1
|
Ayaz G, Sordu P, Küçüksezer UC, Hanağası H, Alaylıoğlu M, Gürvit H, Gezen-Ak D, Bilgiç B, Dursun E, Ulutin T. Association of glycoprotein 1b and miR-26a-5p levels with platelet function in Alzheimer's disease. J Alzheimers Dis 2025:13872877251326204. [PMID: 40112326 DOI: 10.1177/13872877251326204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundAlterations in biochemical and molecular pathways in Alzheimer's disease (AD) may be evident in the brain, blood cells, and vessels. Platelets regulate blood hemostasis and play key roles in neurodegenerative diseases like AD. miR-26a-5p and GP1b may affect platelet functions (PF), with miR-26a-5p as a diagnostic/therapeutic target and GP1b linking vascular and neurological disorders in AD progression.ObjectiveThis study explores the roles of GP1b and hsa-miR-26a-5p in regulating PF in AD.Methods85 participants, including 43 AD, and 45 controls, were included. PF induced by ADP were assessed by optical density and white matter changes by MRI Axial FLAIR. Serum levels of von Willebrand Factor and GP1b were measured by ELISA. Platelet receptor expressions of CD62P and CD42b (GPIb) were measured by flow cytometry, and levels of hsa-miR-26a-5p and hsa-miR-24-3p by qRT-PCR.ResultsADP-induced PF was significantly reduced in AD (p = 0.016). Flow cytometry showed significantly low CD42b and high CD62P expression in AD, respectively (p < 0.0001, p = 0.014). Serum GP1b levels were significantly higher in AD (p = 0.018). Additionally, hsa-miR-26a-5p expression was significantly low in AD (p = 0.001), and a positive correlation was found between the expression levels of hsa-miR-24-3p and hsa-miR-26a-5p in both controls; and AD (r = 0.4149, p = 0.0051, 95% CI = 0.1256-0.6392; r = 0.6820, p = 0.0023, 95% CI 0.4728-0.8184).ConclusionsThis study highlights increased serum GP1b levels with decreased both platelet surface GP1b levels and hsa-miR-26a-5p expressions in AD. GP1b and hsa-miR-26a-5p might have essential roles on PF in AD.
Collapse
Affiliation(s)
- Gülsel Ayaz
- Department of Medical Biology, Namık Kemal Faculty of Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Pelin Sordu
- Brain and Neurodegenerative Diseases Research Laboratory, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Umut Can Küçüksezer
- İstanbul University Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Behavioral Neurology and Movement Disorders, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Brain and Neurodegenerative Diseases Research Laboratory, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Gürvit
- Department of Neurology, Behavioral Neurology and Movement Disorders, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Diseases Research Laboratory, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Başar Bilgiç
- Department of Neurology, Behavioral Neurology and Movement Disorders, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Diseases Research Laboratory, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Tosatti JAG, Pereira JD, Loures CMG, Fraga VG, Magalhães CA, Eugênio RDAC, Guimarães HC, Resende EDPF, de Souza LC, Carvalho MDG, Caramelli P, Gomes KB. Complete blood count and systemic inflammation indices in individuals with Alzheimer's disease: A case-control study. J Clin Neurosci 2025; 132:111011. [PMID: 39733506 DOI: 10.1016/j.jocn.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by progressive cognitive and functional decline and is associated with aging. Chronic inflammatory processes are also involved in its the etiology, as the consequence or cause of proteinopathy (amyloid and tau load in the brain). This study aimed to investigate the complete blood count and systemic inflammation indices in 61 individuals with AD, compared to 59 cognitively healthy individuals as controls. The diagnosis of AD dementia was based on the NIA-AA criteria and patients presented biomarkers in the cerebrospinal fluid compatible with the diagnosis of AD. The complete blood count (CBC) was conducted using an automated system. The neutrophil count (p = 0.011), neutrophil-to-lymphocyte ratio (p = 0.023), and Systemic Inflammation Response Index (SIRI) (p = 0.044) were significantly higher, whereas the lymphocyte count (p = 0.018) and platelet count (p = 0.038) were significantly lower in the AD group compared to the control group. After a multivariategeneralized linear model analyses, neutrophils count and SIRI maintained significant difference between the groups, even after correcting for age, sex, body mass index and ApoE ε4 carrier status. The overall results suggest that AD is associated with a low-grade pro-inflammatory profile, characterized by alterations in blood inflammatory and immune cells, leading to a higher systemic inflammatory index. The CBC and its derived inflammatory indices, routinely obtained in clinical practice, have potential utility in the context of AD.
