1
|
Fan Q, Xiao K, A R, Gao LP, Wu YZ, Chen DD, Hu C, Jia XX, Liu CM, Liu X, Chen C, Shi Q, Dong XP. Accumulation of Prion Triggers the Enhanced Glycolysis via Activation of AMKP Pathway in Prion-Infected Rodent and Cell Models. Mol Neurobiol 2024; 61:9810-9834. [PMID: 37726499 DOI: 10.1007/s12035-023-03621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks in the pathophysiology of prion disease and other neurodegenerative diseases. Various metabolic dysfunctions are identified and considered to contribute to the progression of some types of neurodegenerative diseases. In this study, we evaluated the status of glycolysis pathway in prion-infected rodent and cell models. The levels of the key enzymes, hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) were significantly increased, accompanying with markedly downregulated mitochondrial complexes. Double-stained IFAs revealed that the increased HK2 and PFK distributed widely in GFAP-, Iba1-, and NeuN-positive cells. We also identified increased levels of AMP-activated protein kinase (AMPK) and the downstream signaling. Changes of AMPK activity in prion-infected cells by the AMPK-specific inhibitor or activator induced the corresponding alterations not only in the downstream signaling, but also the expressions of three key kinases in glycolysis pathway and the mitochondrial complexes. Transient removal or complete clearance of prion propagation in the prion-infected cells partially but significantly reversed the increases of the key enzymes in glycolysis, the upregulation of AMPK signaling pathway, and the decreases of the mitochondrial complexes. Measurements of the cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) showed lower OCR and higher ECAR in prion-infected cell line, which were sufficiently reversed by clearance of prion propagation. Those data indicate a metabolic reprogramming from oxidative phosphorylation to glycolysis in the brains during the progression of prion disease. Accumulation of PrPSc is critical for the switch to glycolysis, largely via activating AMPK pathway.
Collapse
Affiliation(s)
- Qin Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruhan A
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Dong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chu-Mou Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qi Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiao-Ping Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| |
Collapse
|
2
|
Teranishi M, Ito M, Huang Z, Nishiyama Y, Masuda A, Mino H, Tachibana M, Inada T, Ohno K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int J Mol Sci 2024; 25:11315. [PMID: 39457098 PMCID: PMC11508854 DOI: 10.3390/ijms252011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Compromised mitochondrial electron transport chain (ETC) activities are associated with depression in humans and rodents. However, the effects of the enhancement of mitochondrial ETC activities on depression remain elusive. We recently reported that an extremely low-frequency electromagnetic field (ELF-EMF) of as low as 10 μT induced hormetic activation of mitochondrial ETC complexes in human/mouse cultured cells and mouse livers. Chronic social defeat stress (CSDS) for 10 consecutive days caused behavioral defects mimicking depression in mice, and using an ELF-EMF for two to six weeks ameliorated them. CSDS variably decreased the mitochondrial ETC proteins in the prefrontal cortex (PFC) in 10 days, which were increased by an ELF-EMF in six weeks. CSDS had no effect on the mitochondrial oxygen consumption rate in the PFC in 10 days, but using an ELF-EMF for six weeks enhanced it. CSDS inactivated SOD2 by enhancing its acetylation and increased lipid peroxidation in the PFC. In contrast, the ELF-EMF activated the Sirt3-FoxO3a-SOD2 pathway and suppressed lipid peroxidation. Furthermore, CSDS increased markers for mitophagy, which was suppressed by the ELF-EMF in six weeks. The ELF-EMF exerted beneficial hormetic effects on mitochondrial energy production, mitochondrial antioxidation, and mitochondrial dynamics in a mouse model of depression. We envisage that an ELF-EMF is a promising therapeutic option for depression.
Collapse
Affiliation(s)
- Masaki Teranishi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Zhizhou Huang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Yuki Nishiyama
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan;
| | - Masako Tachibana
- Department of Psychiatry, Nagoya University Hospital, Nagoya 466-8560, Japan;
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (M.T.); (Z.H.); (Y.N.); (A.M.)
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin 470-0196, Japan
| |
Collapse
|
3
|
Li H, Yu H, Liu D, Liao P, Gao C, Zhou J, Mei J, Zong Y, Ding P, Yao M, Wang B, Lu Y, Huang Y, Gao Y, Zhang C, Zheng M, Gao J. Adenosine diphosphate released from stressed cells triggers mitochondrial transfer to achieve tissue homeostasis. PLoS Biol 2024; 22:e3002753. [PMID: 39163396 PMCID: PMC11335167 DOI: 10.1371/journal.pbio.3002753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cell-to-cell mitochondrial transfer has recently been shown to play a role in maintaining physiological functions of cell. We previously illustrated that mitochondrial transfer within osteocyte dendritic network regulates bone tissue homeostasis. However, the mechanism of triggering this process has not been explored. Here, we showed that stressed osteocytes in mice release adenosine diphosphate (ADP), resulting in triggering mitochondrial transfer from healthy osteocytes to restore the oxygen consumption rate (OCR) and to alleviate reactive oxygen species accumulation. Furthermore, we identified that P2Y2 and P2Y6 transduced the ADP signal to regulate osteocyte mitochondrial transfer. We showed that mitochondrial metabolism is impaired in aged osteocytes, and there were more extracellular nucleotides release into the matrix in aged cortical bone due to compromised membrane integrity. Conditioned medium from aged osteocytes triggered mitochondrial transfer between osteocytes to enhance the energy metabolism. Together, using osteocyte as an example, this study showed new insights into how extracellular ADP triggers healthy cells to rescue energy metabolism crisis in stressed cells via mitochondrial transfer in tissue homeostasis.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Bu Q, Hu D, Chen C, Zhu J, Zhou Q, Li Z, Pan X. NAD + supplementation improves mitochondrial functions and normalizes glaucomatous trabecular meshwork features. Exp Cell Res 2024; 440:114137. [PMID: 38897410 DOI: 10.1016/j.yexcr.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.
Collapse
Affiliation(s)
- Yameng Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Qianwen Bu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Jiaxi Zhu
- University of Toronto - St. George Campus, Toronto, Ontario, M5S1A1, Canada
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China.
