1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Liu Q, Han Z, Li T, Meng J, Zhu C, Wang J, Wang J, Zhang Z, Wu H. Microglial HO-1 aggravates neuronal ferroptosis via regulating iron metabolism and inflammation in the early stage after intracerebral hemorrhage. Int Immunopharmacol 2025; 147:113942. [PMID: 39740507 DOI: 10.1016/j.intimp.2024.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo. Furthermore, in the co-cultured ICH model in vitro, we verify that HO-1 over-expression disrupts the balance of iron metabolism in microglia, which increases the iron efflux to the extracellular space and promotes iron ion uptake in neurons, leading to lipid peroxidation injury and further contributing to neuronal ferroptosis. Moreover, the specific ferroptosis inhibitor Ferrostatin-1 (Fer-1) treatment could mitigate the damages in the co-cultured HT22 cells that caused by HO-1 over-expression in microglia, and improve the neurological function in the ICH model in mice. By shedding light on the mechanisms of aggravating neuronal ferroptosis due to HO-1 overexpression in the early stages after ICH, our study provides insights into the potential therapy of targeting HO-1 to treat ICH.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ziyi Han
- College of Medical Laboratory Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jincheng Meng
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenwei Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Zhen Zhang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - He Wu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Streit WJ, Phan L, Bechmann I. Ferroptosis and pathogenesis of neuritic plaques in Alzheimer disease. Pharmacol Rev 2025; 77:100005. [PMID: 39952690 DOI: 10.1124/pharmrev.123.000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Neuritic plaques are pathognomonic and terminal lesions of Alzheimer disease (AD). They embody AD pathogenesis because they harbor in one space critical pathologic features of the disease: amyloid deposits, neurofibrillary degeneration, neuroinflammation, and iron accumulation. Neuritic plaques are thought to arise from the conversion of diffuse extracellular deposits of amyloid-β protein (Aβ), and it is believed that during conversion, amyloid toxicity creates the dystrophic neurites of neuritic plaques, as well as neurofibrillary tangles However, recent evidence from human postmortem studies suggests a much different mechanism of neuritic plaque formation, where the first step in their creation is neuronal degeneration driven by iron overload and ferroptosis. Similarly, neurofibrillary tangles represent the corpses of iron-laden neurons that develop independently of Aβ deposits. In this review, we will focus on the role of free redox-active iron in the development of typical AD pathology, as determined largely by evidence obtained in the human temporal lobe during early, preclinical stages of AD. The findings have allowed the construction of a scheme of AD pathogenesis where brain iron is center stage and is involved in every step of the sequence of events that produce characteristic AD pathology. We will discuss how the study of preclinical AD has produced a fresh and revised assessment of AD pathogenesis that may be important for reconsidering current therapeutic efforts and guiding future ones. SIGNIFICANCE STATEMENT: This review offers a novel perspective on Alzheimer disease pathogenesis where elevated brain iron plays a central role and is involved throughout the development of lesions. Herein, we review arguments against the amyloid cascade theory and explain how recent findings in humans during early preclinical disease support iron-mediated cell death and endogenous iron containment mechanisms as critical components of neuritic plaque formation and ensuing dementia.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida.
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Roy S, Lutsenko S. Mechanism of Cu entry into the brain: many unanswered questions. Neural Regen Res 2024; 19:2421-2429. [PMID: 38526278 PMCID: PMC11090436 DOI: 10.4103/1673-5374.393107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Brain tissue requires high amounts of copper (Cu) for its key physiological processes, such as energy production, neurotransmitter synthesis, maturation of neuropeptides, myelination, synaptic plasticity, and radical scavenging. The requirements for Cu in the brain vary depending on specific brain regions, cell types, organism age, and nutritional status. Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease, Wilson disease, Alzheimer's disease, Parkinson's disease, and others. Despite the well-established role of Cu homeostasis in brain development and function, the mechanisms that govern Cu delivery to the brain are not well defined. This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Hackett MJ. A commentary on studies of brain iron accumulation during ageing. J Biol Inorg Chem 2024; 29:385-394. [PMID: 38735007 PMCID: PMC11186910 DOI: 10.1007/s00775-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Brain iron content is widely reported to increase during "ageing", across multiple species from nematodes, rodents (mice and rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxidative stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during ageing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or neurodegenerative disease.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
7
|
Ashraf AA, Aljuhani M, Hubens CJ, Jeandriens J, Parkes HG, Geraki K, Mahmood A, Herlihy AH, So PW. Inflammation subsequent to mild iron excess differentially alters regional brain iron metabolism, oxidation and neuroinflammation status in mice. Front Aging Neurosci 2024; 16:1393351. [PMID: 38836051 PMCID: PMC11148467 DOI: 10.3389/fnagi.2024.1393351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Iron dyshomeostasis and neuroinflammation, characteristic features of the aged brain, and exacerbated in neurodegenerative disease, may induce oxidative stress-mediated neurodegeneration. In this study, the effects of potential priming with mild systemic iron injections on subsequent lipopolysaccharide (LPS)-induced inflammation in adult C57Bl/6J mice were examined. After cognitive testing, regional brain tissues were dissected for iron (metal) measurements by total reflection X-ray fluorescence and synchrotron radiation X-Ray fluorescence-based elemental mapping; and iron regulatory, ferroptosis-related, and glia-specific protein analysis, and lipid peroxidation by western blotting. Microglial morphology and astrogliosis were assessed by immunohistochemistry. Iron only treatment enhanced cognitive performance on the novel object location task compared with iron priming and subsequent LPS-induced inflammation. LPS-induced inflammation, with or without iron treatment, attenuated hippocampal heme oxygenase-1 and augmented 4-hydroxynonenal levels. Conversely, in the cortex, elevated ferritin light chain and xCT (light chain of System Xc-) were observed in response to LPS-induced inflammation, without and with iron-priming. Increased microglial branch/process lengths and astrocyte immunoreactivity were also increased by combined iron and LPS in both the hippocampus and cortex. Here, we demonstrate iron priming and subsequent LPS-induced inflammation led to iron dyshomeostasis, compromised antioxidant function, increased lipid peroxidation and altered neuroinflammatory state in a brain region-dependent manner.
