1
|
Semyanov A, Verkhratsky A. Neuroglia in aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:49-67. [PMID: 40122631 DOI: 10.1016/b978-0-443-19104-6.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Aging is associated with morphologic and functional decline of the brain active milieu and, in particular, of the neuroglia, which compromises homeostatic support and neuroprotection. Astrocytes in aging undergo complex and region specific changes, manifested by morphologic atrophy and widespread functional asthenia. Aging leads to mitochondrial malfunction and reduced protein/lipid ratio in human astrocytes. Oligodendrocyte lineage cells are the most affected cells by the aging process, which limits myelinating capacity, thus leading to a substantial reduction in the white matter and deficient brain connectome. Finally, microglia undergo a morphologic functional dystrophy in the aged human brain which curtails brain defenses and increases brain vulnerability to neuropathology and especially to age-dependent neurodegenerative disorders. Lifestyle modifications, such as enriched environment, physical exercise, and healthy dieting, boost neuroglial support, thus improving cognitive longevity.
Collapse
Affiliation(s)
- Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Garg S, Jana A, Khan J, Gupta S, Roy R, Gupta V, Ghosh S. Logic "AND Gate Circuit" Based Mussel Inspired Polydopamine Nanocomposite as Bioactive Antioxidant for Management of Oxidative Stress and Neurogenesis in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36168-36193. [PMID: 38954488 DOI: 10.1021/acsami.4c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3β inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.
Collapse
Affiliation(s)
- Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
3
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
4
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Brown TG, Thayer MN, VanTreeck JG, Zarate N, Hart DW, Heilbronner S, Gomez-Pastor R. Striatal spatial heterogeneity, clustering, and white matter association of GFAP + astrocytes in a mouse model of Huntington's disease. Front Cell Neurosci 2023; 17:1094503. [PMID: 37187609 PMCID: PMC10175581 DOI: 10.3389/fncel.2023.1094503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Huntington's disease (HD) is a neurodegenerative disease that primarily affects the striatum, a brain region that controls movement and some forms of cognition. Neuronal dysfunction and loss in HD is accompanied by increased astrocyte density and astrocyte pathology. Astrocytes are a heterogeneous population classified into multiple subtypes depending on the expression of different gene markers. Studying whether mutant Huntingtin (HTT) alters specific subtypes of astrocytes is necessary to understand their relative contribution to HD. Methods Here, we studied whether astrocytes expressing two different markers; glial fibrillary acidic protein (GFAP), associated with astrocyte activation, and S100 calcium-binding protein B (S100B), a marker of matured astrocytes and inflammation, were differentially altered in HD. Results First, we found three distinct populations in the striatum of WT and symptomatic zQ175 mice: GFAP+, S100B+, and dual GFAP+S100B+. The number of GFAP+ and S100B+ astrocytes throughout the striatum was increased in HD mice compared to WT, coinciding with an increase in HTT aggregation. Overlap between GFAP and S100B staining was expected, but dual GFAP+S100B+ astrocytes only accounted for less than 10% of all tested astrocytes and the number of GFAP+S100B+ astrocytes did not differ between WT and HD, suggesting that GFAP+ astrocytes and S100B+ astrocytes are distinct types of astrocytes. Interestingly, a spatial characterization of these astrocyte subtypes in HD mice showed that while S100B+ were homogeneously distributed throughout the striatum, GFAP+ preferentially accumulated in "patches" in the dorsomedial (dm) striatum, a region associated with goal-directed behaviors. In addition, GFAP+ astrocytes in the dm striatum of zQ175 mice showed increased clustering and association with white matter fascicles and were preferentially located in areas with low HTT aggregate load. Discussion In summary, we showed that GFAP+ and S100B+ astrocyte subtypes are distinctly affected in HD and exist in distinct spatial arrangements that may offer new insights to the function of these specific astrocytes subtypes and their potential implications in HD pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Bondi H, Chiazza F, Masante I, Bortolotto V, Canonico PL, Grilli M. Heterogenous response to aging of astrocytes in murine Substantia Nigra pars compacta and pars reticulata. Neurobiol Aging 2023; 123:23-34. [PMID: 36630756 DOI: 10.1016/j.neurobiolaging.