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China.
| |
Collapse
|
5
|
De Pace R, Ghosh S, Ryan VH, Sohn M, Jarnik M, Rezvan Sangsari P, Morgan NY, Dale RK, Ward ME, Bonifacino JS. Messenger RNA transport on lysosomal vesicles maintains axonal mitochondrial homeostasis and prevents axonal degeneration. Nat Neurosci 2024; 27:1087-1102. [PMID: 38600167 PMCID: PMC11156585 DOI: 10.1038/s41593-024-01619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
In neurons, RNA granules are transported along the axon for local translation away from the soma. Recent studies indicate that some of this transport involves hitchhiking of RNA granules on lysosome-related vesicles. In the present study, we leveraged the ability to prevent transport of these vesicles into the axon by knockout of the lysosome-kinesin adaptor BLOC-one-related complex (BORC) to identify a subset of axonal mRNAs that depend on lysosome-related vesicles for transport. We found that BORC knockout causes depletion of a large group of axonal mRNAs mainly encoding ribosomal and mitochondrial/oxidative phosphorylation proteins. This depletion results in mitochondrial defects and eventually leads to axonal degeneration in human induced pluripotent stem cell (iPSC)-derived and mouse neurons. Pathway analyses of the depleted mRNAs revealed a mechanistic connection of BORC deficiency with common neurodegenerative disorders. These results demonstrate that mRNA transport on lysosome-related vesicles is critical for the maintenance of axonal homeostasis and that its failure causes axonal degeneration.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Veronica H Ryan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Shadab A, Abbasi-Kolli M, Saharkhiz M, Ahadi SH, Shokouhi B, Nahand JS. The interplay between mitochondrial dysfunction and NLRP3 inflammasome in multiple sclerosis: Therapeutic implications and animal model studies. Biomed Pharmacother 2024; 175:116673. [PMID: 38713947 DOI: 10.1016/j.biopha.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1β & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.
Collapse
Affiliation(s)
- Alireza Shadab
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Abbasi-Kolli
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoore Saharkhiz
- Department of immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and molecular research center, Birjand University of medical sciences, Birjand, Iran
| | | | - Behrooz Shokouhi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Khandia R, Pandey MK, Garg R, Khan AA, Baklanov I, Alanazi AM, Nepali P, Gurjar P, Choudhary OP. Molecular insights into codon usage analysis of mitochondrial fission and fusion gene: relevance to neurodegenerative diseases. Ann Med Surg (Lond) 2024; 86:1416-1425. [PMID: 38463054 PMCID: PMC10923317 DOI: 10.1097/ms9.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondrial dysfunction is the leading cause of neurodegenerative disorders like Alzheimer's disease and Parkinson's disease. Mitochondria is a highly dynamic organelle continuously undergoing the process of fission and fusion for even distribution of components and maintaining proper shape, number, and bioenergetic functionality. A set of genes governs the process of fission and fusion. OPA1, Mfn1, and Mfn2 govern fusion, while Drp1, Fis1, MIEF1, and MIEF2 genes control fission. Determination of specific molecular patterns of transcripts of these genes revealed the impact of compositional constraints on selecting optimal codons. AGA and CCA codons were over-represented, and CCC, GTC, TTC, GGG, ACG were under-represented in the fusion gene set. In contrast, CTG was over-represented, and GCG, CCG, and TCG were under-represented in the fission gene set. Hydropathicity analysis revealed non-polar protein products of both fission and fusion gene set transcripts. AGA codon repeats are an integral part of translational regulation machinery and present a distinct pattern of over-representation and under-representation in different transcripts within the gene sets, suggestive of selective translational force precisely controlling the occurrence of the codon. Out of six synonymous codons, five synonymous codons encoding for leucine were used differently in both gene sets. Hence, forces regulating the occurrence of AGA and five synonymous leucine-encoding codons suggest translational selection. A correlation of mutational bias with gene expression and codon bias and GRAVY and AROMA signifies the selection pressure in both gene sets, while the correlation of compositional bias with gene expression, codon bias, protein properties, and minimum free energy signifies the presence of compositional constraints. More than 25% of codons of both gene sets showed a significant difference in codon usage. The overall analysis shed light on molecular features of gene sets involved in fission and fusion.
Collapse
Affiliation(s)
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Igor Baklanov
- Department of Philosophy, North Caucasus Federal University, Stavropol, Russia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prakash Nepali
- Government Medical Officer, Bhimad Primary Health Care Center, Government of Nepal, Tanahun, Nepal
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
8
|
Zheng X, Liu K, Xie Q, Xin H, Chen W, Lin S, Feng D, Zhu T. PHB2 Alleviates Neurotoxicity of Prion Peptide PrP 106-126 via PINK1/Parkin-Dependent Mitophagy. Int J Mol Sci 2023; 24:15919. [PMID: 37958902 PMCID: PMC10647768 DOI: 10.3390/ijms242115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases characterized by mitochondrial dysfunction and neuronal death. Mitophagy is a selective form of macroautophagy that clears injured mitochondria. Prohibitin 2 (PHB2) has been identified as a novel inner membrane mitophagy receptor that mediates mitophagy. However, the role of PHB2 in prion diseases remains unclear. In this study, we isolated primary cortical neurons from rats and used the neurotoxic prion peptide PrP106-126 as a cell model for prion diseases. We examined the role of PHB2 in PrP106-126-induced mitophagy using Western blotting and immunofluorescence microscopy and assessed the function of PHB2 in PrP106-126-induced neuronal death using the cell viability assay and the TUNEL assay. The results showed that PrP106-126 induced mitochondrial morphological abnormalities and mitophagy in primary cortical neurons. PHB2 was found to be indispensable for PrP106-126-induced mitophagy and was involved in the accumulation of PINK1 and recruitment of Parkin to mitochondria in primary neurons. Additionally, PHB2 depletion exacerbated neuronal cell death induced by PrP106-126, whereas the overexpression of PHB2 alleviated PrP106-126 neuronal toxicity. Taken together, this study demonstrated that PHB2 is indispensable for PINK1/Parkin-mediated mitophagy in PrP106-126-treated neurons and protects neurons against the neurotoxicity of the prion peptide.
Collapse
Affiliation(s)
- Xiaohui Zheng
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingqing Xie
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangkuo Xin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengyu Lin
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danqi Feng
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China (K.L.); (Q.X.)