Collapse
Affiliation(s)
- Azhaar Ahmad Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Manal Aljuhani
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chantal J Hubens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ayesha Mahmood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Suryana E, Rowlands BD, Bishop DP, Finkelstein DI, Double KL. Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain. Neurobiol Aging 2024; 136:34-43. [PMID: 38301453 DOI: 10.1016/j.neurobiolaging.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Metal dyshomeostasis is associated with neurodegenerative disorders, cancers and vascular disease. We report the effects of age (range: 3 to 18 months) on regional copper, iron and zinc levels in the brain of the C57BL/6 mouse, a widely used inbred strain with a permissive background allowing maximal expression of mutations in models that recapitulate these disorders. We present formulae that can be used to determine regional brain metal concentrations in the C57BL/6 mouse at any age in the range of three to eighteen months of life. Copper levels in the C57BL/6 mouse adult brain were highest in the striatum and cerebellum and increased with age, excepting the cortex and hippocampus. Regional iron levels increased linearly with age in all brain regions, while regional zinc concentrations became more homogeneous with age. Knockdown of the copper transporter Ctr1 reduced brain copper, but not iron or zinc, concentrations in a regionally-dependent manner. These findings demonstrate biometals in the brain change with age in a regionally-dependent manner. These data and associated formulae have implications for improving design and interpretation of a wide variety of studies in the C57BL/6 mouse.
Collapse
Affiliation(s)
- E Suryana
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - B D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - D P Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - K L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
9
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Billings JL, Hilton JBW, Liddell JR, Hare DJ, Crouch PJ. Fundamental Neurochemistry Review: Copper availability as a potential therapeutic target in progressive supranuclear palsy: Insight from other neurodegenerative diseases. J Neurochem 2023; 167:337-346. [PMID: 37800457 DOI: 10.1111/jnc.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.
Collapse
Affiliation(s)
- Jessica L Billings
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James B W Hilton
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J Hare
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, New South Wales, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Liu L, Cui Y, Chang YZ, Yu P. Ferroptosis-related factors in the substantia nigra are associated with Parkinson's disease. Sci Rep 2023; 13:15365. [PMID: 37717088 PMCID: PMC10505210 DOI: 10.1038/s41598-023-42574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Ferroptosis is an iron-dependent, lipid peroxidation-driven cell death pathway, while Parkinson's disease (PD) patients exhibit iron deposition and lipid peroxidation in the brain. Thus, the features of ferroptosis highly overlap with the pathophysiological features of PD. Despite this superficial connection, the possible role(s) of ferroptosis-related (Fr) proteins in dopaminergic neurons and/or glial cells in the substantia nigra (SN) in PD have not been examined in depth. To explore the correlations between the different SN cell types and ferroptosis at the single-cell level in PD patients, and to explore genes that may affect the sensitivity of dopaminergic neurons to ferroptosis, we performed in silico analysis of a single cell RNA sequence (RNA-seq) set (GSE178265) from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in the different cell types in the human SN, and proceeded to perform enrichment analysis, constructing a protein-protein interaction network from the DEGs of dopaminergic neurons with the Metascape database. We examined the intersection of Fr genes present in the FerrDb database with DEGs from the GSE178265 set to identify Fr-DEGs in the different brain cells. Further, we identified Fr-DEGs encoding secreted proteins to implicate cell-cell interactions in the potential stimulation of ferroptosis in PD. The Fr-DEGs we identified were verified using the bulk RNA-seq sets (GSE49036 and GSE20164). The number of dopaminergic neurons decreased in the SN of PD patients. Interestingly, non-dopaminergic neurons possessed the fewest DEGs. Enrichment analysis of dopaminergic neurons' DEGs revealed changes in transmission across chemical synapses and ATP metabolic process in PD. The secreted Fr-DEGs identified were ceruloplasmin (CP), high mobility group box 1 (HMGB1) and transferrin (TF). The bulk RNA-seq set from the GEO database demonstrates that CP expression is increased in the PD brain. In conclusion, our results identify CP as a potential therapeutic target to protect dopaminergic neurons by reducing neurons' sensitivity to ferroptosis.
Collapse
Affiliation(s)
- Lei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang, 050024, Hebei Province, China
| | - Yange Cui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang, 050024, Hebei Province, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang, 050024, Hebei Province, China.
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang, 050024, Hebei Province, China.
| |
Collapse
|
12
|
Apostolopoulou EP, Raikos N, Vlemmas I, Michaelidis E, Brellou GD. Metallothionein I/II Expression and Metal Ion Levels in Correlation with Amyloid Beta Deposits in the Aged Feline Brain. Brain Sci 2023; 13:1115. [PMID: 37509045 PMCID: PMC10377600 DOI: 10.3390/brainsci13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Brain aging has been correlated with high metallothionein I-II (MT-I/II) expression, iron and zinc dyshomeostasis, and Aβ deposition in humans and experimental animals. In the present study, iron and zinc accumulation, the expression of MT-I/II and Aβ42, and their potential association with aging in the feline brain were assessed. Tissue sections from the temporal and frontal grey (GM) and white (WM) matter, hippocampus, thalamus, striatum, cerebellum, and dentate nucleus were examined histochemically for the presence of age-related histopathological lesions and iron deposits and distribution. We found, using a modified Perl's/DAB method, two types of iron plaques that showed age-dependent accumulation in the temporal GM and WM and the thalamus, along with the age-dependent increment in cerebellar-myelin-associated iron. We also demonstrated an age-dependent increase in MT-I/II immunoreactivity in the feline brain. In cats over 7 years old, Aβ immunoreactivity was detected in vessel walls and neuronal somata; extracellular Aβ deposits were also evident. Interestingly, Aβ-positive astrocytes were also observed in certain cases. ICP-MS analysis of brain content regarding iron and zinc concentrations showed no statistically significant association with age, but a mild increase in iron with age was noticed, while zinc levels were found to be higher in the Mature and Senior groups. Our findings reinforce the suggestion that cats could serve as a dependable natural animal model for brain aging and neurodegeneration; thus, they should be further investigated on the basis of metal ion concentration changes and their effects on aging.