Collapse
Affiliation(s)
- Jéssica A G Tosatti
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jessica D Pereira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina M G Loures
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanêssa G Fraga
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina A Magalhães
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela D A C Eugênio
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique C Guimarães
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elisa de P F Resende
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo C de Souza
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das G Carvalho
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Kowalczyk P, Krych S, Kramkowski K, Jęczmyk A, Hrapkowicz T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. Int J Mol Sci 2024; 25:12467. [PMID: 39596532 PMCID: PMC11594588 DOI: 10.3390/ijms252212467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The literature analysis conducted in this review discusses the latest achievements in the identification of cardiovascular damage induced by oxidative stress with secondary platelet mitochondrial dysfunction. Damage to the platelets of mitochondria as a result of their interactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) can lead to their numerous ischemic events associated with hypoxia or hyperoxia processes in the cell. Disturbances in redox reactions in the platelet mitochondrial membrane lead to the direct oxidation of cellular macromolecules, including nucleic acids (DNA base oxidation), membrane lipids (lipid peroxidation process) and cellular proteins (formation of reducing groups in repair proteins and amino acid peroxides). Oxidative changes in biomolecules inducing tissue damage leads to inflammation, initiating pathogenic processes associated with faster cell aging or their apoptosis. The consequence of damage to platelet mitochondria and their excessive activation is the induction of cardiovascular and neurodegenerative diseases (Parkinson's and Alzheimer's), as well as carbohydrate metabolism disorders (diabetes). The oxidation of mitochondrial DNA can lead to modifications in its bases, inducing the formation of exocyclic adducts of the ethano and propano type. As a consequence, it disrupts DNA repair processes and conduces to premature neoplastic transformation in critical genes such as the p53 suppressor gene, which leads to the development of various types of tumors. The topic of new innovative methods and techniques for the analysis of oxidative stress in platelet mitochondria based on methods such as a nicking assay, oxygen consumption assay, Total Thrombus formation Analysis System (T-Tas), and continuous-flow left ventricular assist devices (CF-LVADs) was also discussed. They were put together into one scientific and research platform. This will enable the facilitation of faster diagnostics and the identification of platelet mitochondrial damage by clinicians and scientists in order to implement adequate therapeutic procedures and minimize the risk of the induction of cardiovascular diseases, including ischemic events correlated with them. A quantitative analysis of the processes of thrombus formation in cardiovascular diseases will provide an opportunity to select specific anticoagulant and thrombolytic drugs under conditions of preserved hemostasis.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Sebastian Krych
- Student’s Scientific Association, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Agata Jęczmyk
- Students’ Scientific Association, III Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Tomasz Hrapkowicz
- Silesian Centre for Heart Diseases in Zabrze, Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
5
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
6
|
Platelets’ Nanomechanics and Morphology in Neurodegenerative Pathologies. Biomedicines 2022; 10:biomedicines10092239. [PMID: 36140340 PMCID: PMC9496241 DOI: 10.3390/biomedicines10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The imaging and force–distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets’ functions. Importantly, the platelets’ signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.
Collapse
|
7
|
Rajkumar AP. Progressing Towards Blood Based Diagnostic RNA Biomarkers for Dementia With Lewy Bodies. Am J Geriatr Psychiatry 2022; 30:976-978. [PMID: 35370081 DOI: 10.1016/j.jagp.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Anto P Rajkumar
- Institute of Mental Health, Mental health and clinical neurosciences academic unit, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK; Mental health services of older people, Nottinghamshire healthcare NHS foundation trust, Nottingham, NG3 6AA, UK.
| |
Collapse
|
8
|
The multifaceted role of platelets in mediating brain function. Blood 2022; 140:815-827. [PMID: 35609283 PMCID: PMC9412009 DOI: 10.1182/blood.2022015970] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Platelets, the small, anucleate blood cells that originate from megakaryocytes in the bone marrow, are typically associated with coagulation. However, it is now apparent that platelets are more multifaceted than originally thought, with their function extending beyond their traditional role in hemostasis to acting as important mediators of brain function. In this review, we outline the broad repertoire of platelet function in the central nervous system, focusing on the similarities between platelets and neurons. We also summarize the role that platelets play in the pathophysiology of various neurological diseases, with a particular focus on neuroinflammation and neurodegeneration. Finally, we highlight the exciting prospect of harnessing the unique features of the platelet proteome and extracellular vesicles, which are rich in neurotrophic, antioxidative, and antiinflammatory factors, for the development of novel neuroprotective and neuroregenerative interventions to treat various neurodegenerative and traumatic pathologies.
