to investigate the effects of 52 weeks of rTMS applied over the PC on cognitive functions in patients with mild-to-moderate dementia due to AD. METHODS Forty-eight patients with mild-to-moderate dementia due to AD were enrolled for the study. Of those 31 patients were extended to 52 weeks after being included in a 24-week trial (NCT03778151) with the same experimental design. The trial included a 52-week treatment with a 2-week intensive course where rTMS (or sham) was applied over the PC daily (5 times per week, Monday to Friday), followed by a 50-week maintenance phase in which the same stimulation was applied once weekly. Personalization of rTMS treatment was established using neuronavigated TMS in combination with electroencephalography (TMS-EEG). The primary outcome measure was change from baseline to week 52 of the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB). Secondary outcomes included score changes in the Alzheimer's Disease Assessment Scale- Cognitive Subscale (ADAS-Cog)11, Mini Mental State Examination (MMSE), Alzheimer's Disease Cooperative Study-Activities of Daily Living scale (ADCS-ADL) and Neuropsychiatric Inventory (NPI). Changes in cortical activity and connectivity were monitored by TMS-EEG. RESULTS Among 48 patients randomized (mean age 72.8 years; 56% women), 32 (68%) completed the study. Repetitive TMS of the PC (PC-rTMS) had a significant effect on the primary outcome measure. The estimated mean change in CDR-SB after 52 week was 1.36 for PC-rTMS (95% confidence interval (CI) [0.68, 2.04]) and 2.45 for sham-rTMS group (95%CI [1.85, 3.05]). There were also significant effects for the secondary outcomes ADAS-Cog11, ADCS-ADL and NPI scores. Stronger DMN connectivity at baseline was associated with favorable response to rTMS treatment. CONCLUSIONS Fifty-two weeks of PC-rTMS may slow down the impairment of cognitive functions, activities of daily living and behavioral disturbances in patients with mild-to-moderate AD. Further multicenter studies are needed to confirm the clinical potential of DMN personalized rTMS. TRIAL REGISTRATION The study was registered on the clinicaltrial.gov website on 07-07-2022 (NCT05454540).
Collapse
Affiliation(s)
- Giacomo Koch
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy.
| | - Elias Paolo Casula
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Ilaria Borghi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Martina Assogna
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Francesco Di Lorenzo
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Romina Esposito
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy
| | - Michele Maiella
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Alessia D'Acunto
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Matteo Ferraresi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Lucia Mencarelli
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
| | - Valentina Pezzopane
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), 44121, Ferrara, Italy
| | - Caterina Motta
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachussets General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Marco Bozzali
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10126, Turin, Italy
| | - Alessandro Martorana
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
3
|
Michelutti M, Urso D, Tafuri B, Gnoni V, Giugno A, Zecca C, Dell'Abate MT, Vilella D, Manganotti P, De Blasi R, Nigro S, Logroscino G. Structural covariance network patterns linked to neuropsychiatric symptoms in biologically defined Alzheimer's disease: Insights from the mild behavioral impairment checklist. J Alzheimers Dis 2025; 104:338-350. [PMID: 39956966 DOI: 10.1177/13872877251316794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND The frequent presentation of Alzheimer's disease (AD) with neuropsychiatric symptoms (NPS) in the context of normal or minimally-impaired cognitive function led to the concept of Mild Behavioral Impairment (MBI). While MBI's impact on subsequent cognitive decline is recognized, its association with brain network changes in biologically-defined AD remains unexplored. OBJECTIVE To investigate the correlation of structural covariance networks with MBI-C checklist sub-scores in biologically-defined AD patients. METHODS We analyzed 33 biologically-defined AD patients, ranging from mild cognitive impairment to early dementia, all characterized as amyloid-positive through cerebrospinal fluid analysis or amyloid positron emission tomography scans. Regional network properties were assessed through graph theory. RESULTS Affective dysregulation correlated with decreased segregation and integration in the right inferior frontal gyrus (IFG). Impulse dyscontrol and social inappropriateness correlated positively with centrality and efficiency in the right posterior cingulate cortex (PCC). Global network properties showed a preserved small-world organization. CONCLUSIONS This study reveals associations between MBI subdomains and structural brain network alterations in biologically-confirmed AD. The IFG's involvement is crucial for mood dysregulation, while the PCC could be involved in compensatory mechanisms for social cognition and impulse control. These findings underscore the significance of biomarker-based neuroimaging for the characterization of NPS across the AD spectrum.
Collapse
Affiliation(s)
- Marco Michelutti
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
- Department of Neurosciences, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
- Department of Neurosciences, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital of Trieste, University of Trieste, Italy
| | - Roberto De Blasi
- Department of Diagnostic Imaging, Pia Fondazione di Culto e Religione "Card. G. Panico", Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Lecce, Italy
| |
Collapse
|
4
|
Yu L, Feng M, Shang Y, Ren Z, Xing H, Chang Y, Dong K, Xiao Y, Dai H. Reduced Functional Connectivity in Nucleus Accumbens Subregions Associates With Cognitive Changes in Alzheimer's Disease. Brain Behav 2025; 15:e70440. [PMID: 40135639 PMCID: PMC11938111 DOI: 10.1002/brb3.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND AND PURPOSE The nucleus accumbens (NAc), an important component of the reward circuit, is believed to play an indispensable role in Alzheimer's disease (AD). This study aimed to explore alterations in the functional connectivity (FC) of NAc subregions in AD patients and to explore their associations with neuropsychological profiles. METHODS Total 45 AD patients and 41 healthy controls (HCs) were recruited for this study. Four subregions of the NAc were used as regions of interest for whole-brain FC analysis. Correlation analyses were conducted to explore the relationships between the changed FC of brain regions with significant differences and neuropsychological profiles. RESULTS Compared with HCs, decreased FC was observed between NAc subregions and regions of the orbitofrontal cortex (OFC), precuneus (PCUN), insula (INS), cerebellum 8, and putamen in AD patients (Gaussian random field [GRF] corrected, voxel-level p < 0.001, cluster-level p < 0.05). Furthermore, the FC between the left core and left PCUN was correlated with the score of the auditory verbal learning test immediate recall task in AD patients (r = 0.441, p = 0.003, Bonferroni corrected). CONCLUSION Disruptions in connectivity between the NAc subregions and important cognitive-related areas may be related to the cognitive deficits observed in AD patients, especially episodic memory function.
Collapse
Affiliation(s)
- Lefan Yu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Shang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaohai Ren
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hanqi Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yue Chang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ke Dong
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yao Xiao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
5
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Kawaguchi A, Yamashita F. Multivariate Analyses with Two-Step Dimension Reduction for an Association Study Between 11C-Pittsburgh Compound B and Magnetic Resonance Imaging in Alzheimer's Disease. Bioengineering (Basel) 2025; 12:48. [PMID: 39851322 PMCID: PMC11759775 DOI: 10.3390/bioengineering12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
The neuropathological diagnosis of Alzheimer's disease (AD) relies on amyloid beta (Aβ) deposition in brain tissues. To study the relationship between Aβ deposition and brain structure, as determined using 11C-Pittsburgh compound B (PiB) and magnetic resonance imaging (MRI), respectively, we developed a regression model with PiB and MRI data as the predictor and response variables, respectively, and proposed a regression method for studying the association between them based on a supervised sparse multivariate analysis with dimension reduction based on a composite paired basis function. By applying this method to imaging data of 61 patients with AD (age: 55-85), the first component showed the strongest correlation with the composite score, owing to the supervised feature. The spatial pattern included the hippocampal and parahippocampal regions for MRI. The peak value was observed in the posterior cingulate and precuneus for PiB. The differences in PiB scores among the diagnosis groups 12 months after PiB imaging were significant between the normal and AD groups (p = 0.0284), but not between the normal and mild cognitive impairment (MCI) groups or the MCI and AD groups (p = 0.3508). Our method may facilitate the development of a dementia biomarker from brain imaging data. Scoring imaging data allows for visualization and the application of traditional analysis, facilitating clinical analysis for better interpretation of results.
Collapse
Affiliation(s)
- Atsushi Kawaguchi
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Japan
| |
Collapse
|
7
|
Kashyap B, Hanson LR, Gustafson SK, Barclay T, Howe CM, Sherman SJ, Hungs M, Rosenbloom MH. Open label pilot of personalized, neuroimaging-guided theta burst stimulation in early-stage Alzheimer's disease. Front Neurosci 2024; 18:1492428. [PMID: 39717698 PMCID: PMC11663868 DOI: 10.3389/fnins.2024.1492428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is characterized by cerebral amyloid plaques and neurofibrillary tangles and disruption of large-scale brain networks (LSBNs). Transcranial magnetic stimulation (TMS) has emerged as a potential non-invasive AD treatment that may serve as an adjunct therapy with FDA approved medications. Methods We conducted a 10-subject open label, single site study evaluating the effect of functional connectivity-resting state functional MRI guided-approach to TMS targeting with dysfunctional LSBNs in subjects with biomarker-confirmed early-stage AD (https://clinicaltrials.gov/study/NCT05292222). Subjects underwent pre-post imaging and testing to assess connectivity dysfunction and cognition. All participants received intermittent theta burst stimulation [(iTBS), (80% motor threshold; 5 sessions per day; 5 days; 3 targets; 18,000 pulses/day)] over 2 weeks. Three Human Connectome Project (HCP) defined parcellations were targeted, with one common right temporal area G dorsal (RTGd) target across all subjects and two personalized. Results We identified the following parcellations to be dysfunctional: RTGd, left area 8A ventral (L8Av), left area 8B lateral (L8BL), and left area 55b (L55b). There were no changes in these parcellations after treatment, but subjects showed improvement on the Repeatable Battery for the Assessment of Neuropsychological Status attention index (9.7; p = 0.01). No subject dropped out of the treatment, though 3 participants were unable to tolerate the RTGd target due to facial twitching (n = 2) and anxiety (n = 1). Conclusion Accelerated iTBS protocol was well-tolerated and personalized target-based treatment is feasible in early-stage AD. Further sham-controlled clinical trials are necessary to determine if this is an effective adjunctive treatment in early-stage AD.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Leah R. Hanson
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | | | - Terry Barclay
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Clarissa M. Howe
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Samantha J. Sherman
- HealthPartners Institute, Bloomington, MN, United States
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Marcel Hungs
- HealthPartners Center for Memory and Aging, St Paul, MN, United States
| | - Michael H. Rosenbloom
- Memory and Brain Wellness Center, University of Washington, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
- University of Washington Alzheimer’s Disease Research Center, Seattle, WA, United States
| |
Collapse
|
8
|
Cataldo SA, Micciulli A, Margulis L, Cibeyra M, Defeo S, Horovitz SG, Martino A, Melano R, Mena M, Parisi F, Santoro D, Sarmiento F, Belzunce MA. Cognitive impact and brain structural changes in long COVID patients: a cross-sectional MRI study two years post infection in a cohort from Argentina. BMC Neurol 2024; 24:450. [PMID: 39558250 PMCID: PMC11572126 DOI: 10.1186/s12883-024-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Long COVID is a condition characterised by persistent symptoms after a SARS-CoV-2 infection, with neurological manifestations being particularly frequent. Existing research suggests that long COVID patients not only report cognitive symptoms but also exhibit measurable cognitive impairment. Neuroimaging studies have identified structural alterations in brain regions linked to cognitive functions. However, most of these studies have focused on patients within months of their initial infection. This study aims to explore the longer-term cognitive effects and brain structural changes in long COVID patients, approximately two years post-infection, in a cohort from San Martín, Buenos Aires, Argentina. METHODS We conducted a cross-sectional study involving 137 participants: 109 with long COVID symptoms and 28 healthy controls. The participants underwent an initial clinical assessment, completed a structured questionnaire and standardised scales, underwent a cognitive assessment, and had a brain MRI scan. Structural MRI images were processed via FreeSurfer and FSL to obtain volumetric measures for subcortical and cortical regions, along with regional cortical thickness. Differences between groups for these variables were analysed using ANCOVA, with permutation tests applied to correct for multiple comparisons. RESULTS Long COVID patients reported persistent cognitive symptoms such as memory problems and brain fog, with higher levels of fatigue and reduced quality of life compared to controls. Despite subjective cognitive complaints, cognitive tests did not reveal significant differences between groups, except for the TMT-A (p = 0.05). MRI analysis revealed decreased volume in the cerebellum (p = 0.03), lingual gyrus (p = 0.04), and inferior parietal regions (p = 0.03), and reduced cortical thickness in several areas, including the left and right postcentral gyri (p = 0.02, p = 0.03) and precuneus (p = 0.01, p = 0.02). CONCLUSIONS This study highlights the enduring impact of long COVID on quality of life and physical activity, with specific brain structural changes identified two years post-infection. Although cognitive tests did not show clear impairment, the observed brain atrophy and significant reduction in quality of life emphasize the need for comprehensive interventions and further longitudinal studies to understand the long-term effects of long COVID on cognition and brain health.