Collapse
Affiliation(s)
- Emmanouela P Apostolopoulou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Forensic Medicine & Toxicology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Vlemmas
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Efstratios Michaelidis
- Laboratories of the 3rd Army Veterinary Hospital, Chemical Department, 57001 Thessaloniki, Greece
| | - Georgia D Brellou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
13
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
15
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
16
|
Wang M, Tang G, Zhou C, Guo H, Hu Z, Hu Q, Li G. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer's disease from the perspective of ferroptosis. Chem Biol Interact 2023; 375:110387. [PMID: 36758888 DOI: 10.1016/j.cbi.2023.110387] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic neuroinflammation with amyloid beta-protein deposition and hyperphosphorylated tau protein. The typical clinical manifestation of AD is progressive memory impairment, and AD is considered a multifactorial disease with various etiologies (genetic factors, aging, lifestyle, etc.) and complicated pathophysiological processes. Previous research identified that neuroinflammation and typical microglial activation are significant mechanisms underlying AD, resulting in dysfunction of the nervous system and progression of the disease. Ferroptosis is a novel modality involved in this process. As an iron-dependent form of cell death, ferroptosis, characterized by iron accumulation, lipid peroxidation, and irreversible plasma membrane disruption, promotes AD by accelerating neuronal dysfunction and abnormal microglial activation. In this case, disturbances in brain iron homeostasis and neuronal ferroptosis aggravate neuroinflammation and lead to the abnormal activation of microglia. Abnormally activated microglia release various pro-inflammatory factors that aggravate the dysregulation of iron homeostasis and neuroinflammation, forming a vicious cycle. In this review, we first introduce ferroptosis, microglia, AD, and their relationship. Second, we discuss the nonnegligible role of ferroptosis in the abnormal microglial activation involved in the chronic neuroinflammation of AD to provide new ideas for the identification of potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
17
|
Antignano I, Liu Y, Offermann N, Capasso M. Aging microglia. Cell Mol Life Sci 2023; 80:126. [PMID: 37081238 PMCID: PMC10119228 DOI: 10.1007/s00018-023-04775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Microglia are the tissue-resident macrophage population of the brain, specialized in supporting the CNS environment and protecting it from endogenous and exogenous insults. Nonetheless, their function declines with age, in ways that remain to be fully elucidated. Given the critical role played by microglia in neurodegenerative diseases, a better understanding of the aging microglia phenotype is an essential prerequisite in designing better preventive and therapeutic strategies. In this review, we discuss the most recent literature on microglia in aging, comparing findings in rodent models and human subjects.
Collapse
Affiliation(s)
- Ignazio Antignano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Yingxiao Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nina Offermann
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Melania Capasso
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| |
Collapse
|
18
|
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Castillo-Velazquez U, de Jesus Loera-Arias M, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Combined chronic copper exposure and aging lead to neurotoxicity in vivo. Neurotoxicology 2023; 95:181-192. [PMID: 36775208 DOI: 10.1016/j.neuro.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Uziel Castillo-Velazquez
- Departamento de Inmunología Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo, Nuevo León 66050, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| |
Collapse
|
19
|
Vogler EC, Mahavongtrakul M, Sarkan K, Bohannan RC, Catuara-Solarz S, Busciglio J. Genetic removal of synaptic Zn 2+ impairs cognition, alters neurotrophic signaling and induces neuronal hyperactivity. Front Neurol 2023; 13:882635. [PMID: 36742045 PMCID: PMC9895830 DOI: 10.3389/fneur.2022.882635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023] Open
Abstract
Vesicular Zn2+ (zinc) is released at synapses and has been demonstrated to modulate neuronal responses. However, mechanisms through which dysregulation of zinc homeostasis may potentiate neuronal dysfunction and neurodegeneration are not well-understood. We previously reported that accumulation of soluble amyloid beta oligomers (AβO) at synapses correlates with synaptic loss and that AβO localization at synapses is regulated by synaptic activity and enhanced by the release of vesicular Zn2+ in the hippocampus, a brain region that deteriorates early in Alzheimer's disease (AD). Significantly, drugs regulating zinc homeostasis inhibit AβO accumulation and improve cognition in mouse models of AD. We used both sexes of a transgenic mouse model lacking synaptic Zn2+ (ZnT3KO) that develops AD-like cognitive impairment and neurodegeneration to study the effects of disruption of Zn2+ modulation of neurotransmission in cognition, protein expression and activation, and neuronal excitability. Here we report that the genetic removal of synaptic Zn2+ results in progressive impairment of hippocampal-dependent memory, reduces activity-dependent increase in Erk phosphorylation and BDNF mRNA, alters regulation of Erk activation by NMDAR subunits, increases neuronal spiking, and induces biochemical and morphological alterations consistent with increasing epileptiform activity and neurodegeneration as ZnT3KO mice age. Our study shows that disruption of synaptic Zn2+ triggers neurodegenerative processes and is a potential pathway through which AβO trigger altered expression of neurotrophic proteins, along with reduced hippocampal synaptic density and degenerating neurons, neuronal spiking activity, and cognitive impairment and supports efforts to develop therapeutics to preserve synaptic zinc homeostasis in the brain as potential treatments for AD.