Collapse
|
9
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 2022; 306:120855. [DOI: 10.1016/j.lfs.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
10
|
Role of Platelet in Parkinson’s Disease: Insights into Pathophysiology & Theranostic Solutions. Ageing Res Rev 2022; 80:101681. [DOI: 10.1016/j.arr.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
|
11
|
Rawish E, Langer HF. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int J Mol Sci 2022; 23:6585. [PMID: 35743029 PMCID: PMC9224425 DOI: 10.3390/ijms23126585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
P2X receptors belong to a family of cation channel proteins, which respond to extracellular adenosine 5'-triphosphate (ATP). These receptors have gained increasing attention in basic and translational research, as they are central to a variety of important pathophysiological processes such as the modulation of cardiovascular physiology, mediation of nociception, platelet and macrophage activation, or neuronal-glial integration. While P2X1 receptor activation is long known to drive platelet aggregation, P2X7 receptor antagonists have recently been reported to inhibit platelet activation. Considering the role of both P2X receptors and platelet-mediated inflammation in neuronal diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and stroke, targeting purinergic receptors may provide a valuable novel therapeutic approach in these diseases. Therefore, the present review illuminates the role of platelets and purinergic signaling in these neurological conditions to evaluate potential translational implications.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Wang Q, Shi Y, Qi X, Qi L, Chen X, Shi J, Xie C, Zhang Z. Platelet-Derived Amyloid-β Protein Precursor as a Biomarker of Alzheimer's Disease. J Alzheimers Dis 2022; 88:589-599. [PMID: 35662121 DOI: 10.3233/jad-220122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Platelet proteins may be associated with Alzheimer's disease (AD) pathology. OBJECTIVE To investigate the relationship between platelet proteins and cerebrospinal fluid (CSF) biomarkers of AD and cognition in individuals with memory decline to identify effective screening methods for detecting the early stages of the disease. METHODS We classified 68 participants with subjective memory decline according to the ATN framework determined by CSF amyloid-β (A), CSF p-tau (T), and t-tau (N). All participants underwent Mini-Mental State Examination (MMSE) and platelet-related protein content testing. RESULTS Eighteen participants had normal AD biomarkers (NCs), 24 subjects had non-AD pathologic changes (non-AD), and 26 subjects fell within the Alzheimer's continuum (AD). The platelet amyloid-β protein precursor (AβPP) ratio in the AD group was significantly lower than in the non-AD and NCs groups, and positively correlated with MMSE scores and CSF amyloid-β42 level, which could affect MMSE scores through CSF amyloid-β42. Levels of platelet phosphorylated-tau 231 and ser396/404 phosphorylated tau were elevated in both AD and non-AD compared to NCs. Additionally, the receiver operating characteristic analysis demonstrated that the platelet AβPP ratio was a sensitive identifier for differentiating the AD from NCs (AUC = 0.846) and non-AD (AUC = 0.768). And ser396/404 phosphorylated tau could distinguish AD from NCs. CONCLUSION Our study was the first to find an association between platelet AβPP ratio and CSF biomarkers of AD, which contribute to the understanding of the peripheral changes in AD. These findings may help to discover potential feasible and effective screening tools for AD.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Yachen Shi
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Xinyang Qi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingyu Qi
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Xiang Chen
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, The Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Ma Y, Li S, Shao M, Cao W, Sun X. Platelet Parameters and Their Relationships With the Thickness of the Retinal Nerve Fiber Layer and Ganglion Cell Complex in Primary Open-Angle Glaucoma. Front Neurol 2022; 13:867465. [PMID: 35585849 PMCID: PMC9108427 DOI: 10.3389/fneur.2022.867465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Glaucoma is a neurodegenerative disease of the visual system. Platelet parameters are correlated with visual field mean deviation (MD) in glaucoma, but there is a lack of relative data on their relationship with structural changes in the retina. This study aimed to explore the relationship between platelet parameters and retinal nerve fiber layer (RNEL), ganglion cell complex (GCC) thickness, and cup/disk area ratio, evaluated by optical coherence tomography (OCT) in primary open-angle