Collapse
Affiliation(s)
- Sol A Cataldo
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Andrea Micciulli
- Unidad de Neuropsicología, Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Laura Margulis
- Unidad de Neuropsicología, Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
- Facultad de Psicología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Melina Cibeyra
- Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Sabrina Defeo
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Silvina G Horovitz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Analía Martino
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Raul Melano
- Servicio de Neurología, Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, 1650, Argentina
| | - Milagros Mena
- Escuela de Humanidades, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina
| | - Francisco Parisi
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
- Instituto de Ciencias Físicas (ICIFI UNSAM-CONICET), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina
| | - Diego Santoro
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Florencia Sarmiento
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina
| | - Martin A Belzunce
- Centro Universitario de Imágenes Médicas (CEUNIM), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo 901, San Martín, Buenos Aires, 1650, Argentina.
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI UNSAM-CONICET), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Godoy Cruz, Buenos Aires, 1425, Argentina.
| |
Collapse
|
9
|
Zheng X, On Behalf Of The Alzheimer's Disease Neuroimaging Initiative. Detection of Alzheimer's Disease Using Hybrid Meta-ROI of MRI Structural Images. Diagnostics (Basel) 2024; 14:2203. [PMID: 39410607 PMCID: PMC11475774 DOI: 10.3390/diagnostics14192203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The averaged cortical thickness of meta-ROI is currently being used for the diagnosis and prognosis of Alzheimer's disease (AD) using structural MRI brain images. The purpose of this work is to present a hybrid meta-ROI for the detection of AD. METHODS The AD detectability of selected cortical and volumetric regions of the brain was examined using signal detection theory. The top performing cortical and volumetric ROIs were taken as input nodes to the artificial neural network (ANN) for AD classification. RESULTS An AD diagnostic accuracy of 91.9% was achieved by using a hybrid meta-ROI consisting of thicknesses of entorhinal and middle temporal cortices, and the volumes of the hippocampus and inferior lateral ventricles. Pairing inferior lateral ventricle dilation with hippocampal volume reduction improves AD detectability by 5.1%. CONCLUSIONS Hybrid meta-ROI, including the dilation of inferior lateral ventricles, outperformed both cortical thickness- and volumetric-based meta-ROIs in the detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoming Zheng
- School of Dentistry and Medical Sciences and Rural Health Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | |
Collapse
|
10
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
11
|
Misiura M, Munkombwe C, Igwe K, Verble DD, Likos KDS, Minto L, Bartlett A, Zetterberg H, Turner JA, Dotson VM, Brickman AM, Hu WT, Wharton W. Neuroimaging correlates of Alzheimer's disease biomarker concentrations in a racially diverse high-risk cohort of middle-aged adults. Alzheimers Dement 2024; 20:5961-5972. [PMID: 39136298 PMCID: PMC11497767 DOI: 10.1002/alz.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION In this study, we investigated biomarkers in a midlife, racially diverse, at-risk cohort to facilitate early identification and intervention. We examined neuroimaging measures, including resting state functional magnetic resonance imaging (fMRI), white matter hyperintensity vo (WMH), and hippocampal volumes, alongside cerebrospinal fluid (CSF) markers. METHODS Our data set included 76 cognitively unimpaired, middle-aged, Black Americans (N = 29, F/M = 17/12) and Non-Hispanic White (N = 47, F/M = 27/20) individuals. We compared cerebrospinal fluid phosphorylated tau141 and amyloid beta (Aβ)42 to fMRI default mode network (DMN) subnetwork connectivity, WMH volumes, and hippocampal volumes. RESULTS Results revealed a significant race × Aβ42 interaction in Black Americans: lower Aβ42 was associated with reduced DMN connectivity and increased WMH volumes regions but not in non-Hispanic White individuals. DISCUSSION Our findings suggest that precuneus DMN connectivity and temporal WMHs may be linked to Alzheimer's disease risk pathology during middle age, particularly in Black Americans. HIGHLIGHTS Cerebrospinal fluid (CSF) amyloid beta (Aβ)42 relates to precuneus functional connectivity in Black, but not White, Americans. Higher white matter hyperintensity volume relates to lower CSF Aβ42 in Black Americans. Precuneus may be a hub for early Alzheimer's disease pathology changes detected by functional connectivity.
Collapse
Affiliation(s)
- Maria Misiura
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
- Tri‐Institutional Center for Translational Research in Neuroimaging & Data Science, Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Kay Igwe
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Danielle D. Verble
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| | - Kelly D. S. Likos
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| | - Lex Minto
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Henrik Zetterberg
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and GothenburgUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Institute of NeurologyUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCL, Maple HouseLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jessica A. Turner
- Department of Psychiatry and Mental Health, College of MedicineOhio State UniversityColumbusOhioUSA
| | - Vonetta M. Dotson
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
- Gerontology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - William T. Hu
- Institute for Health, Health Care Policy, and Aging ResearchRutgers UniversityNew BrunswickNew JerseyUSA
| | - Whitney Wharton
- Nell Hodgson Woodruff School of NursingEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
12
|
Mondal S, Maji P. Multi-Task Learning and Sparse Discriminant Canonical Correlation Analysis for Identification of Diagnosis-Specific Genotype-Phenotype Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1390-1402. [PMID: 38587960 DOI: 10.1109/tcbb.2024.3386406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The primary objective of imaging genetics research is to investigate the complex genotype-phenotype association for the disease under study. For example, to understand the impact of genetic variations over the brain functions and structure, the genotypic data such as single nucleotide polymorphism (SNP) is integrated with the phenotypic data such as imaging quantitative traits. The sparse models, based on canonical correlation analysis (CCA), are popular in this area to find the complex bi-multivariate genotype-phenotype association, as the number of features in genotypic and/or phenotypic data is significantly higher as compared to the number of samples. However, the sparse CCA based methods are, in general, unsupervised in nature, and fail to identify the diagnose-specific features those play an important role for the diagnosis and prognosis of the disease under study. In this regard, a new supervised model is proposed to study the complex genotype-phenotype association, by judiciously integrating the merits of CCA, linear discriminant analysis (LDA) and multi-task learning. The proposed model can identify the diagnose-specific as well as the diagnose-consistent features with significantly lower computational complexity. The performance of the proposed method, along with a comparison with the state-of-the-art methods, is evaluated on several synthetic data sets and one real imaging genetics data collected from Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. In the current study, the SNP as genetic data and resting state functional MRI ( fMRI) as imaging data are integrated to find the complex genotype-phenotype association. An important finding is that the proposed method has better correlation value, improved noise resistance and stability, and also has better feature selection ability. All the results illustrate the power and capability of the proposed method to find the diagnostic group-specific imaging genetic association, which may help to understand the neurodegenerative disorder in a more comprehensive way.
Collapse
|
13
|
García-Colomo A, Nebreda A, Carrasco-Gómez M, de Frutos-Lucas J, Ramirez-Toraño F, Spuch C, Comis-Tuche M, Bruña R, Alfonsín S, Maestú F. Longitudinal changes in the functional connectivity of individuals at risk of Alzheimer's disease. GeroScience 2024; 46:2989-3003. [PMID: 38172488 PMCID: PMC11009204 DOI: 10.1007/s11357-023-01036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
First-degree relatives of Alzheimer's disease patients constitute a key population in the search for early markers. Our group identified functional connectivity differences between cognitively unimpaired individuals with and without a family history. In this unprecedented follow-up study, we examine whether family history is associated with a longitudinal increase in the functional connectivity of those regions. Moreover, this is the first work to correlate electrophysiological measures with plasma p-tau231 levels, a known pathology marker, to interpret the nature of the change. We evaluated 69 cognitively unimpaired individuals with a family history of Alzheimer's disease and 28 without, at two different time points, approximately 3 years apart, including resting state magnetoencephalography recordings and plasma p-tau231 determinations. Functional connectivity changes in both precunei and left anterior cingulate cortex in the high-alpha band were studied using non-parametric cluster-based permutation tests. Connectivity values were correlated with p-tau231 levels. Three clusters emerged in individuals with family history, exhibiting a longitudinal increase of connectivity. Notably, the clusters for both precunei bore a striking resemblance to those found in previous cross-sectional studies. The connectivity values at follow-up and the change in connectivity in the left precuneus cluster showed significant positive correlations with p-tau231. This study consolidates the use of electrophysiology, in combination with plasma biomarkers, to monitor healthy individuals at risk of Alzheimer's disease and emphasizes the value of combining noninvasive markers to understand the underlying mechanisms and track disease progression. This could facilitate the design of more effective intervention strategies and accurate progression assessment tools.
Collapse
Affiliation(s)
- Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain.
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Martín Carrasco-Gómez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain.