Collapse
Affiliation(s)
- Emily C. Vogler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Matthew Mahavongtrakul
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Kristianna Sarkan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ryan C. Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Silvina Catuara-Solarz
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Ren Z, Cao X, Li C, Zhang J, Li X, Song P, Zhu Y, Liu Z. Ferritin, transferrin, and transferrin receptor in relation to metabolic obesity phenotypes: Findings from the China Health and Nutrition Survey. Front Public Health 2022; 10:922863. [PMID: 36091521 PMCID: PMC9459082 DOI: 10.3389/fpubh.2022.922863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 01/22/2023] Open
Abstract
Background This study aimed to explore the relationship between iron markers and metabolic obesity phenotypes and the role of age. Methods Data were from the China Health and Nutrition Survey 2009. Metabolic obesity phenotypes included metabolically healthy with normal weight (MHNW), metabolically unhealthy with normal weight (MUNW), metabolically healthy with overweight/obesity (MHO), and metabolically unhealthy with overweight/obesity (MUO). Iron markers including ferritin, transferrin, and soluble transferrin receptor were calculated as Log and quartered. The linear regression and multinomial logistic regression were used to explore the association of iron markers with age and metabolic obesity phenotypes, respectively. Results Ferritin was linearly related with age, with β (95% confidence interval, CI) of 0.029 (0.027 to 0.032) and -0.005 (-0.007 to -0.002) for women and men. Transferrin was negatively associated with age in both men and women (β < -0.011). Furthermore, compared with participants in the quartile 1 ferritin group, those in the quartile 4 had increased odds of MUNW, MHO, and MUO, with odds ratio and 95% confidence interval (OR, 95% CI) of 3.06 (2.20 to 4.25), 1.66 (1.35 to 2.05), and 5.27 (4.17 to 6.66). Transferrin showed similar relationships with MUNW, MUO, and MHO; whereas transferrin receptor showed no significance. We also found joint associations of ferritin and transferrin with MUNW, MUO, and MHO. The interactive effect of ferritin and transferrin on MUO was significant (P = 0.015). Conclusion Increased ferritin and transferrin were associated with MUNW, MHO, and MUO. Age should be considered when investigating iron.
Collapse
Affiliation(s)
- Ziyang Ren
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingqi Cao
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxi Li
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyun Zhang
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Li
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Peige Song
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Peige Song
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China,Yimin Zhu
| | - Zuyun Liu
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou, China,Zuyun Liu ;
| |
Collapse
|
21
|
Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, Gao LC. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci 2022; 14:888989. [PMID: 35847685 PMCID: PMC9284275 DOI: 10.3389/fnagi.2022.888989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of senile dementia, includes the complex pathogenesis of abnormal deposition of amyloid beta-protein (Aβ), phosphorylated tau (p-tau) and neuroimmune inflammatory. The neurodegenerative process of AD triggers microglial activation, and the overactivation of microglia produces a large number of neuroimmune inflammatory factors. Microglia dysfunction can lead to disturbances in iron metabolism and enhance iron-induced neuronal degeneration in AD, while elevated iron levels in brain areas affect microglia phenotype and function. In this manuscript, we firstly discuss the role of microglia in AD and then introduce the role of microglia in the immune-inflammatory pathology of AD. Their role in AD iron homeostasis is emphasized. Recent studies on microglia and ferroptosis in AD are also reviewed. It will help readers better understand the role of microglia in iron metabolism in AD, and provides a basis for better regulation of iron metabolism disorders in AD and the discovery of new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
22
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
23
|
Tao L, Kong Y, Xiang Y, Cao Y, Ye X, Liu Z. Implantable optical fiber microelectrode with anti-biofouling ability for in vivo photoelectrochemical analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Neely C, Barkey R, Hernandez C, Flinn J. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res 2022; 430:113918. [DOI: 10.1016/j.bbr.2022.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
25
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
26
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
27
|
Giacobbo BL, Özalay Ö, Mediavilla T, Ericsson M, Axelsson J, Rieckmann A, Sultan F, Marcellino D. The Aged Striatum: Evidence of Molecular and Structural Changes Using a Longitudinal Multimodal Approach in Mice. Front Aging Neurosci 2022; 14:795132. [PMID: 35140600 PMCID: PMC8818755 DOI: 10.3389/fnagi.2022.795132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
To study the aging human brain requires significant resources and time. Thus, mice models of aging can provide insight into changes in brain biological functions at a fraction of the time when compared to humans. This study aims to explore changes in dopamine D1 and D2 receptor availability and of gray matter density in striatum during aging in mice and to evaluate whether longitudinal imaging in mice may serve as a model for normal brain aging to complement cross-sectional research in humans. Mice underwent repeated structural magnetic resonance imaging (sMRI), and [11C]Raclopride and [11C]SCH23390 positron emission tomography (PET) was performed on a subset of aging mice. PET and sMRI data were analyzed by binding potential (BPND), voxel- and tensor-based morphometry (VBM and TBM, respectively). Longitudinal PET revealed a significant reduction in striatal BPND for D2 receptors over time, whereas no significant change was found for D1 receptors. sMRI indicated a significant increase in modulated gray matter density (mGMD) over time in striatum, with limited clusters showing decreased mGMD. Mouse [11C]Raclopride data is compatible with previous reports in human cross-sectional studies, suggesting that a natural loss of dopaminergic D2 receptors in striatum can be assessed in mice, reflecting estimates from humans. No changes in D1 were found, which may be attributed to altered [11C]SCH23390 kinetics in anesthetized mice, suggesting that this tracer is not yet able to replicate human findings. sMRI revealed a significant increase in mGMD. Although contrary to expectations, this increase in modulated GM density may be attributed to an age-related increase in non-neuronal cells.