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Chen DD, Shi Q, Liu X, Liang DL, Wu YZ, Fan Q, Xiao K, Chen C, Dong XP. Aberrant SENP1-SUMO-Sirt3 Signaling Causes the Disturbances of Mitochondrial Deacetylation and Oxidative Phosphorylation in Prion-Infected Animal and Cell Models. ACS Chem Neurosci 2023; 14:1610-1621. [PMID: 37092685 DOI: 10.1021/acschemneuro.2c00786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Post-translational modifications of proteins, such as acetylation and SUMOylation, play important roles in regulation of protein functions and pathophysiology of different diseases including neurodegenerative diseases. Our previous studies have identified aberrant acetylation profiles and reduced deacetylases Sirt3 and Sirt1 in the brains of prion-infected mouse models. In this study, we have found that the levels of acetylated forms of AceCS2 and LCAD, the key enzymes regulating lipid metabolism, CS and IHD2, the key enzymes regulating complete oxidative metabolism, GDH, the key enzyme regulating the oxidative decomposition of glutamate into the tricarboxylic acid (TCA) cycle, and NDUFA9, the essential component in the complex I of respiratory chain activity, were significantly upregulated in the prion-infected animal and cell models, along with the decrease of Sirt3 activity and mitochondrial cytochrome c oxidase activity. Meanwhile, the increases of SUMO1 modifications and SUMO1-Sirt3 and decrease of SENP1 were identified in the brains and the cultured cells with prion infections. Removal of prion propagation in the cultured cells partially, but significantly, reversed the aberrant situations. Moreover, similar abnormal phenomena were also observed in the cultured 293 T cells transiently expressing cytosolic form PrP (Cyto-PrP), including decreased SENP1, increased SUMO1, decreased Sirt3 activity, increased acetylated forms of the key enzymes, and decreased cytochrome c oxidase activity. Attenuation of the accumulation of Cyto-PrP by co-expression of the p62 protein sufficiently diminished those abnormalities. The data here strongly indicate that deposits of prions in brains or accumulations of Cyto-PrP in cells trigger dysregulation of the SENP1-SUMO1-Sirt pathway and subsequently induce aberrant mitochondrial deacetylation and the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xin Liu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Dong-Lin Liang
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Qin Fan
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Fujian Agriculture and Forestry University, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100091, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai 201517, China
| |
Collapse
|
10
|
Chaiamarit T, Verhelle A, Chassefeyre R, Shukla N, Novak SW, Andrade LR, Manor U, Encalada SE. Mutant Prion Protein Endoggresomes are Hubs for Local Axonal Organelle-Cytoskeletal Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533383. [PMID: 36993610 PMCID: PMC10055262 DOI: 10.1101/2023.03.19.533383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.
Collapse
|
11
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Bons J, Rose J, Zhang R, Burton JB, Carrico C, Verdin E, Schilling B. In-depth analysis of the Sirtuin 5-regulated mouse brain malonylome and succinylome using library-free data-independent acquisitions. Proteomics 2023; 23:e2100371. [PMID: 36479818 PMCID: PMC10363399 DOI: 10.1002/pmic.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ran Zhang
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | | |
Collapse
|
13
|
Rahman MM, Tumpa MAA, Rahaman MS, Islam F, Sutradhar PR, Ahmed M, Alghamdi BS, Hafeez A, Alexiou A, Perveen A, Ashraf GM. Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1081-1099. [PMID: 36927428 PMCID: PMC10286587 DOI: 10.2174/1570159x21666230316150559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 03/18/2023] Open
Abstract
Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Popy Rani Sutradhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
14
|
Solomon T, Rajendran M, Rostovtseva T, Hool L. How cytoskeletal proteins regulate mitochondrial energetics in cell physiology and diseases. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210324. [PMID: 36189806 PMCID: PMC9527905 DOI: 10.1098/rstb.2021.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Megha Rajendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tatiana Rostovtseva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Zambrano K, Barba D, Castillo K, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. A new hope: Mitochondria, a critical factor in the war against prions. Mitochondrion 2022; 65:113-123. [PMID: 35623560 DOI: 10.1016/j.mito.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Prion diseases encompass a group of incurable neurodegenerative disorders that occur due to the misfolding and aggregation of infectious proteins. The most well-known prion diseases are Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (also known as mad cow disease), and kuru. It is estimated that around 1-2 persons per million worldwide are affected annually by prion disorders. Infectious prion proteins propagate in the brain, clustering in the cells and rapidly inducing tissue degeneration and death. Prion disease alters cell metabolism and energy production damaging mitochondrial function and dynamics leading to a fast accumulation of damage. Dysfunction of mitochondria could be considered as an early precursor and central element in the pathogenesis of prion diseases such as in sporadic CJD. Preserving mitochondria function may help to resist the rapid spread and damage of prion proteins and even clearance. In the war against prions and other degenerative diseases, studying how to preserve the function of mitochondria by using antioxidants and even replacing them with artificial mitochondrial transfer/transplant (AMT/T) may bring a new hope and lead to an increase in patients' survival. In this perspective review, we provide key insights about the relationship between the progression of prion disease and mitochondria, in which understanding how protecting mitochondria function and viability by using antioxidants or AMT/T may help to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| |
Collapse
|
16
|
Jinawong K, Apaijai N, Piamsiri C, Maneechote C, Arunsak B, Chunchai T, Pintana H, Nawara W, Chattipakorn N, Chattipakorn SC. Mild cognitive impairment occurs in rats during the early remodeling phase of myocardial infarction. Neuroscience 2022; 493:31-40. [PMID: 35487300 DOI: 10.1016/j.neuroscience.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Cognitive impairment is a common health problem among people with heart failure (HF). Increases in oxidative stress, brain inflammation, and microglial hyperactivity have been reported in preclinical models of myocardial infarction (MI)-induced HF. We tested the hypothesis that oxidative stress, brain inflammation, mitochondrial dysfunction, and cell death participate in cognitive impairment in the early remodeling phase of MI. Rats underwent either a sham or permanent left anterior descending coronary ligation to induce MI. 1-week post-operation, MI rats with % left ventricular ejection fraction (%LVEF) ≥50 were assigned as a HF with preserved ejection fraction (HFpEF) group and MI rats with %LVEF<50 were assigned as a HF with reduced ejection fraction (HFrEF) group. Cognitive function and biochemical markers were assessed at week 5. The mean value of %LVEF in HFpEF and HFrEF were 63.62±8.33 and 42.83±3.93 respectively, which were lower than in the sham group, suggesting that these rats developed MI with cardiac dysfunction. Hippocampal dependent cognitive impairment was observed in MI rats. Serum, brain, and mitochondrial oxidative stress were all increased in MI rats, along with apoptosis, resulting in dendritic spine loss. However, brain inflammation and AD proteins did not change. In conclusion, during the early remodeling phase of MI, a high level of oxidative stress appears to be a major contributor of cellular damage which is associated with mild cognitive impairment. However, the severity of MI, as evidenced by the %LVEF, was not associated with the degree of cognitive impairment.