- Department of Electronic Engineering, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Federico Ramirez-Toraño
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - María Comis-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), SERGAS-UVIGO, CIBERSAM, Vigo, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, 28240, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28223, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlo.s (IdISSC), 28240, Madrid, Spain
| |
Collapse
|
14
|
Musaeus CS, Kjaer TW, Lindberg U, Vestergaard MB, Bo H, Larsson W, Press DZ, Andersen BB, Høgh P, Kidmose P, Hemmsen MC, Rank ML, Hasselbalch SG, Waldemar G, Frederiksen KS. Subclinical epileptiform discharges in Alzheimer's disease are associated with increased hippocampal blood flow. Alzheimers Res Ther 2024; 16:80. [PMID: 38610005 PMCID: PMC11010418 DOI: 10.1186/s13195-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND In epilepsy, the ictal phase leads to cerebral hyperperfusion while hypoperfusion is present in the interictal phases. Patients with Alzheimer's disease (AD) have an increased prevalence of epileptiform discharges and a study using intracranial electrodes have shown that these are very frequent in the hippocampus. However, it is not known whether there is an association between hippocampal hyperexcitability and regional cerebral blood flow (rCBF). The objective of the study was to investigate the association between rCBF in hippocampus and epileptiform discharges as measured with ear-EEG in patients with Alzheimer's disease. Our hypothesis was that increased spike frequency may be associated with increased rCBF in hippocampus. METHODS A total of 24 patients with AD, and 15 HC were included in the analysis. Using linear regression, we investigated the association between rCBF as measured with arterial spin-labelling MRI (ASL-MRI) in the hippocampus and the number of spikes/sharp waves per 24 h as assessed by ear-EEG. RESULTS No significant difference in hippocampal rCBF was found between AD and HC (p-value = 0.367). A significant linear association between spike frequency and normalized rCBF in the hippocampus was found for patients with AD (estimate: 0.109, t-value = 4.03, p-value < 0.001). Changes in areas that typically show group differences (temporal-parietal cortex) were found in patients with AD, compared to HC. CONCLUSIONS Increased spike frequency was accompanied by a hemodynamic response of increased blood flow in the hippocampus in patients with AD. This phenomenon has also been shown in patients with epilepsy and supports the hypothesis of hyperexcitability in patients with AD. The lack of a significant difference in hippocampal rCBF may be due to an increased frequency of epileptiform discharges in patients with AD. TRIAL REGISTRATION The study is registered at clinicaltrials.gov (NCT04436341).
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark.
| | - Troels Wesenberg Kjaer
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Valdemar Hansens Vej 13, Glostrup, 2600, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Valdemar Hansens Vej 13, Glostrup, 2600, Denmark
| | - Henrik Bo
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
| | - Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Valdemar Hansens Vej 13, Glostrup, 2600, Denmark
| | - Daniel Zvi Press
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Birgitte Bo Andersen
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
| | - Peter Høgh
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Vestermarksvej 11, Roskilde, 4000, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Preben Kidmose
- Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, Aarhus N, 8200, Denmark
| | | | | | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Kristian Steen Frederiksen
- Danish Dementia Research Centre (DDRC), Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns vej 8, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| |
Collapse
|
15
|
Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci 2024; 8:1-23. [PMID: 38562292 PMCID: PMC10861166 DOI: 10.1162/netn_a_00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Ramos-Cejudo J, Scott MR, Tanner JA, Pase MP, McGrath ER, Ghosh S, Osorio RS, Thibault E, El Fakhri G, Johnson KA, Beiser A, Seshadri S. Associations of Plasma Tau with Amyloid and Tau PET: Results from the Community-Based Framingham Heart Study. J Alzheimers Dis 2024; 100:487-494. [PMID: 38875034 DOI: 10.3233/jad-231320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Associations of plasma total tau levels with future risk of AD have been described. Objective To examine the extent to which plasma tau reflects underlying AD brain pathology in cognitively healthy individuals. Methods We examined cross-sectional associations of plasma total tau with 11C-Pittsburgh Compound-B (PiB)-PET and 18F-Flortaucipir (FTP)-PET in middle-aged participants at the community-based Framingham Heart Study. Results Our final sample included 425 participants (mean age 57.6± 9.9, 50% F). Plasma total tau levels were positively associated with amyloid-β deposition in the precuneus region (β±SE, 0.11±0.05; p = 0.025). A positive association between plasma total tau and tau PET in the rhinal cortex was suggested in participants with higher amyloid-PET burden and in APOEɛ4 carriers. Conclusions Our study highlights that plasma total tau is a marker of amyloid deposition as early as in middle-age.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jeremy A Tanner
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emer R McGrath
- HRB Clinical Research Facility, University of Galway, Galway, Ireland
- The Framingham Study, Boston, MA, USA
- School of Medicine, University of Galway, Galway, Ireland
| | | | - Ricardo S Osorio
- Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Emma Thibault
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Keith A Johnson
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Leng F, Hinz R, Gentleman S, Dani M, Brooks DJ, Edison P. Combined Neuroinflammation and Amyloid PET Markers in Predicting Disease Progression in Cognitively Impaired Subjects. J Alzheimers Dis 2024; 100:973-986. [PMID: 39031352 DOI: 10.3233/jad-230442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Neuroinflammation in Alzheimer's disease is known as an important process in the disease, yet how microglial activation affects disease progression remains unclear. Objective The current study aims to interrogate the predictive value of neuroinflammation biomarker (11C-PBR28 PET), together with A/T/N imaging markers on disease deterioration in a cognitively impaired patient cohort. Methods The study included 6 AD and 27 MCI patients, who had MRI, 11C-PBR28, 18F-flutemetamol (amyloid marker), 18F-AV1451 (tau marker) PET scans, and were followed up with multiple neuropsychological assessments for at least one year (1.6 and 2.8 years on average for AD and MCI). The predictive values of imaging biomarkers on baseline and longitudinal cognition were interrogated using linear regression to identify the biomarkers that could explain disease progression. Results Linear mixed models found the average intercepts (baseline) MMSE were 23.5 for AD and 28.2 for MCI patients, and the slope of MMSE (annual change) were -0.74 for AD and -0.52 for MCI patients. White matter microstructural integrity was predictive of baseline cognition, while PET markers of amyloid, tau and neuroinflammation were predictive of longitudinal cognitive decline. Both amyloid and neuroinflammation PET markers were predictors independent of each other. And a sub-group analysis showed the predictive effect of neuroinflammation on cognitive decline is independent of amyloid and tau. Conclusions Our study highlights the prognostic value of disease specific markers (amyloid, tau and neuroinflammation) in clinically diagnosed AD and MCI patients and suggests that the effects of these molecular markers are mediated by structural damage to the brain.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Oxford, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Melanie Dani
- Department of Brain Sciences, Imperial College London, London, UK
| | - David J Brooks
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Zhao A, Balcer LJ, Himali JJ, O’Donnell A, Rahimpour Y, DeCarli C, Gonzales MM, Aparicio HJ, Ramos-Cejudo J, Kenney R, Beiser A, Seshadri S, Salinas J. Association of Loneliness with Functional Connectivity MRI, Amyloid-β PET, and Tau PET Neuroimaging Markers of Vulnerability for Alzheimer's Disease. J Alzheimers Dis 2024; 99:1473-1484. [PMID: 38820017 PMCID: PMC11191473 DOI: 10.3233/jad-231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/02/2024]
Abstract
Background Loneliness has been declared an "epidemic" associated with negative physical, mental, and cognitive health outcomes such as increased dementia risk. Less is known about the relationship between loneliness and advanced neuroimaging correlates of Alzheimer's disease (AD). Objective To assess whether loneliness was associated with advanced neuroimaging markers of AD using neuroimaging data from Framingham Heart Study (FHS) participants without dementia. Methods In this cross-sectional observational analysis, we used functional connectivity MRI (fcMRI), amyloid-β (Aβ) PET, and tau PET imaging data collected between 2016 and 2019 on eligible FHS cohort participants. Loneliness was defined as feeling lonely at least one day in the past week. The primary fcMRI marker was Default Mode Network intra-network connectivity. The primary PET imaging markers were Aβ deposition in precuneal and FLR (frontal, lateral parietal and lateral temporal, retrosplenial) regions, and tau deposition in the amygdala, entorhinal, and rhinal regions. Results Of 381 participants (mean age 58 [SD 10]) who met inclusion criteria for fcMRI analysis, 5% were classified as lonely (17/381). No association was observed between loneliness status and network changes. Of 424 participants (mean age 58 [SD = 10]) meeting inclusion criteria for PET analyses, 5% (21/424) were lonely; no associations were observed between loneliness and either Aβ or tau deposition in primary regions of interest. Conclusions In this cross-sectional study, there were no observable associations between loneliness and select fcMRI, Aβ PET, and tau PET neuroimaging markers of AD risk. These findings merit further investigation in prospective studies of community-based cohorts.
Collapse
Affiliation(s)
- Amanda Zhao
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health and Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jayandra J. Himali
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adrienne O’Donnell
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yashar Rahimpour
- Department of Anatomy and Neurobiology, Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Mitzi M. Gonzales
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Hugo J. Aparicio
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jaime Ramos-Cejudo
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel Kenney
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health and Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexa Beiser
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Joel Salinas
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- The Framingham Study, Boston, MA, USA
| |
Collapse
|
19
|
Ge H, Chen S, Che Z, Wu H, Yang X, Qiao M, Chi L, Fan J, Zhong Y, Zou C, Lin X, Chen J. rTMS regulates homotopic functional connectivity in the SCD and MCI patients. Front Neurosci 2023; 17:1301926. [PMID: 38075270 PMCID: PMC10702213 DOI: 10.3389/fnins.2023.1301926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/13/2024] Open
Abstract
OBJECTIVE Impaired interhemispheric connectivity and corpus callosum atrophy have been linked to cognitive impairment in Alzheimer's disease (AD). Existing evidence indicates that repetitive transcranial magnetic stimulation (rTMS) targeting the bilateral precuneus may enhance cognitive function in AD. This study aims to investigate the effects of precuneus rTMS on cognitive function, as well as alterations in interhemispheric functional connectivity (FC) and its structural basis in patients with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). METHODS A total of 14 patients with SCD and 16 patients with MCI were enrolled in this study and received 10 Hz rTMS intervention on the bilateral precuneus for 2 weeks. Neurocognitive scales, structural and functional magnetic resonance imaging were collected at enrollment and after the rTMS intervention. Interhemispheric FC was assessed using mirror homotopic functional connectivity (VMHC), while the structural equation modeling (SEM) was employed to analyze the relationship between corpus callosum volume, interhemispheric connectivity, and cognitive function after rTMS intervention. RESULTS The precuneus rTMS not only enhanced episodic memory in SCD, but also improved multiple cognitive domains in MCI. Post-rTMS intervention, decreased VMHC values in the lingual cortex, middle occipital gyrus, putamen, and fusiform gyrus were observed in SCD, and an increased VMHC value in the postcentral gyrus along with reduced VMHC value in the cerebellum and putamen in MCI. After intervention, more brain regions show decreased FC in SCD and MCI patients, suggesting that precuneus rTMS may protect cerebral cortical plasticity by reducing excessive functional compensation, and thus improve cognitive function. The SEM indicated that the corpus callosum serves as the structural foundation for rTMS regulation of interhemispheric FC to further improve cognitive function. CONCLUSION 10 Hz rTMS in the bilateral precuneus could be a promising strategy to improve cognitive function in patients with SCD and MCI. Our study implies that improvements in cognition brought about by precuneus rTMS may result from the remodeling of interhemispheric FC, with the corpus callosum possibly acting as the anatomical basis for functional modulation.