Collapse
Affiliation(s)
| | - Özgün Özalay
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Tomas Mediavilla
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Fahad Sultan
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Daniel Marcellino
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Marcellino,
| |
Collapse
|
28
|
Liu LL, Du D, Zheng W, Zhang Y. Age-dependent decline of copper clearance at the blood-cerebrospinal fluid barrier. Neurotoxicology 2022; 88:44-56. [PMID: 34718061 PMCID: PMC8748412 DOI: 10.1016/j.neuro.2021.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
The homeostasis of copper (Cu) in the central nervous system is regulated by the blood-brain barrier and blood-cerebrospinal (CSF) barrier (BCB) in the choroid plexus. While proteins responsible for Cu uptake, release, storage and intracellular trafficking exist in the choroid plexus, the influence of age on Cu clearance from the CSF via the choroid plexus and how Cu transporting proteins contribute to the process are unelucidated. This study was designed to test the hypothesis that the aging process diminishes Cu clearance from the CSF of rats by disrupting Cu transporting proteins in the choroid plexus. Data from ventriculo-cisternal perfusion experiments demonstrated greater 64Cu radioactivity in the CSF effluents of older rats (18 months) compared to younger (1 month) and adult (2 months) rats, suggesting much slower removal of Cu by the choroid plexus in old animals. Studies utilizing qPCR and immunofluorescence revealed an age-specific expression pattern of Cu transporting proteins in the choroid plexus. Moreover, proteomic analyses unraveled age-specific proteomes in the choroid plexus with distinct pathway differences, particularly associated with extracellular matrix and neurodevelopment between young and old animals. Taken together, these findings support an age-dependent deterioration in CSF Cu clearance, which appears to be associated with altered subcellular distribution of Cu transporting proteins and proteomes in the choroid plexus.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - David Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA,To whom correspondences shall be sent : Wei Zheng, Ph.D. (contact corresponding author), School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907, Phone: (765) 496-6447, , Yanshu Zhang, Ph.D., School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China,
| | - Yanshu Zhang
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA,School of Public Health, North China University of Science and Technology, Tangshan, China,To whom correspondences shall be sent : Wei Zheng, Ph.D. (contact corresponding author), School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907, Phone: (765) 496-6447, , Yanshu Zhang, Ph.D., School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China,
| |
Collapse
|
29
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
30
|
Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021; 10:39. [PMID: 34657636 PMCID: PMC8522040 DOI: 10.1186/s40035-021-00265-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that primarily affects the elderly. While the etiology of PD is likely multifactorial with the involvement of genetic, environmental, aging and other factors, α-synuclein (α-syn) pathology is a pivotal mechanism underlying the development of PD. In recent years, astrocytes have attracted considerable attention in the field. Although astrocytes perform a variety of physiological functions in the brain, they are pivotal mediators of α-syn toxicity since they internalize α-syn released from damaged neurons, and this triggers an inflammatory response, protein degradation dysfunction, mitochondrial dysfunction and endoplasmic reticulum stress. Astrocytes are indispensable coordinators in the background of several genetic mutations, including PARK7, GBA1, LRRK2, ATP13A2, PINK1, PRKN and PLA2G6. As the most abundant glial cells in the brain, functional astrocytes can be replenished and even converted to functional neurons. In this review, we discuss astrocyte dysfunction in PD with an emphasis on α-syn toxicity and genetic modulation and conclude that astrocyte replenishment is a valuable therapeutic approach in PD.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tongtong Yang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
31
|
Influence of aging and gadolinium exposure on T1, T2, and T2*-relaxation in healthy women with an increased risk of breast cancer with and without prior exposure to gadoterate meglumine at 3.0-T brain MR imaging. Eur Radiol 2021; 32:331-345. [PMID: 34218287 PMCID: PMC8660719 DOI: 10.1007/s00330-021-08069-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
Objectives We examined the effects of aging and of gadolinium-based contrast agent (GBCA) exposure on MRI measurements in brain nuclei of healthy women. Methods This prospective, IRB-approved single-center case-control study enrolled 100 healthy participants of our high-risk screening center for hereditary breast cancer, who had received at least six doses of macrocyclic GBCA (exposed group) or were newly entering the program (GBCA-naïve group). The cutoff “at least six doses” was chosen to be able to include a sufficient number of highly exposed participants. All participants underwent unenhanced 3.0-T brain MRI including quantitative T1, T2, and R2* mapping and T1- and T2-weighted imaging. The relaxation times/signal intensities were derived from region of interest measurements in the brain nuclei performed by a radiologist and a neuroradiologist, both board certified. Statistical analysis was based on descriptive evaluations and uni-/multivariable analyses. Results The participants (exposed group: 49, control group: 51) were aged 42 ± 9 years. In a multivariable model, age had a clear impact on R2* (p < 0.001–0.012), T2 (p = 0.003–0.048), and T1 relaxation times/signal intensities (p < 0.004–0.046) for the majority of deep brain nuclei, mostly affecting the substantia nigra, globus pallidus (GP), nucleus ruber, thalamus, and dentate nucleus (DN). The effect of prior GBCA administration on T1 relaxation times was statistically significant for the DN, GP, and pons (p = 0.019–0.037). Conclusions In a homogeneous group of young to middle-aged healthy females aging had an effect on T2 and R2* relaxation times and former GBCA applications influenced the measured T1 relaxation times. Key Points The quantitative T1, T2, and R2* relaxation times measured in women at high risk of developing breast cancer showed characteristic bandwidth for all brain nuclei examined at 3.0-T MRI. The effect of participant age had a comparatively strong impact on R2*, T2, and T1 relaxation times for the majority of brain nuclei examined. The effect of prior GBCA administrations on T1 relaxation times rates was comparatively less pronounced, yielding statistically significant results for the dentate nucleus, globus pallidus, and pons.