Collapse
Affiliation(s)
- Kewarin Jinawong
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanon Piamsiri
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Mishra E, Thakur MK. Alterations in hippocampal mitochondrial dynamics are associated with neurodegeneration and recognition memory decline in old male mice. Biogerontology 2022; 23:251-271. [PMID: 35266060 DOI: 10.1007/s10522-022-09960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022]
Abstract
Mitochondrial dynamics is a key process that modulates the ultrastructure, quality and function of mitochondria. It is disrupted in numerous major neurodegenerative disorders including Parkinson's, Alzheimer's and Huntington's disease. Mitochondrial dysfunction has been correlated with the loss of memory. Previous studies suggest the involvement of Vdac1 and Drp1 in outer mitochondrial membrane permeabilization and promotion of mitochondrial fragmentation through Drp1 phosphorylation at S616. However, alterations in mitochondrial dynamics with respect to aging, memory loss and neurodegeneration remain unexplored. Therefore, the present study focuses on the involvement of mitochondrial dynamics in neurodegeneration and recognition memory decline during aging. The recognition memory decline was validated by the novel object recognition test and measurement of hippocampal Arc protein level during aging. The ultrastructure analysis revealed a decline in mitochondrial length and area, while an increase in the number of fragmented, round and disrupted mitochondria in the hippocampus during aging. Disruption was also evident in mitochondrial cristae and membrane with advancing age. The change in mitochondrial morphology was corroborated by an increase in the expression of phospho-Drp1 (S616) and Cyt-c proteins but decline in Mfn2, LC3B, Vdac1, Bcl-XL and Bcl-2 proteins in the hippocampus during aging. Taken together, our findings reveal that an increase in the expression of phospho-Drp1 (S616) and decrease in Mfn2 and LC3B proteins in the hippocampus bring about a reduction in mitochondrial length and area, and rise in mitochondrial fragmentation leading to reduced neuronal cell density, increased neurodegeneration and recognition memory decline in old male mice. Diagram depicts the increase in hippocampal mitochondrial fragmentation during aging of mice. Increased mitochondrial fragmentation causes distorted mitochondrial function such as decrease in ATP/ADP transportation due to decrease in Vdac1 protein level and increase in oxidative damage. These alterations result in hippocampal neurodegeneration and consequently impairment in recognition memory during aging.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
18
|
Muronetz VI, Kudryavtseva SS, Leisi EV, Kurochkina LP, Barinova KV, Schmalhausen EV. Regulation by Different Types of Chaperones of Amyloid Transformation of Proteins Involved in the Development of Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052747. [PMID: 35269889 PMCID: PMC8910861 DOI: 10.3390/ijms23052747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights various aspects of the influence of chaperones on amyloid proteins associated with the development of neurodegenerative diseases and includes studies conducted in our laboratory. Different sections of the article are devoted to the role of chaperones in the pathological transformation of alpha-synuclein and the prion protein. Information about the interaction of the chaperonins GroE and TRiC as well as polymer-based artificial chaperones with amyloidogenic proteins is summarized. Particular attention is paid to the effect of blocking chaperones by misfolded and amyloidogenic proteins. It was noted that the accumulation of functionally inactive chaperones blocked by misfolded proteins might cause the formation of amyloid aggregates and prevent the disassembly of fibrillar structures. Moreover, the blocking of chaperones by various forms of amyloid proteins might lead to pathological changes in the vital activity of cells due to the impaired folding of newly synthesized proteins and their subsequent processing. The final section of the article discusses both the little data on the role of gut microbiota in the propagation of synucleinopathies and prion diseases and the possible involvement of the bacterial chaperone GroE in these processes.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence:
| | - Sofia S. Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Evgeniia V. Leisi
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Lidia P. Kurochkina
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| | - Kseniya V. Barinova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| | - Elena V. Schmalhausen
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| |
Collapse
|
19
|
PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease. Cell Death Dis 2022; 13:162. [PMID: 35184140 PMCID: PMC8858315 DOI: 10.1038/s41419-022-04613-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
A persistent accumulation of damaged mitochondria is part of prion disease pathogenesis. Normally, damaged mitochondria are cleared via a major pathway that involves the E3 ubiquitin ligase parkin and PTEN-induced kinase 1 (PINK1) that together initiate mitophagy, recognize and eliminate damaged mitochondria. However, the precise mechanisms underlying mitophagy in prion disease remain largely unknown. Using prion disease cell models, we observed PINK1-parkin-mediated mitophagy deficiency in which parkin depletion aggravated blocked mitochondrial colocalization with LC3-II-labeled autophagosomes, and significantly increased mitochondrial protein levels, which led to inhibited mitophagy. Parkin overexpression directly induced LC3-II colocalization with mitochondria and alleviated defective mitophagy. Moreover, parkin-mediated mitophagy was dependent on PINK1, since PINK1 depletion blocked mitochondrial Parkin recruitment and reduced optineurin and LC3-II proteins levels, thus inhibiting mitophagy. PINK1 overexpression induced parkin recruitment to the mitochondria, which then stimulated mitophagy. In addition, overexpressed parkin and PINK1 also protected neurons from apoptosis. Furthermore, we found that supplementation with two mitophagy-inducing agents, nicotinamide mononucleotide (NMN) and urolithin A (UA), significantly stimulated PINK1-parkin-mediated mitophagy. However, compared with NMN, UA could not alleviate prion-induced mitochondrial fragmentation and dysfunction, and neuronal apoptosis. These findings show that PINK1-parkin-mediated mitophagy defects lead to an accumulation of damaged mitochondria, thus suggesting that interventions that stimulate mitophagy may be potential therapeutic targets for prion diseases.