Collapse
Affiliation(s)
- Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - ShanShan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zigang Che
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyi Yang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meizhao Qiao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Chi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Fan
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Yeming Zhong
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Caiyun Zou
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Kalc P, Dahnke R, Hoffstaedter F, Gaser C. Low bone mineral density is associated with gray matter volume decrease in UK Biobank. Front Aging Neurosci 2023; 15:1287304. [PMID: 38020770 PMCID: PMC10654785 DOI: 10.3389/fnagi.2023.1287304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Previous research has found an association of low bone mineral density (BMD) and regional gray matter (GM) volume loss in Alzheimer's disease (AD). We were interested whether BMD is associated with GM volume decrease in brains of a healthy elderly population from the UK Biobank. Materials and methods T1-weighted images from 5,518 women (MAge = 70.20, SD = 3.54; age range: 65-82 years) and 7,595 men (MAge = 70.84, SD = 3.68; age range: 65-82 years) without neurological or psychiatric impairments were included in voxel-based morphometry (VBM) analysis in CAT12 with threshold-free-cluster-enhancement (TFCE) across the whole brain. Results We found a significant decrease of GM volume in women in the superior frontal gyri, middle temporal gyri, fusiform gyri, temporal poles, cingulate gyri, precunei, right parahippocampal gyrus and right hippocampus, right ventral diencephalon, and right pre- and postcentral gyrus. Only small effects were found in men in subcallosal area, left basal forebrain and entorhinal area. Conclusion BMD is associated with low GM volume in women but less in men in regions afflicted in the early-stages of AD even in a sample without neurodegenerative diseases.
Collapse
Affiliation(s)
- Polona Kalc
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Felix Hoffstaedter
- Brain and Behaviour (INM-7), Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Jena-Halle-Magdeburg, Germany
| |
Collapse
|
21
|
Yoshida Y, Yokoi T, Hara K, Watanabe H, Yamaguchi H, Bagarinao E, Masuda M, Kato T, Ogura A, Ohdake R, Kawabata K, Katsuno M, Kato K, Naganawa S, Okamura N, Yanai K, Sobue G. <Editors' Choice> Pattern of THK 5351 retention in normal aging involves core regions of resting state networks associated with higher cognitive function. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:758-771. [PMID: 38155624 PMCID: PMC10751491 DOI: 10.18999/nagjms.85.4.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2023]
Abstract
We aimed to elucidate the distribution pattern of the positron emission tomography probe [18F]THK 5351, a marker for astrogliosis and tau accumulation, in healthy aging. We also assessed the relationship between THK5351 retention and resting state networks. We enrolled 62 healthy participants in this study. All participants underwent magnetic resonance imaging/positron emission tomography scanning consisting of T1-weighted images, resting state functional magnetic resonance imaging, Pittsburgh Compound-B and THK positron emission tomography. The preprocessed THK images were entered into a scaled subprofile modeling/principal component analysis to extract THK distribution patterns. Using the most significant THK pattern, we generated regions of interest, and performed seed-based functional connectivity analyses. We also evaluated the functional connectivity overlap ratio to identify regions with high between-network connectivity. The most significant THK distributions were observed in the medial prefrontal cortex and bilateral putamen. The seed regions of interest in the medial prefrontal cortex had a functional connectivity map that significantly overlapped with regions of the dorsal default mode network. The seed regions of interest in the putamen showed strong overlap with the basal ganglia and anterior salience networks. The functional connectivity overlap ratio also showed that three peak regions had the characteristics of connector hubs. We have identified an age-related spatial distribution of THK in the medial prefrontal cortex and basal ganglia in normal aging. Interestingly, the distribution's peaks are located in regions of connector hubs that are strongly connected to large-scale resting state networks associated with higher cognitive function.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Yokoi
- Department of Neurology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hiroshi Yamaguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiko Kato
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| |
Collapse
|
22
|
Li M, Habes M, Grabe H, Kang Y, Qi S, Detre JA. Disconnectome associated with progressive white matter hyperintensities in aging: a virtual lesion study. Front Aging Neurosci 2023; 15:1237198. [PMID: 37719871 PMCID: PMC10500060 DOI: 10.3389/fnagi.2023.1237198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023] Open
Abstract
Objective White matter hyperintensities (WMH) are commonly seen on T2-weighted magnetic resonance imaging (MRI) in older adults and are associated with an increased risk of cognitive decline and dementia. This study aims to estimate changes in the structural connectome due to age-related WMH by using a virtual lesion approach. Methods High-quality diffusion-weighted imaging data of 30 healthy subjects were obtained from the Human Connectome Project (HCP) database. Diffusion tractography using q-space diffeomorphic reconstruction (QSDR) and whole brain fiber tracking with 107 seed points was conducted using diffusion spectrum imaging studio and the brainnetome atlas was used to parcellate a total of 246 cortical and subcortical nodes. Previously published WMH frequency maps across age ranges (50's, 60's, 70's, and 80's) were used to generate virtual lesion masks for each decade at three lesion frequency thresholds, and these virtual lesion masks were applied as regions of avoidance (ROA) in fiber tracking to estimate connectivity changes. Connections showing significant differences in fiber density with and without ROA were identified using paired tests with False Discovery Rate (FDR) correction. Results Disconnections appeared first from the striatum to middle frontal gyrus (MFG) in the 50's, then from the thalamus to MFG in the 60's and extending to the superior frontal gyrus in the 70's, and ultimately including much more widespread cortical and hippocampal nodes in the 80's. Conclusion Changes in the structural disconnectome due to age-related WMH can be estimated using the virtual lesion approach. The observed disconnections may contribute to the cognitive and sensorimotor deficits seen in aging.
Collapse
Affiliation(s)
- Meng Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohamad Habes
- Biggs Alzheimer’s Institute, University of Texas San Antonio, San Antonio, TX, United States
| | - Hans Grabe
- Department of Psychiatry and Psychotherapy, University of Greifswald, Stralsund, Germany
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Pinto S, Caribé P, Sebastião Matushita C, Bromfman Pianta D, Narciso L, da Silva AMM. Aiming for [ 18F]FDG-PET acquisition time reduction in clinical practice for neurological patients. Phys Med 2023; 112:102604. [PMID: 37429182 DOI: 10.1016/j.ejmp.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/02/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
PURPOSE Positron emission tomography (PET) imaging with [18F]FDG provides valuable information regarding the underlying pathological processes in neurodegenerative disorders. PET imaging for these populations should be as short as possible to limit head movements and improve comfort. This study aimed to validate an optimized [18F]FDG-PET image reconstruction protocol aiming to reduce acquisition time while maintaining adequate quantification accuracy and image quality. METHODS A time-reduced reconstruction protocol (5 min) was evaluated in [18F]FDG-PET retrospective data from healthy individuals and Alzheimer's disease (AD) patients. Standard (8 min) and time-reduced protocols were compared by means of image quality and quantification accuracy metrics, as well as standardized uptake value ratio (SUVR) and Z-scores (pons was used as reference). Images were randomly and blindly presented to experienced physicians and scored in terms of image quality. RESULTS No differences between protocols were identified during the visual assessment. Small differences (p < 0.01) in the pons SUVR were observed between the standard and time-reduced protocols for healthy individuals (-0.002 ± 0.011) and AD patients (-0.007 ± 0.013). Likewise, incorporating the PSF correction in the reconstruction algorithm resulted in small differences (p < 0.01) in SUVR between protocols (healthy individuals: -0.003 ± 0.011; AD patients: -0.007 ± 0.014). CONCLUSION Quality metrics were similar between time-reduced and standard protocols. In the visual assessment of the images, the physicians did not consider the use of PSF adequate, as it degraded the quality image. Shortening the acquisition time is possible by optimizing the image reconstruction parameters while maintaining adequate quantification accuracy and image quality.
Collapse
Affiliation(s)
- Samara Pinto
- Medical Image Computing Laboratory (MEDICOM), PUCRS, Porto Alegre, RS, Brazil.
| | - Paulo Caribé
- Medical Image Computing Laboratory (MEDICOM), PUCRS, Porto Alegre, RS, Brazil; Medical Imaging and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | | | | | - Lucas Narciso
- Medical Image Computing Laboratory (MEDICOM), PUCRS, Porto Alegre, RS, Brazil; Lawson Health Research Institute, London, Ontario, Canada
| | - Ana Maria Marques da Silva
- Medical Image Computing Laboratory (MEDICOM), PUCRS, Porto Alegre, RS, Brazil; School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
24
|
Tada T, Hara K, Fujita N, Ito Y, Yamaguchi H, Ohdake R, Kawabata K, Ogura A, Kato T, Yokoi T, Masuda M, Abe S, Miyao S, Naganawa S, Katsuno M, Watanabe H, Sobue G, Kato K. Comparative examination of the pons and corpus callosum as reference regions for quantitative evaluation in positron emission tomography imaging for Alzheimer's disease using 11C-Pittsburgh Compound-B. Ann Nucl Med 2023:10.1007/s12149-023-01843-y. [PMID: 37160863 DOI: 10.1007/s12149-023-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Standardised uptake value ratio (SUVR) is usually obtained by dividing the SUV of the region of interest (ROI) by that of the cerebellar cortex. Cerebellar cortex is not a valid reference in cases where amyloid β deposition or lesions are present. Only few studies have evaluated the use of other regions as references. We compared the validity of the pons and corpus callosum as reference regions for the quantitative evaluation of brain positron emission tomography (PET) using 11C-PiB compared to the cerebellar cortex. METHODS We retrospectively evaluated data from 86 subjects with or without Alzheimer's disease (AD). All subjects underwent magnetic resonance imaging, PET imaging, and cognitive function testing. For the quantitative analysis, three-dimensional ROIs were automatically placed, and SUV and SUVR were obtained. We compared these values between AD and healthy control (HC) groups. RESULTS SUVR data obtained using the pons and corpus callosum as reference regions strongly correlated with that using the cerebellar cortex. The sensitivity and specificity were high when either the pons or corpus callosum was used as the reference region. However, the SUV values of the corpus callosum were different between AD and HC (p < 0.01). CONCLUSIONS Our data suggest that the pons and corpus callosum might be valid reference regions.
Collapse
Affiliation(s)
- Tomohiro Tada
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Yoshinori Ito
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan
| | - Hiroshi Yamaguchi
- Nagoya University Radioisotope Research Center Medical Branch, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Neurology, Medical University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Neurology, Anjo Kosei Hospital, 28 Higashihirokute Anjo-Cho, Anjo, 446-8602, Japan
| | - Takamasa Yokoi
- Department of Neurology, Toyohashi Municipal Hospital, 50 Hachikennishi, Aotake-Cho, Toyohashi, 441-8570, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Neurology, Okazaki City Hospital, 1-3 Gosyoai, Kouryuji-Cho, Okazaki, 444-8553, Japan
| | - Shinji Abe
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Shinichi Miyao
- Department of Neurology, Meitetsu Hospital, 2-26-11 Sakou, Nishiku, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Gen Sobue
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Japan
| | - Katsuhiko Kato
- Functional Medical Imaging, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan.