Summary statement Healthy women with and without previous GBCA-enhanced breast MRI exhibited age-related T2* and T2 relaxation alterations at 3.0 T-brain MRI. T1 relaxation alterations due to prior GBCA administration were comparatively less pronounced. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08069-4.
Collapse
|
32
|
Pannese E. Quantitative, structural and molecular changes in neuroglia of aging mammals: A review. Eur J Histochem 2021; 65. [PMID: 34346664 PMCID: PMC8239453 DOI: 10.4081/ejh.2021.3249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
The neuroglia of the central and peripheral nervous systems undergo numerous changes during normal aging. Astrocytes become hypertrophic and accumulate intermediate filaments. Oligodendrocytes and Schwann cells undergo alterations that are often accompanied by degenerative changes to the myelin sheath. In microglia, proliferation in response to injury, motility of cell processes, ability to migrate to sites of neural injury, and phagocytic and autophagic capabilities are reduced. In sensory ganglia, the number and extent of gaps between perineuronal satellite cells – that leave the surfaces of sensory ganglion neurons directly exposed to basal lamina – increase significantly. The molecular profiles of neuroglia also change in old age, which, in view of the interactions between neurons and neuroglia, have negative consequences for important physiological processes in the nervous system. Since neuroglia actively participate in numerous nervous system processes, it is likely that not only neurons but also neuroglia will prove to be useful targets for interventions to prevent, reverse or slow the behavioral changes and cognitive decline that often accompany senescence.
Collapse
Affiliation(s)
- Ennio Pannese
- Emeritus, Full Professor of Normal Human Anatomy and Neurocytology at the University of Milan.
| |
Collapse
|
33
|
Region-specific vulnerability in neurodegeneration: lessons from normal ageing. Ageing Res Rev 2021; 67:101311. [PMID: 33639280 PMCID: PMC8024744 DOI: 10.1016/j.arr.2021.101311] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Why neurodegenerative disease pathology is regionally restricted remains elusive. Regions selectively prone to neurodegeneration are also vulnerable to normal ageing. Nervous system tissue, cellular and molecular ageing may determine regional vulnerability. Differential ageing can conceptually extend from an individual to subcellular scale. An understanding of region-specific vulnerability might guide therapeutic advances.
A number of age-associated neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), possess a shared characteristic of region-specific neurodegeneration. However, the mechanisms which determine why particular regions within the nervous system are selectively vulnerable to neurodegeneration, whilst others remain relatively unaffected throughout disease progression, remain elusive. Here, we review how regional susceptibility to the ubiquitous physiological phenomenon of normal ageing might underlie the vulnerability of these same regions to neurodegeneration, highlighting three regions archetypally associated with AD, PD and ALS (the hippocampus, substantia nigra pars compacta and ventral spinal cord, respectively), as especially prone to age-related alterations. Placing particular emphasis on these three regions, we comprehensively explore differential regional susceptibility to nervous system tissue, cellular and molecular level ageing to provide an integrated perspective on why age-related neurodegenerative diseases exhibit region-selective vulnerability. Combining these principles with increasingly recognised differences between chronological and biological ageing (termed differential or ‘delta’ ageing) might ultimately guide therapeutic approaches for these devastating neurodegenerative diseases, for which a paucity of disease modifying and/or life promoting treatments currently exist.
Collapse
|
34
|
Witt B, Stiboller M, Raschke S, Friese S, Ebert F, Schwerdtle T. Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers. J Trace Elem Med Biol 2021; 65:126711. [PMID: 33486291 DOI: 10.1016/j.jtemb.2021.126711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer's disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. METHODS In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. RESULTS Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. CONCLUSION One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Michael Stiboller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sharleen Friese
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
35
|
Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021; 22:4402. [PMID: 33922383 PMCID: PMC8122783 DOI: 10.3390/ijms22094402] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ageing represents the single biggest risk factor for development of neurodegenerative disease. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells. Consequently, the literature contains multiple descriptions and categorisations of microglia with neurotoxic phenotypes, including senescence, without any unifying markers. The role of microglia in brain homeostasis, particularly iron storage and metabolism, may provide a key to reliable identification.