glaucoma (POAG). Methods A total of 118 consecutive patients with POAG and 120 age- and sex-matched control subjects were included in this retrospective study. Demographic data, platelet parameters in blood tests, visual field, and OCT results were evaluated. The RNFL was divided into the temporal, superior, nasal, and inferior quadrants. Based on the visual field MD, the patients were stratified into mild (MD ≤ 6.0 dB), moderate (6 dB < MD ≤ 12 dB), and severe (MD > 12.0 dB) subgroups. Results Patients with POAG had significantly lower platelet (PLT) levels and significantly higher platelet distribution width (PDW) and mean platelet volume (MPV) levels than controls. As the visual field MD increased, structural evaluation by OCT identified loss of disk rim area, average GCC thickness, and average RNFL thickness (all P < 0.001), as well as increased PDW (P < 0.001) and MPV (P = 0.004) levels in patients with POAG. The Spearman's rank correlation analysis showed that PDW levels were significantly correlated with OCT parameters such as RNFL thickness (r = −0.370, P < 0.001), GCC thickness (r = −0.294, P = 0.001), and cup/disk area ratio (r = 0.322, P < 0.001), as well as visual field MD (r = 0.607, P < 0.001) and mean sensitivity (MS) (r = −0.570, P < 0.001). Significantly correlations were also found between MPV and RNFL thickness (r = −0.321, P < 0.001), GCC thickness (r = −0.194, P = 0.041), and cup/disk area ratio (r = 0.237, P = 0.010). All the quadrants showed similar negative correlations between PDW, MPV, and RNFL thickness. The multiple linear regression analyses showed significant association between PDW and RNFL thickness (β = −0.331, P < 0.001), PDW and GCC thickness (β = −0.288, P = 0.002), MPV and RNFL thickness (β = −0.313, P = 0.001), and MPV and GCC thickness (β = −0.188, P = 0.048). Conclusion This study found significantly negative association between PDW, MPV levels and RNFL, GCC thickness, as well as positive association between PDW, MPV levels, and cup/disk area ratio in patients with POAG, suggesting that platelet activation may contribute to glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shengjie Li
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
14
|
Abstract
BACKGROUND Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder. METHODS According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]"; (2) "(platelets[Title]) AND depressive disorder[Title/Abstract]"; (3) "(Platelet[Title]) AND major depressive disorder[Title]"; (4) (platelets[Title]) AND depressed[Title]"; (5) (platelets[Title]) AND depressive episode[Title]"; (6) (platelets[Title]) AND major depression[Title]"; (7) platelet activation in depression[All fields]"; and (8) platelet reactivity in depression[All fields]." RESULTS After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways. CONCLUSIONS Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
15
|
Zago E, Dal Molin A, Dimitri GM, Xumerle L, Pirazzini C, Bacalini MG, Maturo MG, Azevedo T, Spasov S, Gómez-Garre P, Periñán MT, Jesús S, Baldelli L, Sambati L, Calandra-Buonaura G, Garagnani P, Provini F, Cortelli P, Mir P, Trenkwalder C, Mollenhauer B, Franceschi C, Liò P, Nardini C. Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients. Sci Rep 2022; 12:1330. [PMID: 35079043 PMCID: PMC8789812 DOI: 10.1038/s41598-022-05227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Advanced age represents one of the major risk factors for Parkinson's Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson's Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson's Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson's Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson's Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson's Disease patients, and healthy siblings of Parkinson's Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson's Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson's Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson's Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson's Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson's Disease.
Collapse
Affiliation(s)
| | | | - Giovanna Maria Dimitri
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | | | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maria Giovanna Maturo
- Personal Genomics S.R.L., Verona, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tiago Azevedo
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Simeon Spasov
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kliniktstrasse 16, 34128, Kassel, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Pietro Liò
- Computer Laboratory, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Christine Nardini
- Personal Genomics S.R.L., Verona, Italy.
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", 00185, Rome, Italy.