| |
Collapse
|
25
|
Qin Y, Ba L, Zhang F, Jian S, Zhang M, Zhu W. Cerebral blood flow changes induced by high-frequency repetitive transcranial magnetic stimulation combined with cognitive training in Alzheimer's disease. Front Neurol 2023; 14:1037864. [PMID: 36761347 PMCID: PMC9902770 DOI: 10.3389/fneur.2023.1037864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background and purpose Hypoperfusion of the posterior cingulate cortex (PCC) and precuneus has consistently been reported in patients with Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training (COG) is effective in alleviating the symptoms of patients with mild AD. This study investigated the effects of rTMS-COG therapy on cerebral blood flow (CBF), with a special interest in the PCC/precuneus, and whether observed CBF changes are associated with changes in neuropsychological assessments in AD. Materials and methods Twenty-one patients with mild or moderate AD were randomly divided into real rTMS (n = 11) and sham treatment (n = 10) groups, both combined with COG. Neuro-navigated 10 Hz rTMS was used to stimulate the left dorsolateral prefrontal cortex (DLPFC) and then the left lateral temporal lobe (LTL) for 20 min each day for 4 weeks in the real rTMS group. All patients with AD underwent neuropsychological assessment, pseudo-continuous arterial spin labeling, and structural 3D T1-weighted MRI before treatment (T0), immediately after treatment (T1), and 4 weeks after treatment (T2). CBF in the precuneus, PCC, and stimulation targets at the region-of-interest (ROI) level, as well as whole-brain CBF changes at the voxel level, were compared between the two groups at three timepoints. Results rTMS-COG therapy revealed significant group × time interactions for the Mini-Mental State Examination (F = 5.339, p = 0.023, η2 = 0.433) and activities of daily living (F = 5.409, p = 0.039, η2 = 0.436) scores. The regional CBF in the precuneus showed a significant group × time interaction (F = 5.833, p = 0.027, η2 = 0.593). For voxel-level analysis, a significant group main effect was found in the left limbic lobe cluster, with the maximal peak in the left parahippocampus (p < 0.001, uncorrected, peak at [-16 -8 -24]). Simple effects analysis indicated that rTMS-COG therapy induced a decrease in CBF in the precuneus at T1 (p = 0.007) and an increase in the left parahippocampus at T2 (p=0.008). CBF decrease in the precuneus was correlated with better cognitive function immediately after treatment (T1) (r =-0.732, p=0.025). Conclusion Neuropsychological assessments showed immediate and long-term effects on cognitive function and activities of daily living after rTMS-COG therapy. CBF changes induced by high-frequency rTMS-COG therapy are region-dependent, showing immediate effects in the precuneus and long-term effects in the left parahippocampus. These results provide imaging evidence to understand the underlying neurobiological mechanism for the application of rTMS-COG in AD.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Zhang
- Department of Rehabilitation, RenMin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Jian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Min Zhang ✉
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Wenzhen Zhu ✉
| |
Collapse
|
26
|
Penalba-Sánchez L, Oliveira-Silva P, Sumich AL, Cifre I. Increased functional connectivity patterns in mild Alzheimer's disease: A rsfMRI study. Front Aging Neurosci 2023; 14:1037347. [PMID: 36698861 PMCID: PMC9869068 DOI: 10.3389/fnagi.2022.1037347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. In view of our rapidly aging population, there is an urgent need to identify Alzheimer's disease (AD) at an early stage. A potential way to do so is by assessing the functional connectivity (FC), i.e., the statistical dependency between two or more brain regions, through novel analysis techniques. Methods In the present study, we assessed the static and dynamic FC using different approaches. A resting state (rs)fMRI dataset from the Alzheimer's disease neuroimaging initiative (ADNI) was used (n = 128). The blood-oxygen-level-dependent (BOLD) signals from 116 regions of 4 groups of participants, i.e., healthy controls (HC; n = 35), early mild cognitive impairment (EMCI; n = 29), late mild cognitive impairment (LMCI; n = 30), and Alzheimer's disease (AD; n = 34) were extracted and analyzed. FC and dynamic FC were extracted using Pearson's correlation, sliding-windows correlation analysis (SWA), and the point process analysis (PPA). Additionally, graph theory measures to explore network segregation and integration were computed. Results Our results showed a longer characteristic path length and a decreased degree of EMCI in comparison to the other groups. Additionally, an increased FC in several regions in LMCI and AD in contrast to HC and EMCI was detected. These results suggest a maladaptive short-term mechanism to maintain cognition. Conclusion The increased pattern of FC in several regions in LMCI and AD is observable in all the analyses; however, the PPA enabled us to reduce the computational demands and offered new specific dynamic FC findings.
Collapse
Affiliation(s)
- Lucía Penalba-Sánchez
- Facultat de Psicologia, Ciències de l’educació i de l’Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain,Human Neurobehavioral Laboratory (HNL), Research Centre for Human Development (CEDH), Faculdade de Educação e Psicologia, Universidade Católica Portuguesa, Porto, Portugal,NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom,*Correspondence: Lucía Penalba-Sánchez,
| | - Patrícia Oliveira-Silva
- Human Neurobehavioral Laboratory (HNL), Research Centre for Human Development (CEDH), Faculdade de Educação e Psicologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Alexander Luke Sumich
- NTU Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Ignacio Cifre
- Facultat de Psicologia, Ciències de l’educació i de l’Esport, Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
27
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
28
|
Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. Neuroimage Clin 2023; 37:103344. [PMID: 36804686 PMCID: PMC9969322 DOI: 10.1016/j.nicl.2023.103344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.
Collapse
Affiliation(s)
- Naomi L Gaggi
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Jeffrey B Ware
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Sudipto Dolui
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Daniel Brennan
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Julia Torrellas
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States.
| | - Ze Wang
- University of Maryland School of Medicine, 655 W Baltimore St. S, Baltimore, MD 21201, United States.
| | - John Whyte
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | - Ramon Diaz-Arrastia
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Junghoon J Kim
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| |
Collapse
|
29
|
Liebe T, Dordevic M, Kaufmann J, Avetisyan A, Skalej M, Müller N. Investigation of the functional pathogenesis of mild cognitive impairment by localisation-based locus coeruleus resting-state fMRI. Hum Brain Mapp 2022; 43:5630-5642. [PMID: 36441846 PMCID: PMC9704796 DOI: 10.1002/hbm.26039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Dementia as one of the most prevalent diseases urges for a better understanding of the central mechanisms responsible for clinical symptoms, and necessitates improvement of actual diagnostic capabilities. The brainstem nucleus locus coeruleus (LC) is a promising target for early diagnosis because of its early structural alterations and its relationship to the functional disturbances in the patients. In this study, we applied our improved method of localisation-based LC resting-state fMRI to investigate the differences in central sensory signal processing when comparing functional connectivity (fc) of a patient group with mild cognitive impairment (MCI, n = 28) and an age-matched healthy control group (n = 29). MCI and control participants could be differentiated in their Mini-Mental-State-Examination (MMSE) scores (p < .001) and LC intensity ratio (p = .010). In the fMRI, LC fc to anterior cingulate cortex (FDR p < .001) and left anterior insula (FDR p = .012) was elevated, and LC fc to right temporoparietal junction (rTPJ, FDR p = .012) and posterior cingulate cortex (PCC, FDR p = .021) was decreased in the patient group. Importantly, LC to rTPJ connectivity was also positively correlated to MMSE scores in MCI patients (p = .017). Furthermore, we found a hyperactivation of the left-insula salience network in the MCI patients. Our results and our proposed disease model shed new light on the functional pathogenesis of MCI by directing to attentional network disturbances, which could aid new therapeutic strategies and provide a marker for diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of PsychiatryMedical University of ViennaViennaAustria
- Department of RadiologyUniversity Hospital JenaJenaGermany
- Department of PsychiatryUniversity Hospital JenaJenaGermany
- Clinical Affective Neuroimaging LaboratoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Milos Dordevic
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| | - Jörn Kaufmann
- Department of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Araks Avetisyan
- Neuroprotection LabGerman Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Skalej
- Department of Neuroradiology, Clinic and Policlinic of RadiologyUniversity Hospital HalleHalleGermany
| | - Notger Müller
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| |
Collapse
|
30
|
Koch G, Casula EP, Bonnì S, Borghi I, Assogna M, Minei M, Pellicciari MC, Motta C, D’Acunto A, Porrazzini F, Maiella M, Ferrari C, Caltagirone C, Santarnecchi E, Bozzali M, Martorana A. Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial. Brain 2022; 145:3776-3786. [PMID: 36281767 PMCID: PMC9679166 DOI: 10.1093/brain/awac285] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 08/01/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is emerging as a non-invasive therapeutic strategy in the battle against Alzheimer's disease. Alzheimer's disease patients primarily show alterations of the default mode network for which the precuneus is a key node. Here, we hypothesized that targeting the precuneus with TMS represents a promising strategy to slow down cognitive and functional decline in Alzheimer's disease patients. We performed a randomized, double-blind, sham-controlled, phase 2, 24-week trial to determine the safety and efficacy of precuneus stimulation in patients with mild-to-moderate Alzheimer's disease. Fifty Alzheimer's disease patients were randomly assigned in a 1:1 ratio to either receive precuneus or sham rTMS (mean age 73.7 years; 52% female). The trial included a 24-week treatment, with a 2-week intensive course in which rTMS (or sham) was applied daily five times per week, followed by a 22-week maintenance phase in which stimulation was applied once weekly. The Clinical Dementia Rating Scale-Sum of Boxes was selected as the primary outcome measure, in which post-treatment scores were compared to baseline. Secondary outcomes included score changes in the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Moreover, single-pulse TMS in combination with EEG was used to assess neurophysiological changes in precuneus cortical excitability and oscillatory activity. Our findings show that patients that received precuneus repetitive magnetic stimulation presented a stable performance of the Clinical Dementia Rating Scale-Sum of Boxes score, whereas patients treated with sham showed a worsening of their score. Compared with the sham stimulation, patients in the precuneus stimulation group also showed also significantly better performances for the secondary outcome measures, including the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental State Examination and Alzheimer's Disease Cooperative Study-Activities of Daily Living scale. Neurophysiological results showed that precuneus cortical excitability remained unchanged after 24 weeks in the precuneus stimulation group, whereas it was significantly reduced in the sham group. Finally, we found an enhancement of local gamma oscillations in the group treated with precuneus stimulation but not in patients treated with sham. We conclude that 24 weeks of precuneus rTMS may slow down cognitive and functional decline in Alzheimer's disease. Repetitive TMS targeting the default mode network could represent a novel therapeutic approach in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Giacomo Koch
- Correspondence to: Prof. Giacomo Koch, MD, PhD Santa Lucia Foundation IRCCS, Via Ardeatina 306, 00179, Rome, Italy E-mail:
| | - Elias Paolo Casula
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Sonia Bonnì
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Ilaria Borghi
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Martina Assogna
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Marilena Minei
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | | | - Caterina Motta
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Alessia D’Acunto
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Francesco Porrazzini
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Michele Maiella
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation program, Gordon Center for Medical Imaging, Massachussets General Hospital; Harvard Medical School, 02114, Boston, MA, USA
| | - Marco Bozzali
- Rita Levi Montalcini Department of Neuroscience, University of Torino, 10124, Turin, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, UK
| | - Alessandro Martorana
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179, Rome, Italy
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
31
|
Peña M, Petrillo K, Bosset M, Fain M, Chou YH, Rapcsak S, Toosizadeh N. Brain function complexity during dual-tasking is associated with cognitive impairment and age. J Neuroimaging 2022; 32:1211-1223. [PMID: 35843726 PMCID: PMC9649845 DOI: 10.1111/jon.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Early diagnosis of cognitive impairment is important because symptoms can be delayed through therapies. Synaptic disconnections are the key characteristics of dementia, and through nonlinear complexity analysis of brain function, it is possible to identify long-range synaptic disconnections in the brain. METHODS We investigated the capability of a novel upper-extremity function (UEF) dual-task paradigm in the functional MRI (fMRI) setting, where the participant flexes and extends their arm while counting, to differentiate between cognitively normal (CN) and those with mild cognitive impairment (MCI). We used multiscale entropy (MSE) complexity analysis of the blood oxygen-level dependent time-series across neural networks and brain regions. Outside of the fMRI, we used the UEF dual-task test, while the elbow kinematics were measured using motion sensors, to record the motor function score. RESULTS Results showed 34% lower MSE values in MCI compared to CN (p<.04 for all regions and networks except cerebellum when counting down by one; effect size = 1.35±0.15) and a negative correlation between MSE values and age (average r2 of 0.30 for counting down by one and 0.36 for counting backward by three). Results also showed an improvement in the logistic regression model sensitivity by 14-24% in predicting the presence of MCI when brain function measure was added to the motor function score (kinematics data). CONCLUSIONS Current findings suggest that combining measures of neural network and motor function, in addition to neuropsychological testing, may provide an accurate tool for assessing early-stage cognitive impairment and age-related decline in cognition.