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Currently, little is known about the impact of aging on astrocytes in substantia nigra pars compacta (SNpc), where dopaminergic neurons degenerate both in physiological aging and in Parkinson's disease, an age-related neurodegenerative disorder. We performed a morphometric analysis of GFAP+ astrocytes in SNpc and, for comparison, in the pars reticulata (SNpr) of young (4-6 months), middle-aged (14-17 months) and old (20-24 months) C57BL/6J male mice. We demonstrated an age-dependent increase of structural complexity only in astrocytes localized in SNpc, and not in SNpr. Astrocytic structural remodelling was not accompanied by changes in GFAP expression, while GFAP increased in SNpr of old compared to young mice. In parallel, transcript levels of selected astrocyte-enriched genes were evaluated. With aging, decreased GLT1 expression occurred only in SNpc, while xCT transcript increased both in SNpc and SNpr, suggesting a potential loss of homeostatic control of extracellular glutamate only in the subregion where age-dependent neurodegeneration occurs. Altogether, our results support an heterogenous morphological and biomolecular response to aging of GFAP+ astrocytes in SNpc and SNpr.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Fausto Chiazza
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Irene Masante
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
7
|
Verkhratsky A, Semyanov A. Astrocytes in Ageing. Subcell Biochem 2023; 103:253-277. [PMID: 37120471 DOI: 10.1007/978-3-031-26576-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Ageing is associated with a morphological and functional decline of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is manifested by the shrinkage of astrocytic processes: branches and leaflets, which decreases synaptic coverage. Astrocytic dystrophy affects multiple functions astrocytes play in the brain active milieu. In particular, and in combination with an age-dependent decline in the expression of glutamate transporters, astrocytic atrophy translates into deficient glutamate clearance and K+ buffering. Decreased astrocyte presence may contribute to age-dependent remodelling of brain extracellular space, hence affecting extrasynaptic signalling. Old astrocytes lose endfeet polarisation of AQP4 water channels, thus limiting the operation of the glymphatic system. In ageing, astrocytes down-regulate their antioxidant capacity leading to decreased neuroprotection. All these changes may contribute to an age-dependent cognitive decline.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang Pro, China
| |
Collapse
|
8
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
9
|
Docampo-Seara A, Candal E, Rodríguez MA. Study of the glial cytoarchitecture of the developing olfactory bulb of a shark using immunochemical markers of radial glia. Brain Struct Funct 2022; 227:1067-1082. [PMID: 34997380 PMCID: PMC8930965 DOI: 10.1007/s00429-021-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
During development of the olfactory bulb (OB), glial cells play key roles in axonal guiding/targeting, glomerular formation and synaptic plasticity. Studies in mammals have shown that radial glial cells and peripheral olfactory glia (olfactory ensheathing cells, OECs) are involved in the development of the OB. Most studies about the OB glia were carried out in mammals, but data are lacking in most non-mammalian vertebrates. In the present work, we studied the development of the OB glial system in the cartilaginous fish Scyliorhinus canicula (catshark) using antibodies against glial markers, such as glial fibrillary acidic protein (GFAP), brain lipid-binding protein (BLBP), and glutamine synthase (GS). These glial markers were expressed in cells with radial morphology lining the OB ventricle of embryos and this expression continues in ependymal cells (tanycytes) in early juveniles. Astrocyte-like cells were also observed in the granular layer and surrounding glomeruli. Numerous GS-positive cells were present in the primary olfactory pathway of embryos. In the developmental stages analysed, the olfactory nerve layer and the glomerular layer were the regions with higher GFAP, BLBP and GS immuno-reactivity. In addition, numerous BLBP-expressing cells (a marker of mammalian OECs) showing proliferative activity were present in the olfactory nerve layer. Our findings suggest that glial cells of peripheral and central origin coexist in the OB of catshark embryos and early juveniles. These results open the path for future studies about the differential roles of glial cells in the catshark OB during embryonic development and in adulthood.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,UCL Institute of Ophthalmology, University College London, London, UK
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M A Rodríguez
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