Collapse
|
20
|
Chen DD, Gao LP, Wu YZ, Chen J, Hu C, Xiao K, Chen C, Shi Q, Dong XP. Accumulation of Prion and Abnormal Prion Protein Induces Hyperphosphorylation of α-Synuclein in the Brain Tissues from Prion Diseases and in the Cultured Cells. ACS Chem Neurosci 2021; 12:3838-3854. [PMID: 34595918 DOI: 10.1021/acschemneuro.1c00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion disease (PrD) and Parkinson's disease (PD) are neurodegenerative diseases characterized by aggregation of misfolded proteins in brain tissues, including protease-resistant prion protein (PrPSc) in PrD and α-synuclein in PD. In recent years, overlap of these two proteins has attracted increased attention, and cross-seeding of prion proteins by aggregated α-synuclein has been proposed. However, the changes in α-synuclein after prion infection are still unclear. In this study, we showed that α-synuclein expression was significantly decreased in the brains of prion-infected rodent models, in the SMB-S15 cell line, which exhibits persistent prion replication, and in the brains of humans with PrDs. Meanwhile, α-synuclein phosphorylated at serine 129(p(S129)-α-synuclein) was significantly increased in the brains of scrapie-infected mice and prion-infected SMB-S15 cells. The increased p(S129)-α-synuclein colocalized with GFAP- and NeuN-positive cells in the brains of scrapie-infected mice. p(S129)-α-synuclein was also observed in the cytoplasm of SMB-S15 and HEK-293 cells transiently expressing an abnormal form of prion protein (Cyto-PrP). Molecular interactions between PrP and α-synuclein were detected in recombinant proteins, normal and prion-infected brain tissues, and cultured cells. The increased p(S129)-α-synuclein colocalized with PrP signals from prion-infected SMB-S15 and HEK-293 cells expressing Cyto-PrP. Moreover, increased morphological colocalization of p(S129)-α-synuclein with mitochondrial markers was also detected in the two cell types. Our results indicate that prion replication and accumulation in cells and brains induce hyperphosphorylation of α-synuclein, particularly at S129, which may aggravate mitochondrial damage and facilitate α-synuclein aggregation in the central nervous system tissues from PrDs.
Collapse
Affiliation(s)
- Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jia Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 420115, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 420115, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
21
|
Arnould H, Baudouin V, Baudry A, Ribeiro LW, Ardila-Osorio H, Pietri M, Caradeuc C, Soultawi C, Williams D, Alvarez M, Crozet C, Djouadi F, Laforge M, Bertho G, Kellermann O, Launay JM, Schmitt-Ulms G, Schneider B. Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases. PLoS Pathog 2021; 17:e1009991. [PMID: 34610054 PMCID: PMC8519435 DOI: 10.1371/journal.ppat.1009991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.
Collapse
Affiliation(s)
- Hélène Arnould
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Vincent Baudouin
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Anne Baudry
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Luiz W. Ribeiro
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | | | - Mathéa Pietri
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Cédric Caradeuc
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Cynthia Soultawi
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Declan Williams
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Marjorie Alvarez
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Carole Crozet
- IRMB, Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Fatima Djouadi
- INSERM, UMR-S 1138, Paris, France
- Université de Paris, UMR-S 1138, Paris, France
| | - Mireille Laforge
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Gildas Bertho
- CNRS, UMR 8601, Paris, France
- Université de Paris, UMR 8601, Paris, France
| | - Odile Kellermann
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- Assistance Publique des Hôpitaux de Paris, INSERM UMR942, Hôpital Lariboisière, Paris, France
- Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland
| | - Gerold Schmitt-Ulms
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Canada
| | - Benoit Schneider
- INSERM, UMR-S 1124, Paris, France
- Université de Paris, UMR-S 1124, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
23
|
GRP78 Overexpression Triggers PINK1-IP 3R-Mediated Neuroprotective Mitophagy. Biomedicines 2021; 9:biomedicines9081039. [PMID: 34440243 PMCID: PMC8391647 DOI: 10.3390/biomedicines9081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
An experimental model of spinal root avulsion (RA) is useful to study causal molecular programs that drive retrograde neurodegeneration after neuron-target disconnection. This neurodegenerative process shares common characteristics with neuronal disease-related processes such as the presence of endoplasmic reticulum (ER) stress and autophagy flux blockage. We previously found that the overexpression of GRP78 promoted motoneuronal neuroprotection after RA. After that, we aimed to unravel the underlying mechanism by carrying out a comparative unbiased proteomic analysis and pharmacological and genetic interventions. Unexpectedly, mitochondrial factors turned out to be most altered when GRP78 was overexpressed, and the abundance of engulfed mitochondria, a hallmark of mitophagy, was also observed by electronic microscopy in RA-injured motoneurons after GRP78 overexpression. In addition, GRP78 overexpression increased LC3-mitochondria tagging, promoted PINK1 translocation, mitophagy induction, and recovered mitochondrial function in ER-stressed cells. Lastly, we found that GRP78-promoted pro-survival mitophagy was mediated by PINK1 and IP3R in our in vitro model of motoneuronal death. This data indicates a novel relationship between the GRP78 chaperone and mitophagy, opening novel therapeutical options for drug design to achieve neuroprotection.
Collapse
|
24
|
Kyriakoudi S, Drousiotou A, Petrou PP. When the Balance Tips: Dysregulation of Mitochondrial Dynamics as a Culprit in Disease. Int J Mol Sci 2021; 22:ijms22094617. [PMID: 33924849 PMCID: PMC8124286 DOI: 10.3390/ijms22094617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.
Collapse
Affiliation(s)
- Styliana Kyriakoudi
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
| | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
- Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Petros P. Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, Nicosia 1683, Cyprus; (S.K.); (A.D.)
- Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
- Correspondence:
| |
Collapse
|
25
|
Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 2021; 6:65. [PMID: 33589598 PMCID: PMC7884415 DOI: 10.1038/s41392-020-00440-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
As the crucial powerhouse for cell metabolism and tissue survival, the mitochondrion frequently undergoes morphological or positional changes when responding to various stresses and energy demands. In addition to intracellular changes, mitochondria can also be transferred intercellularly. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, the intercellular mitochondrial transfer also occurs under physiological conditions. In this review, the phenomenon of mitochondrial transfer is described according to its function under both physiological and pathological conditions, including tissue homeostasis, damaged tissue repair, tumor progression, and immunoregulation. Then, the mechanisms that contribute to this process are summarized, such as the trigger factors and transfer routes. Furthermore, various perspectives are explored to better understand the mysteries of cell-cell mitochondrial trafficking. In addition, potential therapeutic strategies for mitochondria-targeted application to rescue tissue damage and degeneration, as well as the inhibition of tumor progression, are discussed.
Collapse
|
26
|
Panchal K, Tiwari AK. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 2021; 56:118-135. [PMID: 33127590 DOI: 10.1016/j.mito.2020.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Miro (mitochondrial Rho GTPases) a mitochondrial outer membrane protein, plays a vital role in the microtubule-based mitochondrial axonal transport, mitochondrial dynamics (fusion and fission) and Mito-Ca2+ homeostasis. It forms a major protein complex with Milton (an adaptor protein), kinesin and dynein (motor proteins), and facilitates bidirectional mitochondrial axonal transport such as anterograde and retrograde transport. By forming this protein complex, Miro facilitates the mitochondrial axonal transport and fulfills the neuronal energy demand, maintain the mitochondrial homeostasis and neuronal survival. It has been demonstrated that altered mitochondrial biogenesis, improper mitochondrial axonal transport, and mitochondrial dynamics are the early pathologies associated with most of the neurodegenerative diseases (NDs). Being the sole mitochondrial outer membrane protein associated with mitochondrial axonal transport-related processes, Miro proteins can be one of the key players in various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Thus, in the current review, we have discussed the evolutionarily conserved Miro proteins and its role in the pathogenesis of the various NDs. From this, we indicated that Miro proteins may act as a potential target for a novel therapeutic intervention for the treatment of various NDs.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
27
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
28
|
Tsuboi T, Leff J, Zid BM. Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochem Soc Trans 2020; 48:2565-2578. [PMID: 33245320 PMCID: PMC8108647 DOI: 10.1042/bst20200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
In fluctuating environmental conditions, organisms must modulate their bioenergetic production in order to maintain cellular homeostasis for optimal fitness. Mitochondria are hubs for metabolite and energy generation. Mitochondria are also highly dynamic in their function: modulating their composition, size, density, and the network-like architecture in relation to the metabolic demands of the cell. Here, we review the recent research on the post-transcriptional regulation of mitochondrial composition focusing on mRNA localization, mRNA translation, protein import, and the role that dynamic mitochondrial structure may have on these gene expression processes. As mitochondrial structure and function has been shown to be very important for age-related processes, including cancer, metabolic disorders, and neurodegeneration, understanding how mitochondrial composition can be affected in fluctuating conditions can lead to new therapeutic directions to pursue.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Jordan Leff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| |
Collapse
|
29
|
de Melo KP, Camargo M. Mechanisms for sperm mitochondrial removal in embryos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118916. [PMID: 33276010 DOI: 10.1016/j.bbamcr.2020.118916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Different animal species have different characteristics regarding the transmission of mitochondrial DNA. While some species have biparental mitochondrial inheritance, others have developed pathways to remove paternal mtDNA. These pathways guarantee the uniparental mitochondrial inheritance, so far well known in mammals, avoiding heteroplasmy, which may have the potential to cause certain mitochondrial diseases in the offspring. SCOPE OF REVIEW This review aims to address the main mechanisms that involve mitochondrial degradation in different animal species, as well as to describe what is present in the literature on the mechanisms involved in mitochondrial inheritance. MAJOR CONCLUSIONS Two theories are proposed to explain the uniparental inheritance of mtDNA: (i) active degradation, where mechanisms for paternal mitochondrial DNA elimination involve mitochondrial degradation pathway by autophagy and, in some species, may also involve the endocytic degradation pathway; and (ii) passive dilution, where the paternal mitochondria are diluted in the cells of the embryo according to cell division, until becoming undetectable. GENERAL SIGNIFICANCE This work brings a wide review of the already published evidence on mitochondrial inheritance in the animal kingdom and the possible mechanisms to mtDNA transmission already described in literature.
Collapse
Affiliation(s)
- Karla Pacheco de Melo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Pakpian N, Phopin K, Kitidee K, Govitrapong P, Wongchitrat P. Alterations in Mitochondrial Dynamic-related Genes in the Peripheral Blood of Alzheimer's Disease Patients. Curr Alzheimer Res 2020; 17:616-625. [PMID: 33023448 DOI: 10.2174/1567205017666201006162538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is a pathological feature that manifests early in the brains of patients with Alzheimer's Disease (AD). The disruption of mitochondrial dynamics contributes to mitochondrial morphological and functional impairments. Our previous study demonstrated that the expression of genes involved in amyloid beta generation was altered in the peripheral blood of AD patients. OBJECTIVE The aim of this study was to further investigate the relative levels of mitochondrial genes involved in mitochondrial dynamics, including mitochondrial fission and fusion, and mitophagy in peripheral blood samples from patients with AD compared to healthy controls. METHODS The mRNA levels were analyzed by real-time polymerase chain reaction. Gene expression profiles were assessed in relation to cognitive performance. RESULTS Significant changes were observed in the mRNA expression levels of fission-related genes; Fission1 (FIS1) levels in AD subjects were significantly higher than those in healthy controls, whereas Dynamin- related protein 1 (DRP1) expression was significantly lower in AD subjects. The levels of the mitophagy-related genes, PTEN-induced kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3), were significantly increased in AD subjects and elderly controls compared to healthy young controls. The mRNA levels of Parkin (PARK2) were significantly decreased in AD. Correlations were found between the expression levels of FIS1, DRP1 and PARK2 and cognitive performance scores. CONCLUSION Alterations in mitochondrial dynamics in the blood may reflect impairments in mitochondrial functions in the central and peripheral tissues of AD patients. Mitochondrial fission, together with mitophagy gene profiles, might be potential considerations for the future development of blood-based biomarkers for AD.