Collapse
Affiliation(s)
- Miguel Peña
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Kelsi Petrillo
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Mark Bosset
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | - Mindy Fain
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Ying-hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - Steve Rapcsak
- Department of Neurology, University of Arizona, Tucson, AZ
- Banner Alzheimer’s Institute, Tucson, AZ
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
32
|
Cuberas-Borrós G, Roca I, Castell-Conesa J, Núñez L, Boada M, López OL, Grifols C, Barceló M, Pareto D, Páez A. Neuroimaging analyses from a randomized, controlled study to evaluate plasma exchange with albumin replacement in mild-to-moderate Alzheimer's disease: additional results from the AMBAR study. Eur J Nucl Med Mol Imaging 2022; 49:4589-4600. [PMID: 35867135 PMCID: PMC9606044 DOI: 10.1007/s00259-022-05915-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE This study was designed to detect structural and functional brain changes in Alzheimer's disease (AD) patients treated with therapeutic plasma exchange (PE) with albumin replacement, as part of the recent AMBAR phase 2b/3 clinical trial. METHODS Mild-to-moderate AD patients were randomized into four arms: three arms receiving PE with albumin (one with low-dose albumin, and two with low/high doses of albumin alternated with IVIG), and a placebo (sham PE) arm. All arms underwent 6 weeks of weekly conventional PE followed by 12 months of monthly low-volume PE. Magnetic resonance imaging (MRI) volumetric analyses and regional and statistical parametric mapping (SPM) analysis on 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) were performed. RESULTS MRI analyses (n = 198 patients) of selected subcortical structures showed fewer volume changes from baseline to final visit in the high albumin + IVIG treatment group (p < 0.05 in 3 structures vs. 4 to 9 in other groups). The high albumin + IVIG group showed no statistically significant reduction of right hippocampus. SPM 18FDG-PET analyses (n = 213 patients) showed a worsening of metabolic activity in the specific areas affected in AD (posterior cingulate, precuneus, and parieto-temporal regions). The high-albumin + IVIG treatment group showed the greatest metabolic stability over the course of the study, i.e., the smallest percent decline in metabolism (MaskAD), and least progression of defect compared to placebo. CONCLUSIONS PE with albumin replacement was associated with fewer deleterious changes in subcortical structures and less metabolic decline compared to the typical of the progression of AD. This effect was more marked in the group treated with high albumin + IVIG. TRIAL REGISTRATION (AMBAR trial registration: EudraCT#: 2011-001,598-25; ClinicalTrials.gov ID: NCT01561053).
Collapse
Affiliation(s)
- Gemma Cuberas-Borrós
- Research & Innovation Unit, Althaia Xarxa Assistencial Universitària de Manresa, Carrer Dr. Joan Soler 1-3, 08242, Manresa, Spain.
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Isabel Roca
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Castell-Conesa
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Núñez
- Alzheimer's Research Group, Grifols, Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar L López
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Deborah Pareto
- Radiology Department (IDI), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Antonio Páez
- Alzheimer's Research Group, Grifols, Barcelona, Spain
| |
Collapse
|
33
|
Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, Katsuno M, Sobue G. Connectivity impairment of cerebellar and sensorimotor connector hubs in Parkinson’s disease. Brain Commun 2022; 4:fcac214. [PMID: 36072644 PMCID: PMC9438962 DOI: 10.1093/braincomms/fcac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson’s disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients’ motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder’s two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson’s disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 461–8673 Japan
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
| | - Kazuya Kawabata
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Aya Ogura
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Gen Sobue
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Aichi Medical University , Nagakute, Aichi, 480-1195 Japan
| |
Collapse
|
34
|
Williamson J, Yabluchanskiy A, Mukli P, Wu DH, Sonntag W, Ciro C, Yang Y. Sex differences in brain functional connectivity of hippocampus in mild cognitive impairment. Front Aging Neurosci 2022; 14:959394. [PMID: 36034134 PMCID: PMC9399646 DOI: 10.3389/fnagi.2022.959394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer's Disease (AD). Prior research shows that females are more impacted by MCI than males. On average females have a greater incidence rate of any dementia and current evidence suggests that they suffer greater cognitive deterioration than males in the same disease stage. Recent research has linked these sex differences to neuroimaging markers of brain pathology, such as hippocampal volumes. Specifically, the rate of hippocampal atrophy affects the progression of AD in females more than males. This study was designed to extend our understanding of the sex-related differences in the brain of participants with MCI. Specifically, we investigated the difference in the hippocampal connectivity to different areas of the brain. The Resting State fMRI and T2 MRI of cognitively normal individuals (n = 40, female = 20) and individuals with MCI (n = 40, female = 20) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed using the Functional Connectivity Toolbox (CONN). Our results demonstrate that connectivity of hippocampus to the precuneus cortex and brain stem was significantly stronger in males than in females. These results improve our current understanding of the role of hippocampus-precuneus cortex and hippocampus-brainstem connectivity in sex differences in MCI. Understanding the contribution of impaired functional connectivity sex differences may aid in the development of sex specific precision medicine to manipulate hippocampal-precuneus cortex and hippocampal-brainstem connectivity to decrease the progression of MCI to AD.
Collapse
Affiliation(s)
- Jordan Williamson
- Neural Control and Rehabilitation Laboratory, Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dee H. Wu
- Department of Radiological Science and Medical Physics, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, United States
- School of Computer Science, Gallogly College of Engineering, University of Oklahoma, Norman, OK, United States
- School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, United States
| | - William Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carrie Ciro
- Department of Rehabilitation Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Neural Control and Rehabilitation Laboratory, Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
- Data Institute for Societal Challenges, University of Oklahoma, Norman, OK, United States
- Department of Rehabilitation Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
35
|
Qiu Q. Neural Networks in Autosomal Dominant Alzheimer’s Disease: Insights From Functional Magnetic Resonance Imaging Studies. Front Aging Neurosci 2022; 14:903269. [PMID: 35928996 PMCID: PMC9343946 DOI: 10.3389/fnagi.2022.903269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with no cure to stop its progression. Early detection, diagnosis, and intervention have become the hot spots in AD research. The long asymptomatic and slightly symptomatic phases of autosomal dominant AD (ADAD) allow studies to explore early biomarkers and the underlying pathophysiological changes. Functional magnetic resonance imaging (fMRI) provides a method to detect abnormal patterns of brain activity and functional connectivity in vivo, which correlates with cognitive decline earlier than structural changes and more strongly than amyloid deposition. Here, we will provide a brief overview of the network-level findings in ADAD in fMRI studies. In general, abnormalities in brain activity were mainly found in the hippocampus, the medial temporal lobe (MTL), the posterior cortex, the cingulate cortices, and the frontal regions in ADAD. Moreover, ADAD and sporadic AD (SAD) have similar fMRI changes, but not with aging.
Collapse
Affiliation(s)
- Qiongqiong Qiu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, National Clinical Research Center for Geriatric Disorders, Beijing, China
- *Correspondence: Qiongqiong Qiu,
| |
Collapse
|
36
|
Liang X, Yuan Q, Xue C, Qi W, Ge H, Yan Z, Chen S, Song Y, Wu H, Xiao C, Chen J. Convergent functional changes of the episodic memory impairment in mild cognitive impairment: An ALE meta-analysis. Front Aging Neurosci 2022; 14:919859. [PMID: 35912082 PMCID: PMC9335195 DOI: 10.3389/fnagi.2022.919859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is considered to be an intermediate stage between normal aging and Alzheimer's disease (AD). The earliest and most common symptom of MCI is impaired episodic memory. When episodic memory is impaired in MCI patients, specific functional changes occur in related brain areas. However, there is currently a lack of a unified conclusion on this change. Therefore, the purpose of this meta-analysis is to find MRI-specific functional changes in episodic memory in MCI patients. Methods Based on three commonly used indicators of brain function: functional connectivity (FC), the amplitude of low-frequency fluctuation /fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo), we systematically searched PubMed, Web of Science and Ovid related literature and conducted the strict screening. Then we use the activation likelihood estimation (ALE) algorithm to perform the coordinate-based meta-analysis. Results Through strict screening, this meta-analysis finally included 21 related functional neuroimaging research articles. The final result displays that functional changes of episodic memory in MCI patients are mainly located in the parahippocampal gyrus, precuneus, posterior cingulate gyrus, cuneus, middle temporal gyrus, middle frontal gyrus, lingual gyrus, and thalamus. Conclusions There are specific functional changes in episodic memory brain regions in MCI patients, and the brain functional network can regulate episodic memory through these brain regions. And these specific changes can assist in the early diagnosis of MCI, providing new ideas and directions for early identification and intervention in the process of MCI.