| |
Collapse
|
16
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
17
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
18
|
Koudriavtseva T, Lorenzano S, Anelli V, Sergi D, Stefanile A, Di Domenico EG, Maschio M, Galiè E, Piantadosi C. Case Report: Probable Cerebral Amyloid Angiopathy-Related Inflammation During Bevacizumab Treatment for Metastatic Cervical Cancer. Front Oncol 2021; 11:669753. [PMID: 34386418 PMCID: PMC8353446 DOI: 10.3389/fonc.2021.669753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023] Open
Abstract
Bevacizumab is an anti-angiogenic monoclonal antibody targeting Vascular Endothelial Growth Factor (VEGF) that induces the proliferation and migration of vascular endothelial cells thus, promoting vasculogenesis. Bevacizumab inhibits cancer angiogenesis, which is fundamental for either tumor development, exponential growth, or metastatic spread by supplying nutrients and oxygen. We report a new possible adverse event of bevacizumab, a Cerebral Amyloid Angiopathy-Related Inflammation (CAARI), in a 72-year-old woman with metastatic cervical cancer. After six cycles every three weeks of chemotherapy (cisplatin, paclitaxel, bevacizumab) and following two maintenance bevacizumab administrations, the patient presented a worsening confusional state. The MRI scan showed bilateral asymmetric temporo-parieto-occipital hyperintensity with numerous cortical microbleeds indicative of a CAARI. After stopping bevacizumab treatment, steroid therapy was administered resulting in rapid clinical improvement. The subsequent neurological and oncological follow-up was negative for recurrence. The patient was a heterozygote carrier for apolipoprotein-E ε4 that increases the risk of sporadic Cerebral Amyloid Angiopathy (CAA), which is characterized by beta-amyloid accumulation and fibrinoid necrosis in cerebral vasculature leading to micro/macrohemorrhages and dementia. Moreover, CAA is present in 30% of people aged over 60 years without dementia. In the brains of CAA patients, there is a proinflammatory state with cerebrovascular endothelial cell alteration and elevated levels of either adhesion molecules or inflammatory interleukins that increase the blood-brain barrier permeability. Moreover, CAARI is an inflammatory form of CAA. Inhibition of VEGF, which has anti-apoptotic, anti-inflammatory, and pro-survival effects on endothelial cells, impairs their regenerative capacity and increases expression of proinflammatory genes leading to weakened supporting layers of blood vessels and, hence, to damaged vascular integrity. In our patient, bevacizumab administration may have further increased permeability of cerebral microvasculature likely impaired by an underlying, asymptomatic CAA. To our knowledge, this is the first case reporting on the development of probable CAARI during bevacizumab treatment, which should alert the clinicians in case of neurological symptom onset in older patients under anti-angiogenic therapy.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Anelli
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, IFO, Rome, Italy
| | - Domenico Sergi
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Enea Gino Di Domenico
- Clinical Pathology and Microbiology, IRCCS San Gallicano Dermatologic Institute, IFO, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| |
Collapse
|
19
|
Kopeikina E, Ponomarev ED. The Role of Platelets in the Stimulation of Neuronal Synaptic Plasticity, Electric Activity, and Oxidative Phosphorylation: Possibilities for New Therapy of Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680126. [PMID: 34335186 PMCID: PMC8318360 DOI: 10.3389/fncel.2021.680126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022] Open
Abstract
The central nervous system (CNS) is highly vascularized where neuronal cells are located in proximity to endothelial cells, astroglial limitans, and neuronal processes constituting integrated neurovascular units. In contrast to many other organs, the CNS has a blood-brain barrier (BBB), which becomes compromised due to infection, neuroinflammation, neurodegeneration, traumatic brain injury, and other reasons. BBB disruption is presumably involved in neuronal injury during epilepsy and psychiatric disorders. Therefore, many types of neuropsychological disorders are accompanied by an increase in BBB permeability leading to direct contact of circulating blood cells in the capillaries with neuronal cells in the CNS. The second most abundant type of blood cells are platelets, which come after erythrocytes and outnumber ~100-fold circulating leukocytes. When BBB becomes compromised, platelets swiftly respond to the vascular injury and become engaged in thrombosis and hemostasis. However, more recent studies demonstrated that platelets could also enter CNS parenchyma and directly interact with neuronal cells. Within CNS, platelets become activated by recognizing major brain gangliosides on the surface of astrocytes and neurons and releasing a milieu of pro-inflammatory mediators, neurotrophic factors, and neurotransmitters. Platelet-derived factors directly stimulate neuronal electric and synaptic activity and promote the formation of new synapses and axonal regrowth near the site of damage. Despite such active involvement in response to CNS damage, the role of platelets in neurological disorders was not extensively studied, which will be the focus of this review.