Collapse
Affiliation(s)
- Nattaporn Pakpian
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
31
|
López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I. An Update on Autophagy in Prion Diseases. Front Bioeng Biotechnol 2020; 8:975. [PMID: 32984276 PMCID: PMC7481332 DOI: 10.3389/fbioe.2020.00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Franc Llorens
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Zaragoza, Spain
| |
Collapse
|
32
|
Quaglieri A, Mari E, Boccia M, Piccardi L, Guariglia C, Giannini AM. Brain Network Underlying Executive Functions in Gambling and Alcohol Use Disorders: An Activation Likelihood Estimation Meta-Analysis of fMRI Studies. Brain Sci 2020; 10:E353. [PMID: 32517334 PMCID: PMC7348890 DOI: 10.3390/brainsci10060353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroimaging and neuropsychological studies have suggested that common features characterize both Gambling Disorder (GD) and Alcohol Use Disorder (AUD), but these conditions have rarely been compared. METHODS We provide evidence for the similarities and differences between GD and AUD in neural correlates of executive functions by performing an activation likelihood estimation meta-analysis of 34 functional magnetic resonance imaging studies involving executive function processes in individuals diagnosed with GD and AUD and healthy controls (HC). RESULTS GD showed greater bilateral clusters of activation compared with HC, mainly located in the head and body of the caudate, right middle frontal gyrus, right putamen, and hypothalamus. Differently, AUD showed enhanced activation compared with HC in the right lentiform nucleus, right middle frontal gyrus, and the precuneus; it also showed clusters of deactivation in the bilateral middle frontal gyrus, left middle cingulate cortex, and inferior portion of the left putamen. CONCLUSIONS Going beyond the limitations of a single study approach, these findings provide evidence, for the first time, that both disorders are associated with specific neural alterations in the neural network for executive functions.
Collapse
Affiliation(s)
- Alessandro Quaglieri
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| | - Emanuela Mari
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Laura Piccardi
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| |
Collapse
|
33
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Sun J, He F, Gao Y, Zhou Y, Zhang H, Huang M, Bi H. Lipidomics-based study on the neuroprotective effect of geissoschizine methyl ether against oxidative stress-induced cytotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112636. [PMID: 32004630 DOI: 10.1016/j.jep.2020.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/24/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lipid homoeostasis is important for neurodevelopment, cell signaling and neurotransmission. Alteration of lipid metabolism has been demonstrated in many neurological disorders and neurodegenerative diseases. Geissoschizine methyl ether (GM) is an active alkaloid ingredient in the traditional Chinese medicine Uncaria hook. It has been shown that GM has strong potency in neuroprotective activity and GM reduces the production of reactive oxygen species by regulating glucose metabolism, which protects neurons against oxidative stress-induced cell death. However, it is unknown whether GM could regulate neuronal lipid metabolism during oxidative challenge. AIM OF THE STUDY The current study aimed to explore whether GM regulates lipid metabolism in oxidative damaged neurons and to determine the underlying mechanism involved in this neuro-protection. MATERIALS AND METHODS Using a glutamate-induced oxidative toxicity model in mouse hippocampal neuronal cell line (HT-22 cells), we investigated the effect of GM on glutamate-induced lipid peroxidation, lipotoxicity and mitochondrial dysfunction. In order to clarify the mechanism underlying the neuroprotection by GM, lipid metabolomics was performed to investigate whether GM prevent oxidative stress-induced lipid metabolism disruption. Furthermore, the expression of lipid metabolism-related genes was measured. RESULTS The results show the protective effect of GM against oxidative stress through blocking glutamate-induced lipid peroxidation and lipotoxicity. Overall, lipidomics analysis revealed that glutamate treatment resulted in different extents of changes in a wide range of lipid classes such as fatty acids (FA), triacylglycerol (TG), sphingomyelin (SM), cardiolipin (CL), lysophosphatidylcholines (LPC). However, GM treatment can significantly reverse glutamate-induced lipids disorder to the homeostasis level. GM prevented the disruption of lipid metabolism by regulating the expression of lipid homeostasis related genes, which contributes to preserve mitochondrial function under oxidative damage. CONCLUSION These findings clearly demonstrated a novel protective mechanism of GM against glutamate-induced oxidative toxicity in neurons via regulating lipid metabolism. GM may provide an effective approach for the prevention and treatment of oxidative damaged neurons.
Collapse
Affiliation(s)
- Jiahong Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Fajing He
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
35
|
Gao LP, Xiao K, Wu YZ, Chen DD, Yang XH, Shi Q, Dong XP. Enhanced Mitophagy Activity in Prion-Infected Cultured Cells and Prion-Infected Experimental Mice via a Pink1/Parkin-Dependent Mitophagy Pathway. ACS Chem Neurosci 2020; 11:814-829. [PMID: 32049477 DOI: 10.1021/acschemneuro.0c00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is an important process for removing damaged mitochondria in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of mitophagy in prion diseases still need to be deeply explored. In this study, we identified more autophagosomes and large swelling mitochondria structures in the prion-infected cultured cell line SMB-S15 by transmission electron microscopy, accompanying the molecular evidence of activated autophagic flux. Western blots illustrated that the levels of Pink1 and Parkin, particularly in the mitochondrial fraction, were increased in SMB-S15 cells, whereas the levels of mitochondrial membrane proteins TIMM44, TOMM20, and TIMM23 were decreased. The amount of whole polyubiquitinated proteins decreased, but that of phosphor-polyubiquitinated proteins increased in SMB-S15 cells. The level of MFN2 in SMB-S15 cells were down-regulated, but its polyubiquitinated form was up-regulated. Knockdown of the expressions of Pink1 and Parkin by the individual SiRNAs in SMB-S15 cells reduced autophagic activity but did not seem to influence the expressions of TOMM20 and TIMM23. Moreover, we also demonstrated that the brain levels of Pink1 and Parkin in the mice infected with scrapie strains 139A and ME7 were remarkably increased at the terminal stage of the disease by Western blot and immunohistochemical (IHC) assays. Immunofluorescent assays revealed that Pink1 signals widely colocalized with GAFP-, Iba1-, and NeuN-positive cells in the brains of scrapie-infected mice. IHC assays with serial sections of the brain tissues infected with agents 139A and ME7 showed more Pink1- and Parkin-positive cells located at the areas with more PrPSc deposit. These results suggest an activated mitophagy in prion-infected cells and prion-infected experimental mice, probably via an enhanced Pink-Parkin pathway.