Collapse
Affiliation(s)
- Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- *Correspondence: Chaoyong Xiao
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Jiu Chen
| |
Collapse
|
37
|
Zhan Y, Fu Q, Pei J, Fan M, Yu Q, Guo M, Zhou H, Wang T, Wang L, Chen Y. Modulation of Brain Activity and Functional Connectivity by Acupuncture Combined With Donepezil on Mild-to-Moderate Alzheimer's Disease: A Neuroimaging Pilot Study. Front Neurol 2022; 13:912923. [PMID: 35899271 PMCID: PMC9309357 DOI: 10.3389/fneur.2022.912923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Functional brain imaging changes have been proven as potential pathophysiological targets in early-stage AD. Current longitudinal neuroimaging studies of AD treated by acupuncture, which is one of the growingly acknowledged non-pharmacological interventions, have neither adopted comprehensive acupuncture protocols, nor explored the changes after a complete treatment duration. Thus, the mechanisms of acupuncture effects remain not fully investigated. Objective This study aimed to investigate the changes in spontaneous brain activity and functional connectivity and provide evidence for central mechanism of a 12-week acupuncture program on mild-to-moderate AD. Methods A total of forty-four patients with mild-to-moderate AD and twenty-two age- and education-level-matched healthy subjects were enrolled in this study. The forty-four patients with AD received a 12-week intervention of either acupuncture combined with Donepezil (the treatment group) or Donepezil alone (the control group). The two groups received two functional magnetic resonance imaging (fMRI) scans before and after treatment. The healthy subject group underwent no intervention, and only one fMRI scan was performed after enrollment. The fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) were applied to analyze the imaging data. The correlations between the imaging indicators and the changed score of Alzheimer's Disease Assessment Scale-Cognitive Section (ADAS-cog) were also explored. Results After the 12-week intervention, compared to those in the control group, patients with AD in the treatment group scored significantly lower on ADAS-cog value. Moreover, compared to healthy subjects, the areas where the fALFF value decreased in patients with AD were mainly located in the right inferior temporal gyrus, middle/inferior frontal gyrus, middle occipital gyrus, left precuneus, and bilateral superior temporal gyrus. Compared with the control group, the right precuneus demonstrated the greatest changed value of fALFF after the intervention in the treatment group. The difference in ADAS-cog after interventions was positively correlated with the difference in fALFF value in the left temporal lobe. Right precuneus-based FC analysis showed that the altered FC by the treatment group compared to the control group was mainly located in the bilateral middle temporal gyrus. Conclusion The study revealed the key role of precuneus in the effect of the combination of acupuncture and Donepezil on mild-to-moderate AD for cognitive function, as well as its connection with middle temporal gyrus, which provided a potential treating target for AD. Trial Registration Number: NCT03810794 (http://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Yijun Zhan
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhui Fu
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jian Pei
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Qiurong Yu
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Miao Guo
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | - Houguang Zhou
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Wang
- Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liaoyao Wang
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoxin Chen
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y, Funahashi S, Wu J, Pei G. Abnormal Dynamic Functional Networks in Subjective Cognitive Decline and Alzheimer's Disease. Front Comput Neurosci 2022; 16:885126. [PMID: 35586480 PMCID: PMC9108158 DOI: 10.3389/fncom.2022.885126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer's disease (AD) and has the potential for the early diagnosis and intervention of AD. It was implicated that CSF-tau, which increases very early in the disease process in AD, has a high sensitivity and specificity to differentiate AD from normal aging, and the highly connected brain regions behaved more tau burden in patients with AD. Thus, a highly connected state measured by dynamic functional connectivity may serve as the early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation, and clustering analysis were combined to investigate the different levels of information transformation states. Three states, namely, the low state, the middle state, and the high state, were characterized based on the strength of functional connectivity between each pair of brain regions. For the global dynamic functional connectivity analysis, statistically significant differences were found among groups in the three states, and the functional connectivity in the middle state was positively correlated with cognitive scales. Furthermore, the whole brain was parcellated into four networks, namely, default mode network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and occipital-cerebellum network (OCN). For the local network analysis, statistically significant differences in CCN for low state and SMN for middle state and high state were found in normal controls and patients with AD. Meanwhile, the differences were also found in normal controls and individuals with SCD. In addition, the functional connectivity in SMN for high state was positively correlated with cognitive scales. Converging results showed the changes in dynamic functional states in individuals with SCD and patients with AD. In addition, the changes were mainly in the high strength of the functional connectivity state.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
- *Correspondence: Jinglong Wu
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Guangying Pei
| |
Collapse
|
39
|
Rus-Oswald OG, Benner J, Reinhardt J, Bürki C, Christiner M, Hofmann E, Schneider P, Stippich C, Kressig RW, Blatow M. Musicianship-Related Structural and Functional Cortical Features Are Preserved in Elderly Musicians. Front Aging Neurosci 2022; 14:807971. [PMID: 35401149 PMCID: PMC8990841 DOI: 10.3389/fnagi.2022.807971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Professional musicians are a model population for exploring basic auditory function, sensorimotor and multisensory integration, and training-induced neuroplasticity. The brain of musicians exhibits distinct structural and functional cortical features; however, little is known about how these features evolve during aging. This multiparametric study aimed to examine the functional and structural neural correlates of lifelong musical practice in elderly professional musicians. Methods Sixteen young musicians, 16 elderly musicians (age >70), and 15 elderly non-musicians participated in the study. We assessed gray matter metrics at the whole-brain and region of interest (ROI) levels using high-resolution magnetic resonance imaging (MRI) with the Freesurfer automatic segmentation and reconstruction pipeline. We used BrainVoyager semiautomated segmentation to explore individual auditory cortex morphotypes. Furthermore, we evaluated functional blood oxygenation level-dependent (BOLD) activations in auditory and non-auditory regions by functional MRI (fMRI) with an attentive tone-listening task. Finally, we performed discriminant function analyses based on structural and functional ROIs. Results A general reduction of gray matter metrics distinguished the elderly from the young subjects at the whole-brain level, corresponding to widespread natural brain atrophy. Age- and musicianship-dependent structural correlations revealed group-specific differences in several clusters including superior, middle, and inferior frontal as well as perirolandic areas. In addition, the elderly musicians exhibited increased gyrification of auditory cortex like the young musicians. During fMRI, the elderly non-musicians activated predominantly auditory regions, whereas the elderly musicians co-activated a much broader network of auditory association areas, primary and secondary motor areas, and prefrontal and parietal regions like, albeit weaker, the young musicians. Also, group-specific age- and musicianship-dependent functional correlations were observed in the frontal and parietal regions. Moreover, discriminant function analysis could separate groups with high accuracy based on a set of specific structural and functional, mainly temporal and occipital, ROIs. Conclusion In conclusion, despite naturally occurring senescence, the elderly musicians maintained musicianship-specific structural and functional cortical features. The identified structural and functional brain regions, discriminating elderly musicians from non-musicians, might be of relevance for the aging musicians’ brain. To what extent lifelong musical activity may have a neuroprotective impact needs to be addressed further in larger longitudinal studies.
Collapse
Affiliation(s)
- Oana G. Rus-Oswald
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
- *Correspondence: Oana G. Rus-Oswald,
| | - Jan Benner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Jan Benner,
| | - Julia Reinhardt
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zürich, Switzerland
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Orthopedic Surgery and Traumatology, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Céline Bürki
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| | - Markus Christiner
- Centre for Systematic Musicology, University of Graz, Graz, Austria
- Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Elke Hofmann
- Academy of Music, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Basel, Switzerland
| | - Peter Schneider
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Systematic Musicology, University of Graz, Graz, Austria
- Vitols Jazeps Latvian Academy of Music, Riga, Latvia
| | - Christoph Stippich
- Department of Neuroradiology and Radiology, Kliniken Schmieder, Allensbach, Germany
| | - Reto W. Kressig
- University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
40
|
Putcha D, Eckbo R, Katsumi Y, Dickerson BC, Touroutoglou A, Collins JA. Tau and the fractionated default mode network in atypical Alzheimer's disease. Brain Commun 2022; 4:fcac055. [PMID: 35356035 PMCID: PMC8963312 DOI: 10.1093/braincomms/fcac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease-related atrophy in the posterior cingulate cortex, a key node of the default mode network, is present in the early stages of disease progression across clinical phenotypic variants of the disease. In the typical amnestic variant, posterior cingulate cortex neuropathology has been linked with disrupted connectivity of the posterior default mode network, but it remains unclear if this relationship is observed across atypical variants of Alzheimer's disease. In the present study, we first sought to determine if tau pathology is consistently present in the posterior cingulate cortex and other posterior nodes of the default mode network across the atypical Alzheimer's disease syndromic spectrum. Second, we examined functional connectivity disruptions within the default mode network and sought to determine if tau pathology is related to functional disconnection within this network. We studied a sample of 25 amyloid-positive atypical Alzheimer's disease participants examined with high-resolution MRI, tau (18F-AV-1451) PET, and resting-state functional MRI. In these patients, high levels of tau pathology in the posteromedial cortex and hypoconnectivity between temporal and parietal nodes of the default mode network were observed relative to healthy older controls. Furthermore, higher tau signal and reduced grey matter density in the posterior cingulate cortex and angular gyrus were associated with reduced parietal functional connectivity across individual patients, related to poorer cognitive scores. Our findings converge with what has been reported in amnestic Alzheimer's disease, and together these observations offer a unifying mechanistic feature that relates posterior cingulate cortex tau deposition to aberrant default mode network connectivity across heterogeneous clinical phenotypes of Alzheimer's disease.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan Eckbo
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A. Collins
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Takizawa Y, Murray J, Bambling M, Matsumoto Y, Ishimoto Y, Yamane T, Edirippulige S. Integrating neuroscientific knowledge into psychotherapy amongst Japanese psychotherapists: presence, benefits, needs and cultural barriers. ASIA PACIFIC JOURNAL OF COUNSELLING AND PSYCHOTHERAPY 2022. [DOI: 10.1080/21507686.2022.2035783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu Takizawa
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Judith Murray
- School of Psychology/School of Nursing Midwifery and Social Work, University of Queensland, Brisbane, Australia
| | - Matthew Bambling
- School of Clinical Medicine, University of Queensland, Brisbane, Australia
| | - Yuki Matsumoto
- School of Human Life Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuma Ishimoto
- Teacher Education Center, Tottori University, Tottori, Japan
| | - Takahiro Yamane
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Sisira Edirippulige
- Centre for Health Services Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
43
|
Sheng J, Wang B, Zhang Q, Yu M. Connectivity and variability of related cognitive subregions lead to different stages of progression toward Alzheimer's disease. Heliyon 2022; 8:e08827. [PMID: 35128111 PMCID: PMC8803587 DOI: 10.1016/j.heliyon.2022.e08827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/29/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Single modality MRI data is not enough to depict and discern the cause of the underlying brain pathology of Alzheimer's disease (AD). Most existing studies do not perform well with multi-group classification. To reveal the structural, functional connectivity and functional topological relationships among different stages of mild cognitive impairment (MCI) and AD, a novel method was proposed in this paper for the analysis of regional importance with an improved deep learning model. Obvious drift of related cognitive regions can be observed in the prefrontal lobe and surrounding the cingulate area in the right hemisphere when comparing AD and healthy controls (HC) based on absolute weights in the classification mode. Alterations of these regions being responsible for cognitive impairment have been previously reported. Different parcellation atlases of the human cerebral cortex were compared, and the fine-grained multimodal parcellation HCPMMP performed the best with 180 cortical areas per hemisphere. In multi-group classification, the highest accuracy achieved was 96.86% with the utilization of structural and functional topological modalities as input to the training model. Weights in the trained model with perfect discriminating ability quantify the importance of each cortical region. This is the first time such a phenomenon is discovered and weights in cortical areas are precisely described in AD and its prodromal stages to the best of our knowledge. Our findings can establish other study models to differentiate the patterns in various diseases with cognitive impairments and help to identify the underlying pathology.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Bocheng Wang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
- Communication University of Zhejiang, Hangzhou, Zhejiang, 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Margaret Yu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
44
|
Yamamoto M, Bagarinao E, Shimamoto M, Iidaka T, Ozaki N. Involvement of cerebellar and subcortical connector hubs in schizophrenia. NEUROIMAGE: CLINICAL 2022; 35:103140. [PMID: 36002971 PMCID: PMC9421528 DOI: 10.1016/j.nicl.2022.103140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Hubs with altered connectivity to multiple networks were identified in patients. Identified hubs were located in the cerebellum, midbrain, thalamus, and insula. In controls, these hubs were strongly connected with the basal ganglia network. Hubs’ connections to large-scale networks were associated with clinical data. Their connections were also highly predictive of patients from controls.