Collapse
Affiliation(s)
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
20
|
Williams K, Carrasquilla GD, Ingerslev LR, Hochreuter MY, Hansson S, Pillon NJ, Donkin I, Versteyhe S, Zierath JR, Kilpeläinen TO, Barrès R. Epigenetic rewiring of skeletal muscle enhancers after exercise training supports a role in whole-body function and human health. Mol Metab 2021; 53:101290. [PMID: 34252634 PMCID: PMC8355925 DOI: 10.1016/j.molmet.2021.101290] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Regular physical exercise improves health by reducing the risk of a plethora of chronic disorders. We hypothesized that endurance exercise training remodels the activity of gene enhancers in skeletal muscle and that this remodeling contributes to the beneficial effects of exercise on human health. Methods and results By studying changes in histone modifications, we mapped the genome-wide positions and activities of enhancers in skeletal muscle biopsies collected from young sedentary men before and after 6 weeks of endurance exercise. We identified extensive remodeling of enhancer activities after exercise training, with a large subset of the remodeled enhancers located in the proximity of genes transcriptionally regulated after exercise. By overlapping the position of enhancers with genetic variants, we identified an enrichment of disease-associated genetic variants within the exercise-remodeled enhancers. Conclusion Our data provide evidence of a functional link between epigenetic rewiring of enhancers to control their activity after exercise training and the modulation of disease risk in humans. Exercise training changes in skeletal muscle gene expression is enriched for secreted factors. The activity of skeletal muscle enhancers undergoes substantial remodeling after exercise training. Skeletal muscle enhancer activity and gene transcription are strongly associated. Exercise training-remodeled enhancer regions are enriched for GWAS SNPs associated with human traits and diseases.
Collapse
Affiliation(s)
- Kristine Williams
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Germán D Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Mette Yde Hochreuter
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Svenja Hansson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ida Donkin
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Soetkin Versteyhe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| |
Collapse
|
21
|
Jamal S, Ali W, Nagpal P, Grover A, Grover S. Predicting phosphorylation sites using machine learning by integrating the sequence, structure, and functional information of proteins. J Transl Med 2021; 19:218. [PMID: 34030700 PMCID: PMC8142496 DOI: 10.1186/s12967-021-02851-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Post-translational modification (PTM) is a biological process that alters proteins and is therefore involved in the regulation of various cellular activities and pathogenesis. Protein phosphorylation is an essential process and one of the most-studied PTMs: it occurs when a phosphate group is added to serine (Ser, S), threonine (Thr, T), or tyrosine (Tyr, Y) residue. Dysregulation of protein phosphorylation can lead to various diseases-most commonly neurological disorders, Alzheimer's disease, and Parkinson's disease-thus necessitating the prediction of S/T/Y residues that can be phosphorylated in an uncharacterized amino acid sequence. Despite a surplus of sequencing data, current experimental methods of PTM prediction are time-consuming, costly, and error-prone, so a number of computational methods have been proposed to replace them. However, phosphorylation prediction remains limited, owing to substrate specificity, performance, and the diversity of its features. METHODS In the present study we propose machine-learning-based predictors that use the physicochemical, sequence, structural, and functional information of proteins to classify S/T/Y phosphorylation sites. Rigorous feature selection, the minimum redundancy/maximum relevance approach, and the symmetrical uncertainty method were employed to extract the most informative features to train the models. RESULTS The RF and SVM models generated using diverse feature types in the present study were highly accurate as is evident from good values for different statistical measures. Moreover, independent test sets and benchmark validations indicated that the proposed method clearly outperformed the existing methods, demonstrating its ability to accurately predict protein phosphorylation. CONCLUSIONS The results obtained in the present work indicate that the proposed computational methodology can be effectively used for predicting putative phosphorylation sites further facilitating discovery of various biological processes mechanisms.
Collapse
Affiliation(s)
- Salma Jamal
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Waseem Ali
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Priya Nagpal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Sonam Grover
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
22
|
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22084085. [PMID: 33920936 PMCID: PMC8071291 DOI: 10.3390/ijms22084085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Collapse
|
23
|
Li QS, Cai D. Integrated miRNA-Seq and mRNA-Seq Study to Identify miRNAs Associated With Alzheimer's Disease Using Post-mortem Brain Tissue Samples. Front Neurosci 2021; 15:620899. [PMID: 33833661 PMCID: PMC8021900 DOI: 10.3389/fnins.2021.620899] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), the leading form of dementia, is associated with abnormal tau and β-amyloid accumulation in the brain. We conducted a miRNA-seq study to identify miRNAs associated with AD in the post-mortem brain from the inferior frontal gyrus (IFG, n = 69) and superior temporal gyrus (STG, n = 81). Four and 64 miRNAs were differentially expressed (adjusted p-value < 0.05) in AD compared to cognitively normal controls in the IFG and STG, respectively. We observed down-regulation of several miRNAs that have previously been implicated in AD, including hsa-miR-212-5p and hsa-miR-132-5p, in AD samples across both brain regions, and up-regulation of hsa-miR-146a-5p, hsa-miR-501-3p, hsa-miR-34a-5p, and hsa-miR-454-3p in the STG. The differentially expressed miRNAs were previously implicated in the formation of amyloid-β plaques, the dysregulation of tau, and inflammation. We have also observed differential expressions for dozens of other miRNAs in the STG, including hsa-miR-4446-3p, that have not been described previously. Putative targets of these miRNAs (adjusted p-value < 0.1) were found to be involved in Wnt signaling pathway, MAPK family signaling cascades, sphingosine 1-phosphate (S1P) pathway, adaptive immune system, innate immune system, and neurogenesis. Our results support the finding of dysregulated miRNAs previously implicated in AD and propose additional miRNAs that appear to be dysregulated in AD for experimental follow-up.