de Siqueira Mendes FDCC, Paixão LTVB, Diniz DG, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. Sedentary Life and Reduced Mastication Impair Spatial Learning and Memory and Differentially Affect Dentate Gyrus Astrocyte Subtypes in the Aged Mice. Front Neurosci 2021; 15:632216. [PMID: 33935629 PMCID: PMC8081835 DOI: 10.3389/fnins.2021.632216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the impact of reduced mastication and a sedentary lifestyle on spatial learning and memory in the aged mice, as well as on the morphology of astrocytes in the molecular layer of dentate gyrus (MolDG), different masticatory regimens were imposed. Control mice received a pellet-type hard diet, while the reduced masticatory activity group received a pellet diet followed by a powdered diet, and the masticatory rehabilitation group received a pellet diet, followed by powder diet and then a pellet again. To mimic sedentary or active lifestyles, mice were housed in an impoverished environment of standard cages or in an enriched environment. The Morris Water Maze (MWM) test showed that masticatory-deprived group, regardless of environment, was not able to learn and remember the hidden platform location, but masticatory rehabilitation combined with enriched environment recovered such disabilities. Microscopic three-dimensional reconstructions of 1,800 glial fibrillary acidic protein (GFAP)-immunolabeled astrocytes from the external third of the MolDG were generated using a stereological systematic and random sampling approach. Hierarchical cluster analysis allowed the characterization into two main groups of astrocytes with greater and lower morphological complexities, respectively, AST1 and AST2. When compared to compared to the hard diet group subjected to impoverished environment, deprived animals maintained in the same environment for 6 months showed remarkable shrinkage of astrocyte branches. However, the long-term environmental enrichment (18-month-old) applied to the deprived group reversed the shrinkage effect, with significant increase in the morphological complexity of AST1 and AST2, when in an impoverished or enriched environment. During housing under enriched environment, complexity of branches of AST1 and AST2 was reduced by the powder diet (pellet followed by powder regimes) in young but not in old mice, where it was reversed by pellet diet (pellet followed by powder and pellet regime again). The same was not true for mice housed under impoverished environment. Interestingly, we were unable to find any correlation between MWM data and astrocyte morphological changes. Our findings indicate that both young and aged mice subjected to environmental enrichment, and under normal or rehabilitated masticatory activity, preserve spatial learning and memory. Nonetheless, data suggest that an impoverished environment and reduced mastication synergize to aggravate age-related cognitive decline; however, the association with morphological diversity of AST1 and AST2 at the MolDG requires further investigation.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Curso de Medicina, Centro Universitário do Estado do Pará, Belém, Brazil
| | - Luisa Taynah Vasconcelos Barbosa Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Gill S, Kumara VMR. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021; 10:793. [PMID: 33918242 PMCID: PMC8103521 DOI: 10.3390/cells10040793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney’s Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | | |
Collapse
|
12
|
Fischer T, Prey J, Eschholz L, Rotermund N, Lohr C. Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes. Front Cell Neurosci 2021; 15:639754. [PMID: 33833669 PMCID: PMC8021869 DOI: 10.3389/fncel.2021.639754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
It is well-established that astrocytes respond to norepinephrine with cytosolic calcium rises in various brain areas, such as hippocampus or neocortex. However, less is known about the effect of norepinephrine on olfactory bulb astrocytes. In the present study, we used confocal calcium imaging and immunohistochemistry in mouse brain slices of the olfactory bulb, a brain region with a dense innervation of noradrenergic fibers, to investigate the calcium signaling evoked by norepinephrine in astrocytes. Our results show that application of norepinephrine leads to a cytosolic calcium rise in astrocytes which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. In addition, store-operated calcium entry (SOCE) contributes to the late phase of the response. Antagonists of both α1- and α2-adrenergic receptors, but not β-receptors, largely reduce the adrenergic calcium response, indicating that both α-receptor subtypes mediate norepinephrine-induced calcium transients in olfactory bulb astrocytes, whereas β-receptors do not contribute to the calcium transients.
Collapse
Affiliation(s)
- Timo Fischer
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Jessica Prey
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lena Eschholz
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|