Background Schizophrenia is considered a brain connectivity disorder in which functional integration within the brain fails. Central to the brain’s integrative function are connector hubs, brain regions characterized by strong connections with multiple networks. Given their critical role in functional integration, we hypothesized that connector hubs, including those located in the cerebellum and subcortical regions, are severely impaired in patients with schizophrenia. Methods We identified brain voxels with significant connectivity alterations in patients with schizophrenia (n = 76; men = 43) compared to healthy controls (n = 80; men = 43) across multiple large-scale resting state networks (RSNs) using a network metric called functional connectivity overlap ratio (FCOR). From these voxels, candidate connector hubs were identified and verified using seed-based connectivity analysis. Results We found that most networks exhibited connectivity alterations in the patient group. Specifically, connectivity with the basal ganglia and high visual networks was severely affected over widespread brain areas in patients, affecting subcortical and cerebellar regions and the regions involved in visual and sensorimotor processing. Furthermore, we identified critical connector hubs in the cerebellum, midbrain, thalamus, insula, and calcarine with connectivity to multiple RSNs affected in the patients. FCOR values of these regions were also associated with clinical data and could classify patient and control groups with > 80 % accuracy. Conclusions These findings highlight the critical role of connector hubs, particularly those in the cerebellum and subcortical regions, in the pathophysiology of schizophrenia and the potential role of FCOR as a clinical biomarker for the disorder.
Collapse
|
45
|
Watanabe H, Bagarinao E, Maesawa S, Hara K, Kawabata K, Ogura A, Ohdake R, Shima S, Mizutani Y, Ueda A, Ito M, Katsuno M, Sobue G. Characteristics of Neural Network Changes in Normal Aging and Early Dementia. Front Aging Neurosci 2021; 13:747359. [PMID: 34880745 PMCID: PMC8646086 DOI: 10.3389/fnagi.2021.747359] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
To understand the mechanisms underlying preserved and impaired cognitive function in healthy aging and dementia, respectively, the spatial relationships of brain networks and mechanisms of their resilience should be understood. The hub regions of the brain, such as the multisensory integration and default mode networks, are critical for within- and between-network communication, remain well-preserved during aging, and play an essential role in compensatory processes. On the other hand, these brain hubs are the preferred sites for lesions in neurodegenerative dementias, such as Alzheimer's disease. Disrupted primary information processing networks, such as the auditory, visual, and sensorimotor networks, may lead to overactivity of the multisensory integration networks and accumulation of pathological proteins that cause dementia. At the cellular level, the brain hub regions contain many synapses and require a large amount of energy. These regions are rich in ATP-related gene expression and had high glucose metabolism as demonstrated on positron emission tomography (PET). Importantly, the number and function of mitochondria, which are the center of ATP production, decline by about 8% every 10 years. Dementia patients often have dysfunction of the ubiquitin-proteasome and autophagy-lysosome systems, which require large amounts of ATP. If there is low energy supply but the demand is high, the risk of disease can be high. Imbalance between energy supply and demand may cause accumulation of pathological proteins and play an important role in the development of dementia. This energy imbalance may explain why brain hub regions are vulnerable to damage in different dementias. Here, we review (1) the characteristics of gray matter network, white matter network, and resting state functional network changes related to resilience in healthy aging, (2) the mode of resting state functional network disruption in neurodegenerative dementia, and (3) the cellular mechanisms associated with the disruption.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, Fujita Health University, Toyoake, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University, Toyoake, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| |
Collapse
|
46
|
Fu L, Zhou Z, Liu L, Zhang J, Xie H, Zhang X, Zhu M, Wang R. Functional Abnormality Associated With Tau Deposition in Alzheimer's Disease - A Hybrid Positron Emission Tomography/MRI Study. Front Aging Neurosci 2021; 13:758053. [PMID: 34721001 PMCID: PMC8548365 DOI: 10.3389/fnagi.2021.758053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: To investigate the characteristics of tau deposition and its impact on functional connectivity (FC) in Alzheimer’s disease (AD). Methods: Hybrid PET/MRI scans with [18F]-THK5317 and neuropsychological assessments were undertaken in 26 participants with AD and 19 healthy controls (HC). The standardized uptake value ratio (SUVR) of [18F]-THK5317 PET imaging was compared between the AD and HC groups. Significant clusters that revealed higher tau deposition in the AD group compared to the HC group were selected as regions of interest (ROI) for FC analysis. We evaluated the difference in the FC between the two groups for each ROI pair. The clinical and radiological characteristics were compared between the AD patients with negative FC and AD patients with positive FC for exploratory analysis. Results: The bilateral inferior lateral temporal lobe, dorsal prefrontal cortex, precuneus, posterior cingulate cortex, hippocampus, and occipital lobe showed significantly higher [18F]-THK5317 accumulation in AD patients. Decreased FC in regions with higher SUVR was observed in AD patients, and the FC strength was negatively correlated with regional SUVR. Patients with a positive FC exhibited older ages, better cognitive performances, and a lower SUVR than patients with a negative FC. Conclusions: An impact of tau deposition was observed on FC at the individual level in AD patients. Our findings suggested that the combination of tau-PET and rs-fMRI might help predict AD progression.
Collapse
Affiliation(s)
- Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhi Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Linwen Liu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinming Zhang
- Department of Nuclear Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hengge Xie
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaojun Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Mingwei Zhu
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Zang F, Zhu Y, Zhang Q, Tan C, Wang Q, Xie C. APOE genotype moderates the relationship between LRP1 polymorphism and cognition across the Alzheimer's disease spectrum via disturbing default mode network. CNS Neurosci Ther 2021; 27:1385-1395. [PMID: 34387022 PMCID: PMC8504518 DOI: 10.1111/cns.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS This study aims to investigate the mechanisms by which apolipoprotein E (APOE) genotype modulates the relationship between low-density lipoprotein receptor-related protein 1 (LRP1) rs1799986 variant on the default mode network (DMN) and cognition in Alzheimer's disease (AD) spectrum populations. METHODS Cross-sectional 168 subjects of AD spectrum were obtained from Alzheimer's Disease Neuroimaging Initiative database with resting-state fMRI scans and neuropsychological scores data. Multivariable linear regression analysis was adopted to investigate the main effects and interaction of LRP1 and disease on the DMN. Moderation and interactive analyses were performed to assess the relationships among APOE, LRP1, and cognition. A support vector machine model was used to classify AD spectrum with altered connectivity as an objective diagnostic biomarker. RESULTS The main effects and interaction of LRP1 and disease were mainly focused on the core hubs of frontal-parietal network. Several brain regions with altered connectivity were correlated with cognitive scores in LRP1-T carriers, but not in non-carriers. APOE regulated the effect of LRP1 on cognitive performance. The functional connectivity of numerous brain regions within LRP1-T carriers yielded strong power for classifying AD spectrum. CONCLUSION These findings suggested LRP1 could affect DMN and provided a stage-dependent neuroimaging biomarker for classifying AD spectrum populations.
Collapse
Affiliation(s)
- Feifei Zang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Yao Zhu
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Qianqian Zhang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Chang Tan
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Qing Wang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Chunming Xie
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Neuropsychiatric InstituteAffiliated ZhongDa HospitalSoutheast UniversityNanjingChina
| | | |
Collapse
|
48
|
Tanglay O, Young IM, Dadario NB, Briggs RG, Fonseka RD, Dhanaraj V, Hormovas J, Lin YH, Sughrue ME. Anatomy and white-matter connections of the precuneus. Brain Imaging Behav 2021; 16:574-586. [PMID: 34448064 DOI: 10.1007/s11682-021-00529-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Purpose Advances in neuroimaging have provided an understanding of the precuneus'(PCu) involvement in functions such as visuospatial processing and cognition. While the PCu has been previously determined to be apart of a higher-order default mode network (DMN), recent studies suggest the presence of possible dissociations from this model in order to explain the diverse functions the PCu facilitates, such as in episodic memory. An improved structural model of the white-matter anatomy of the PCu can demonstrate its unique cerebral connections with adjacent regions which can provide additional clarity on its role in integrating information across higher-order cerebral networks like the DMN. Furthermore, this information can provide clinically actionable anatomic information that can support clinical decision making to improve neurologic outcomes such as during cerebral surgery. Here, we sought to derive the relationship between the precuneus and underlying major white-mater bundles by characterizing its macroscopic connectivity. Methods Structural tractography was performed on twenty healthy adult controls from the Human Connectome Project (HCP) utilizing previously demonstrated methodology. All precuneus connections were mapped in both cerebral hemispheres and inter-hemispheric differences in resultant tract volumes were compared with an unpaired, corrected Mann-Whitney U test and a laterality index (LI) was completed. Ten postmortem dissections were then performed to serve as ground truth by using a modified Klingler technique with careful preservation of relevant white matter bundles. Results The precuneus is a heterogenous cortical region with five major types of connections that were present bilaterally. (1) Short association fibers connect the gyri of the precuneus and connect the precuneus to the superior parietal lobule and the occipital cortex. (2) Four distinct parts of the cingulum bundle connect the precuneus to the frontal lobe and the temporal lobe. (3) The middle longitudinal fasciculus from the precuneus connects to the superior temporal gyrus and the dorsolateral temporal pole. (4) Parietopontine fibers travel as part of the corticopontine fibers to connect the precuneus to pontine regions. (5) An extensive commissural bundle connects the precuneus bilaterally. Conclusion We present a summary of the anatomic connections of the precuneus as part of an effort to understand the function of the precuneus and highlight key white-matter pathways to inform surgical decision-making. Our findings support recent models suggesting unique fiber connections integrating at the precuneus which may suggest finer subsystems of the DMN or unique networks, but further study is necessary to refine our model in greater quantitative detail.
Collapse
Affiliation(s)
- Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | | | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
49
|
Piersson AD, Mohamad M, Suppiah S, Rajab NF. Topographical patterns of whole-brain structural alterations in association with genetic risk, cerebrospinal fluid, positron emission tomography biomarkers of Alzheimer’s disease, and neuropsychological measures. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Sheng J, Wang B, Zhang Q, Zhou R, Wang L, Xin Y. Identifying and characterizing different stages toward Alzheimer's disease using ordered core features and machine learning. Heliyon 2021; 7:e07287. [PMID: 34189320 PMCID: PMC8220177 DOI: 10.1016/j.heliyon.2021.e07287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Based on the joint HCPMMP parcellation method we developed before, which divides the cortical brain into 360 regions, the concept of ordered core features (OCF) is first proposed to reveal the functional brain connectivity relationship among different cohorts of Alzheimer's disease (AD), late mild cognitive impairment (LMCI), early mild cognitive impairment (EMCI) and healthy controls (HC). A set of core network features that change significantly under the specifically progressive relationship were extracted and used as supervised machine learning classifiers. The network nodes in this set mainly locate in the frontal lobe and insular, forming a narrow band, which are responsible for cognitive impairment as suggested by previous finding. By using these features, the accuracy ranged from 86.0% to 95.5% in binary classification between any pair of cohorts, higher than 70.1%-91.0% when using all network features. In multi-group classification, the average accuracy was 75% or 78% for HC, EMCI, LMCI or EMCI, LMCI, AD against baseline of 33%, and 53.3% for HC, EMCI, LMCI and AD against baseline of 25%. In addition, the recognition rate was lower when combining EMCI and LMCI patients into one group of mild cognitive impairment (MCI) for classification, suggesting that there exists a big difference between early and late MCI patients. This finding supports the EMCI/LMCI inclusion criteria introduced by ADNI based on neuropsychological assessments.
Collapse
Affiliation(s)
- Jinhua Sheng
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Bocheng Wang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
- Communication University of Zhejiang, Hangzhou, Zhejiang, 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China
| | - Rougang Zhou
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
- College of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Mstar Technologies Inc., Hangzhou, Zhejiang, 310018, China
| | - Luyun Wang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Yu Xin
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|