Collapse
Affiliation(s)
- Qingqin S. Li
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, United States
| | | |
Collapse
|
24
|
Tabibian F, Adibi I, Ardestani PE, Tabibian E, Akbaripour S, Bürk K. Cerebral venous thrombosis, neutropenia and iron-deficiency anemia in Huntington disease. Neurodegener Dis Manag 2021; 11:137-142. [PMID: 33703929 DOI: 10.2217/nmt-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurologic and nonneurologic manifestations have been shown for Huntington disease (HD) as a genetic neurodegenerative disorder. However, cerebral venous thrombosis (CVT), iron-deficiency anemia and neutropenia have not been reported as its presentations to date. We introduce the first case of a HD patient with CVT, iron-deficiency anemia and neutropenia. All transient and chronic risk factors for development of these manifestations were ruled out. According to the experimental evidences reviewed in this article, we suggest that HD itself could promote formation of CVT, iron-deficiency anemia and neutropenia through vascular and blood cell abnormalities.
Collapse
Affiliation(s)
- Farinaz Tabibian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Emami Ardestani
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elnaz Tabibian
- Department of Radiology, Medical Imaging Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Akbaripour
- Ayatollah Kashani Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katrin Bürk
- Kliniken Schmieder Stuttgart-Gerlingen, Gerlingen, Germany
| |
Collapse
|
25
|
Odaka H, Hiemori K, Shimoda A, Akiyoshi K, Tateno H. Platelet-derived extracellular vesicles are increased in sera of Alzheimer's disease patients, as revealed by Tim4-based assays. FEBS Open Bio 2021; 11:741-752. [PMID: 33345458 PMCID: PMC7931225 DOI: 10.1002/2211-5463.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of β‐amyloid plaques and the formation of neurofibrillary tangles. Extracellular vesicles (EVs) are small vesicles surrounded by a lipid bilayer membrane, which may be involved in the progression of AD. Glycans are essential building blocks of EVs, and we hypothesized that EV glycans may reflect pathological conditions of various diseases. Here, we performed glycan profiling of EVs prepared from sera of three AD patients (APs) compared to three healthy donors (HDs) using lectin microarray. Distinct glycan profiles were observed. Mannose‐binding lectins exhibited significantly higher signals for AP‐derived EVs than HD‐derived EVs. Lectin blotting using mannose‐binding lectin (rPALa) showed a single protein band at ~ 80 kDa exclusively in AP‐derived EVs. LC‐MS/MS analysis identified a protein band precipitated by rPALa as CD61, a marker of platelet‐derived exosomes (P‐Exo). Sandwich assays using Tim4 with specificity for phosphatidylserine on EVs and antibodies against P‐Exo markers (CD61, CD41, CD63, and CD9) revealed that P‐Exo is significantly elevated in sera of APs (n = 16) relative to age‐ and sex‐matched HDs (n = 16). Tim4‐αCD63 showed the highest value for the area under the curve (0.957) for discriminating APs from HDs, which should lead to a better understanding of AD pathology and may facilitate the development of a novel diagnostic method for AD.
Collapse
Affiliation(s)
- Haruki Odaka
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Keiko Hiemori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
26
|
Dong Y, Xiong J, Ji L, Xue X. MiR-421 Aggravates Neurotoxicity and Promotes Cell Death in Parkinson's Disease Models by Directly Targeting MEF2D. Neurochem Res 2021; 46:299-308. [PMID: 33179210 DOI: 10.1007/s11064-020-03166-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by selective loss of dopaminergic neurons, which reduces quality of life of patients and poses a heavy burden to the society. The pathological mechanism of PD remains unclear, and increasing efforts are aimed to solve this problem. MiRNAs are a kind of small noncoding RNA regulating target gene expression. Previous studies have shown that dysregulation of miRNAs is involved in the development of PD. In the present study, we determined that miR-421 and MEF2D are increased and decreased, respectively, in a cellular model of PD. The data on the mechanism of action indicate that miR-421 directly binds to MEF2D mRNA and negatively regulates MEF2D expression. An increase in miR-421 disrupted the Bcl2/Bax system. Functional assays indicated that enhanced miR-421 promotes cell death by negative modulation of MEF2D expression. Inhibition of miR-421 or restoration of MEF2D protected neurons from neurotoxicity in cellular and animal models of PD. Our study is the first to demonstrate that miR-421 is decreased in PD models and to determine a novel putative mechanism of PD pathogenesis.