Collapse
Affiliation(s)
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
36
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
37
|
Kumar V, Kumar A, Singh K, Avasthi K, Kim JJ. Neurobiology of zinc and its role in neurogenesis. Eur J Nutr 2021; 60:55-64. [PMID: 33399973 DOI: 10.1007/s00394-020-02454-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Zinc (Zn) has a diverse role in many biological processes, such as growth, immunity, anti-oxidation system, homeostatic, and repairing. It acts as a regulatory and structural catalyst ion for activities of various proteins, enzymes, and signal transcription factors, as well as cell proliferation, differentiation, and survival. The Zn ion is essential for neuronal signaling and is mainly distributed within presynaptic vesicles. Zn modulates neuronal plasticity and synaptic activity in both neonatal and adult stages. Alterations in brain Zn status results in a dozen neurological diseases including impaired brain development. Numerous researchers are working on neurogenesis, however, there is a paucity of knowledge about neurogenesis, especially in neurogenesis in adults. Neurogenesis is a multifactorial process and is regulated by many metal ions (e.g. Fe, Cu, Zn, etc.). Among them, Zn has an essential role in neurogenesis. At the molecular level, Zn controls cell cycle, apoptosis, and binding of DNA and several proteins including transcriptional and translational factors. Zn is needed for protein folding and function and Zn acts as an anti-apoptotic agent; organelle stabilizer; and an anti-inflammatory agent. Zn deficiency results in aging, neurodegenerative disease, immune deficiency, abnormal growth, cancer, and other symptoms. Prenatal deficiency of Zn results in developmental disorders in humans and animals. CONCLUSION Both in vitro and in vivo studies have shown an association between Zn deficiency and increased risk of neurological disorders. This article reviews the existing knowledge on the role of Zn and its importance in neurogenesis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Ashok Kumar
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, UP, India
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, 250002, India
| | - Kapil Avasthi
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, UP, India
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
38
|
Summers KL, Dolgova NV, Gagnon KB, Sopasis GJ, James AK, Lai B, Sylvain NJ, Harris HH, Nichol HK, George GN, Pickering IJ. PBT2 acts through a different mechanism of action than other 8-hydroxyquinolines: an X-ray fluorescence imaging study. Metallomics 2020; 12:1979-1994. [PMID: 33169753 DOI: 10.1039/d0mt00222d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
8-Hydroxyquinolines (8HQs) comprise a family of metal-binding compounds that have been used or tested for use in numerous medicinal applications, including as treatments for bacterial infection, Alzheimer's disease, and cancer. Two key 8HQs, CQ (5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (2-(dimethylamino)methyl-5,7-dichloro-8-hydroxyquinoline), have drawn considerable interest and have been the focus of many studies investigating their in vivo properties. These drugs have been described as copper and zinc ionophores because they do not cause metal depletion, as would be expected for a chelation mechanism, but rather cellular accumulation of these ions. In studies of their anti-cancer properties, CQ has been proposed to elicit toxic intracellular copper accumulation and to trigger apoptotic cancer cell death through several possible pathways. In this study we used synchrotron X-ray fluorescence imaging, in combination with biochemical assays and light microscopy, to investigate 8HQ-induced alterations to metal ion homeostasis, as well as cytotoxicity and cell death. We used the bromine fluorescence from a bromine labelled CQ congener (5,7-dibromo-8-hydroxyquinoline; B2Q) to trace the intracellular localization of B2Q following treatment and found that B2Q crosses the cell membrane. We also found that 8HQ co-treatment with Cu(ii) results in significantly increased intracellular copper and significant cytotoxicity compared with 8HQ treatments alone. PBT2 was found to be more cytotoxic, but a weaker Cu(ii) ionophore than other 8HQs. Moreover, treatment of cells with copper in the presence of CQ or B2Q resulted in copper accumulation in the nuclei, while PBT2-guided copper was distributed near to the cell membrane. These results suggest that PBT2 may be acting through a different mechanism than that of other 8HQs to cause the observed cytotoxicity.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
40
|
Pushie M, Hollings A, Reinhardt J, Webb S, Lam V, Takechi R, Mamo J, Paterson P, Kelly M, George G, Pickering I, Hackett M. Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2020; 35:2498-2508. [PMID: 33795908 PMCID: PMC8009441 DOI: 10.1039/d0ja00323a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transition metal ions (Fe, Mn, Cu, Zn) are essential for healthy brain function, but altered concentration, distribution, or chemical form of the metal ions has been implicated in numerous brain pathologies. Currently, it is not possible to image the cellular or sub-cellular distribution of metal ions in vivo and therefore, studying brain-metal homeostasis largely relies on ex vivo in situ elemental mapping. Sample preparation methods that accurately preserve the in vivo elemental distribution are essential if one wishes to translate the knowledge of elemental distributions measured ex vivo toward increased understanding of chemical and physiological pathways of brain disease. The choice of sample preparation is particularly important for metal ions that exist in a labile or mobile form, for which the in vivo distribution could be easily distorted by inappropriate sample preparation. One of the most widely studied brain structures, the hippocampus, contains a large pool of labile and mobile Zn. Herein, we describe how sucrose cryoprotection, the gold standard method of preparing tissues for immuno-histochemistry or immuno-fluorescence, which is also often used as a sample preparation method for elemental mapping studies, drastically alters hippocampal Zn distribution. Based on the results of this study, in combination with a comparison against the strong body of published literature that has used either rapid plunge freezing of brain tissue, or sucrose cryo-protection, we strongly urge investigators in the future to cease using sucrose cryoprotection as a method of sample preparation for elemental mapping, especially if Zn is an analyte of interest.
Collapse
Affiliation(s)
- M.J. Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - A. Hollings
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, AUS
| | - J. Reinhardt
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, AUS 3168
| | - S.M. Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA 94025
| | - V. Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - R Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - J.C. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - P.G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - M.E. Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - G.N. George
- School Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - I.J. Pickering
- School Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - M.J. Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, AUS
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, AUS
| |
Collapse
|
41
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
42
|
Zhou J, Jin Y, Lei Y, Liu T, Wan Z, Meng H, Wang H. Ferroptosis Is Regulated by Mitochondria in Neurodegenerative Diseases. NEURODEGENER DIS 2020; 20:20-34. [PMID: 32814328 DOI: 10.1159/000510083] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases are characterized by a gradual decline in motor and/or cognitive function caused by the selective degeneration and loss of neurons in the central nervous system, but their pathological mechanism is still unclear. Previous research has revealed that many forms of cell death, such as apoptosis and necrosis, occur in neurodegenerative diseases. Research in recent years has noticed that there is a new type of cell death in neurodegenerative diseases: ferroptosis. An increasing body of literature provides evidence for an involvement of ferroptosis in neurodegenerative diseases. SUMMARY In this article, we review a new form of cell death in neurodegenerative diseases: ferroptosis. Ferroptosis is defined as an iron-dependent form of regulated cell death, which occurs through the lethal accumulation of lipid-based reactive oxygen species when glutathione-dependent lipid peroxide repair systems are compromised. Several salient and established features of neurodegenerative diseases (including lipid peroxidation and iron dyshomeostasis) are consistent with ferroptosis, which means that ferroptosis may be involved in the progression of neurodegenerative diseases. In addition, as the center of energy metabolism in cells, mitochondria are also closely related to the regulation of iron homeostasis in the nervous system. At the same time, neurodegenerative diseases are often accompanied by degeneration of mitochondrial activity. Mitochondrial damage has been found to be involved in lipid peroxidation and iron dyshomeostasis in neurodegenerative diseases. Key Messages: Based on the summary of the related mechanisms of ferroptosis, we conclude that mitochondrial damage may affect neurodegenerative diseases by regulating many aspects of ferroptosis, including cell metabolism, iron dyshomeostasis, and lipid peroxidation.