Collapse
Affiliation(s)
- Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Xue-Hua Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- China Academy of Chinese Medical Sciences,
Dongzhimeinei, South Road 16, Beijing 100700, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences,
Dongzhimeinei, South Road 16, Beijing 100700, China
| |
Collapse
|
36
|
Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics 2020; 17:119-136. [PMID: 31986926 DOI: 10.1080/14789450.2020.1723419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Mitochondria (mt) are protein-protein interaction (PPI) hubs in the cell where mt-localized and associated proteins interact in a fashion critical for cell fitness. Altered mtPPIs are linked to neurodegenerative disorders (NDs) and drivers of pathological associations to mediate ND progression. Mapping altered mtPPIs will reveal how mt dysfunction is linked to NDs.Areas covered: This review discusses how database sources reflect on the number of mt protein or interaction predictions, and serves as an update on mtPPIs in mt dynamics and homeostasis. Emphasis is given to mRNA expression profiles for mt proteins in human tissues, cellular models relevant to NDs, and altered mtPPIs in NDs such as Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD).Expert opinion: We highlight the scarcity of biomarkers to improve diagnostic accuracy and tracking of ND progression, obstacles in recapitulating NDs using human cellular models to underpin the pathophysiological mechanisms of disease, and the shortage of mt protein interactome reference database(s) of neuronal cells. These bottlenecks are addressed by improvements in induced pluripotent stem cell creation and culturing, patient-derived 3D brain organoids to recapitulate structural arrangements of the brain, and cell sorting to elucidate mt proteome disparities between cell types.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
37
|
Shimizu T, Kozuka Y, Kusano M, Nagane M, Yamashita T, Hachiya N. PrP (122-139) is a covert mitochondrial targeting signal of prion protein and it specifically triggers the perinuclear clustering of mitochondria in neuronal culture cells. Biochem Biophys Res Commun 2020; 524:301-307. [PMID: 31987501 DOI: 10.1016/j.bbrc.2020.01.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
In many neurodegenerative diseases, mitochondria are actively involved in the onset and/or progression of diseases because the energy depletion of the neuronal cells directly leads to the dysfunction and degeneration of cells. In the case of prion diseases, mitochondrial involvement has been reported recently and evidence that prion protein (PrP) is localized in mitochondria is increasing. Despite these findings, the precise molecular mechanism by which PrP targets mitochondria remains unclear. PrP is a secretory protein and does not have a pre-sequence that targets the mitochondria, therefore, we thought that there was a covert signal in the amino acid sequence of PrP. To find the sequence, we constructed various GFP-fused PrP-truncations and colocalization with mitochondria was verified by live-cell imaging. Consequently, we found that 18 amino acids, PrP (122-139), are indispensable for the mitochondrial targeting of PrP. In addition, fluorescent microscopy observation revealed that PrP-localized mitochondria were accumulated at the perinuclear region in neuronal cells such as mouse neuroblastoma Neuro2a (N2a) and prion persistent infection N2a strain (ScN2a), anterograde movement of the mitochondria toward the cell membrane was completely inhibited because of the stacking of PrP on the outer membrane. The cristae formation of perinuclear accumulated mitochondria was disappeared indicating the reduced mitochondrial activity. Surprisingly, PrP-dependent mitochondrial perinuclear accumulation was specifically occurred on neuronal cells, whereas in epithelial HeLa cells and fibroblast COS-7 cells, no perinuclear accumulation observed even after the mitochondrial targeting of PrP.
Collapse
Affiliation(s)
- Takuto Shimizu
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamiharas-shi, Kanagawa, 252-5201, Japan; Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshimichi Kozuka
- Shinku Device, Co. Ltd., 1285-5 Iijima-Cho, Mito, Ibaraki, 311-4155, Japan
| | - Mayumi Kusano
- Joyful Life, Inc., 4-5 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamiharas-shi, Kanagawa, 252-5201, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamiharas-shi, Kanagawa, 252-5201, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
38
|
Deus CM, Pereira SP, Cunha-Oliveira T, Pereira FB, Raimundo N, Oliveira PJ. Mitochondrial remodeling in human skin fibroblasts from sporadic male Parkinson's disease patients uncovers metabolic and mitochondrial bioenergetic defects. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165615. [PMID: 31759069 DOI: 10.1016/j.bbadis.2019.165615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra. The exact mechanism by which dopaminergic neurodegeneration occurs is still unknown; however, mitochondrial dysfunction has long been implicated in PD pathogenesis. To investigate the sub-cellular events that lead to disease progression and to develop personalized interventions, non-neuronal cells which are collected in a minimally invasive manner can be key to test interventions aimed at improving mitochondrial function. We used human skin fibroblasts from sporadic PD (sPD) patients as a cell proxy to detect metabolic and mitochondrial alterations which would also exist in a non-neuronal cell type. In this model, we used a glucose-free/galactose- glutamine- and pyruvate-containing cell culture medium, which forces cells to be more dependent on oxidative phosphorylation (OXPHOS) for energy production, in order to reveal hidden metabolic and mitochondrial alterations present in fibroblasts from sPD patients. We demonstrated that fibroblasts from sPD patients show hyperpolarized and elongated mitochondrial networks and higher mitochondrial ROS concentration, as well as decreased ATP levels and glycolysis-related ECAR. Our results also showed that abnormalities of fibroblasts from sPD patients became more evident when stimulating OXPHOS. Under these culture conditions, fibroblasts from sPD cells presented decreased basal respiration, ATP-linked OCR and maximal respiration, and increased mitochondria-targeting phosphorylation of DRP1 when compared to control cells. Our work validates the relevance of using fibroblasts from sPD patients to study cellular and molecular changes that are characteristic of dopaminergic neurodegeneration of PD, and shows that forcing mitochondrial OXPHOS uncovers metabolic defects that were otherwise hidden.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; LaMetEx - Laboratory of Metabolism and Exercise, Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Francisco B Pereira
- Center for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal; Coimbra Polytechnic - ISEC, 3030-193 Coimbra, Portugal.
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|