Collapse
Affiliation(s)
- Yaru Dong
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Jing Xiong
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Liya Ji
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Xiuyun Xue
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
27
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
28
|
Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, Conti L, D'Agosto G, Pimpinelli F, Di Domenico EG, Mandoj C, Giannarelli D, Donzelli S, Blandino G, Salvetti M, Inglese M. Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2020; 11:548604. [PMID: 33193314 PMCID: PMC7655134 DOI: 10.3389/fimmu.2020.548604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism “immunothrombosis” linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients. Materials and Methods This is a multi-center, prospective, controlled study. RRMS patients (1° group: 30 patients in relapse; 2° group: 30 patients in remission) and age/sex-matched controls (3° group: 30 subjects) will be enrolled in the study. Patients and controls will be tested for either coagulation/complement (C3, C4, C4a, C9, PT, aPTT, fibrinogen, factor II, VIII, and X, D-dimer, antithrombin, protein C, protein S, von-Willebrand factor), soluble markers of endothelial damage (thrombomodulin, Endothelial Protein C Receptor), antiphospholipid antibodies, lupus anticoagulant, complete blood count, viral serological assays, or microRNA microarray. Patients will undergo dynamic susceptibility contrast-enhanced MRI using a 3.0-T scanner to evaluate CBF, CBV, MTT, lesion number, and volume. Statistical Analysis ANOVA and unpaired t-tests will be used. The level of significance was set at p ≤ 0.05. Discussion Identifying a link between activation of coagulation/complement system and cerebral hypoperfusion could improve the identification of novel molecular and/or imaging biomarkers and targets, leading to the development of new effective therapeutic strategies in MS. Clinical Trial Registration Clinicaltrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | | | - Chiara Mandoj
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- Biostatistics, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Tirozzi A, Izzi B, Noro F, Marotta A, Gianfagna F, Hoylaerts MF, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. Assessing Genetic Overlap Between Platelet Parameters and Neurodegenerative Disorders. Front Immunol 2020; 11:02127. [PMID: 33117333 PMCID: PMC7575686 DOI: 10.3389/fimmu.2020.02127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) suffer from the lack of risk-predictive circulating biomarkers, and clinical diagnosis occurs only when symptoms are evident. Among potential biomarkers, platelet parameters have been associated with both disorders. However, these associations have been scarcely investigated at the genetic level. Here, we tested genome-wide coheritability based on common genetic variants between platelet parameters and PD/AD risk, through Linkage Disequilibrium Score Regression. This revealed a significant genetic correlation between platelet distribution width (PDW), an index of platelet size variability, and PD risk (rg [SE] = 0.080 [0.034]; p = 0.019), which was confirmed by a summary-summary polygenic score analysis, where PDW explained a small but significant proportion PD risk (<1%). AD risk showed no significant correlations, although a negative trend was observed with PDW (rg [SE] =-0.088 [0.053]; p=0.096), in line with previous epidemiological reports. These findings suggest the existence of limited shared genetic bases between PDW and PD and warrant further investigations to clarify the genes involved in this relation. Additionally, they suggest that the association between platelet parameters and AD risk is more environmental in nature, prompting an investigation into which factors may influence these traits.
Collapse
Affiliation(s)
- Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Napoli, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | |
Collapse
|
30
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|
31
|
Mitochondrial activity is impaired in lymphocytes of MS patients in correlation with disease severity. Mult Scler Relat Disord 2020; 41:102025. [DOI: 10.1016/j.msard.2020.102025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/23/2020] [Indexed: 11/18/2022]
|
32
|
Leiter O, Walker TL. Platelets in Neurodegenerative Conditions-Friend or Foe? Front Immunol 2020; 11:747. [PMID: 32431701 PMCID: PMC7214916 DOI: 10.3389/fimmu.2020.00747] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tara L Walker
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|