Collapse
Affiliation(s)
- Juepu Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yao Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuhong Lei
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Tianyi Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zheng Wan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hao Meng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China,
| | - Honglei Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Zinc Therapy in Early Alzheimer's Disease: Safety and Potential Therapeutic Efficacy. Biomolecules 2020; 10:biom10081164. [PMID: 32784855 PMCID: PMC7466035 DOI: 10.3390/biom10081164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc therapy is normally utilized for treatment of Wilson disease (WD), an inherited condition that is characterized by increased levels of non-ceruloplasmin bound ('free') copper in serum and urine. A subset of patients with Alzheimer's disease (AD) or its prodromal form, known as Mild Cognitive Impairment (MCI), fail to maintain a normal copper metabolic balance and exhibit higher than normal values of non-ceruloplasmin copper. Zinc's action mechanism involves the induction of intestinal cell metallothionein, which blocks copper absorption from the intestinal tract, thus restoring physiological levels of non-ceruloplasmin copper in the body. On this basis, it is employed in WD. Zinc therapy has shown potential beneficial effects in preliminary AD clinical trials, even though the studies have missed their primary endpoints, since they have study design and other important weaknesses. Nevertheless, in the studied AD patients, zinc effectively decreased non-ceruloplasmin copper levels and showed potential for improved cognitive performances with no major side effects. This review discusses zinc therapy safety and the potential therapeutic effects that might be expected on a subset of individuals showing both cognitive complaints and signs of copper imbalance.
Collapse
|
44
|
Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence of ferroptosis. Redox Biol 2020; 32:101494. [PMID: 32199332 PMCID: PMC7083890 DOI: 10.1016/j.redox.2020.101494] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Iron dyshomeostasis is implicated in Alzheimer’s disease (AD) alongside β-amyloid and tau pathologies. Despite the recent discovery of ferroptosis, an iron-dependent form cell death, hitherto, in vivo evidence of ferroptosis in AD is lacking. The present study uniquely adopts an integrated multi-disciplinary approach, combining protein (Western blot) and elemental analysis (total reflection X-ray fluorescence) with metabolomics (1H nuclear magnetic resonance spectroscopy) to identify iron dyshomeostasis and ferroptosis, and possible novel interactions with metabolic dysfunction in age-matched male cognitively normal (CN) and AD post-mortem brain tissue (n = 7/group). Statistical analysis was used to compute differences between CN and AD, and to examine associations between proteins, elements and/or metabolites. Iron dyshomeostasis with elevated levels of ferritin, in the absence of increased elemental iron, was observed in AD. Moreover, AD was characterised by enhanced expression of the light-chain subunit of the cystine/glutamate transporter (xCT) and lipid peroxidation, reminiscent of ferroptosis, alongside an augmented excitatory glutamate to inhibitory GABA ratio. Protein, element and metabolite associations also greatly differed between CN and AD suggesting widespread metabolic dysregulation in AD. We demonstrate iron dyshomeostasis, upregulated xCT (impaired glutathione metabolism) and lipid peroxidation in AD, suggesting anti-ferroptotic therapies may be efficacious in AD.
Collapse
Affiliation(s)
- Azhaar Ashraf
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jérôme Jeandriens
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Biology and Toxicology, Faculty of Medicine, University of Mons, Place du Parc 20, Mons, Belgium
| | - Harold G Parkes
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
45
|
Bhattacharjee A, Ghosh S, Chatterji A, Chakraborty K. Neuron-glia: understanding cellular copper homeostasis, its cross-talk and their contribution towards neurodegenerative diseases. Metallomics 2020; 12:1897-1911. [PMID: 33295934 DOI: 10.1039/d0mt00168f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the years, the mechanism of copper homeostasis in various organ systems has gained importance. This is owing to the involvement of copper in a wide range of genetic disorders, most of them involving neurological symptoms. This highlights the importance of copper and its tight regulation in a complex organ system like the brain. It demands understanding the mechanism of copper acquisition and delivery to various cell types overcoming the limitation imposed by the blood brain barrier. The present review aims to investigate the existing work to understand the mechanism and complexity of cellular copper homeostasis in the two major cell types of the CNS - the neurons and the astrocytes. It investigates the mechanism of copper uptake, incorporation and export by these cell types. Furthermore, it brings forth the common as well as the exclusive aspects of neuronal and glial copper homeostasis including the studies from copper-based sensors. Glia act as a mediator of copper supply between the endothelium and the neurons. They possess all the qualifications of acting as a 'copper-sponge' for supply to the neurons. The neurons, on the other hand, require copper for various essential functions like incorporation as a cofactor for enzymes, synaptogenesis, axonal extension, inhibition of postsynaptic excitotoxicity, etc. Lastly, we also aim to understand the neuronal and glial pathology in various copper homeostasis disorders. The etiology of glial pathology and its contribution towards neuronal pathology and vice versa underlies the complexity of the neuropathology associated with the copper metabolism disorders.
Collapse
Affiliation(s)
- Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal 700135, India.
| | | | | | | |
Collapse
|