1
|
Kušleikienė S, Ziv G, Vints WAJ, Krasinskė E, Šarkinaite M, Qipo O, Bautmans I, Himmelreich U, Masiulis N, Česnaitienė VJ, Levin O. Cognitive gains and cortical thickness changes after 12 weeks of resistance training in older adults with low and high risk of mild cognitive impairment: Findings from a randomized controlled trial. Brain Res Bull 2025; 222:111249. [PMID: 39954817 DOI: 10.1016/j.brainresbull.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND In this randomized controlled trial, we assessed the neuroprotective effect of a 12-week resistance training (RT) program on executive control and cortical thickness of the prefrontal, temporal, parietal, and central cortex, regions prone to structural decline in individuals with mild cognitive impairment (MCI). METHODS Seventy older adults (aged 60-85 y old, 38 females and 32 males) were randomly allocated to a 12-week lower limb RT program or a waiting list control group. The Montreal Cognitive Assessment (MoCA) was used to stratify participants screened for high (< 26) or low (≥ 26) MCI risk. Cognitive measurements consisted of the two-choice reaction time, Go/No-go, mathematical processing, and memory search tests. Cortical thickness was estimated from 3D T1-weighted MR images. RESULTS Complete randomized controlled trial data was obtained from 50 individuals (24 with high MCI risk). Significant Group x Time interactions were found for response on the Go/No-go task and cortical thickness of the right parahippocampal gyrus [F ≥ 5.3, p ≤ 0.03; η2p ≥ 0.12]. An inspection of these observations revealed an increase in cortical thickness (+1.18 %) and a decrease in response time (-4.35 %) in individuals with high MCI risk allocated to the exercise group (both uncorrected p = 0.08). Decreased response time on the Go/No-go task was associated with increased cortical thickness in the right entorhinal gyrus (uncorrected p = 0.01). CONCLUSIONS Our study demonstrated that 12 weeks of RT intervention may effectively improve cognitive performance and slow neuronal loss in the hippocampal complex of older adults at high MCI risk. Findings support evidence for the neuroprotective effects of resistance training and its potential role in cognitive health.
Collapse
Affiliation(s)
- Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Gal Ziv
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas LT-44221, Lithuania; The Levinsky-Wingate Academic Center, Netanya 4290200, Israel
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, Maastricht 6229 RE, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek 6432 CC, the Netherlands.
| | - Erika Krasinskė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Milda Šarkinaite
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50009, Lithuania
| | - Orgesa Qipo
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium
| | - Ivan Bautmans
- Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas LT-44221, Lithuania; Frailty & Resilience in Ageing (FRIA) research department, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Jette 1090, Belgium; Motor Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| |
Collapse
|
2
|
Ravichandran S, Snyder PJ, Alber J, Murchison CF, Chaby LE, Jeromin A, Arthur E. Association and multimodal model of retinal and blood-based biomarkers for detection of preclinical Alzheimer's disease. Alzheimers Res Ther 2025; 17:19. [PMID: 39794837 PMCID: PMC11720872 DOI: 10.1186/s13195-024-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD. METHODS We included 82 cognitively unimpaired (CU) participants (141 eyes; mean age: 67 years; range: 56-80) from the Atlas of Retinal Imaging in Alzheimer's Study (ARIAS). Blood samples were assessed for concentrations of Aβ42/Aβ40 ratio, NfL, p-tau181, and p-tau217 (ALZpath, Inc.) using Single molecule array (SIMOA) technology. The Spectralis II system (Heidelberg Engineering) was used to acquire macular centered Spectral Domain Optical Coherence Tomography (SD-OCT) images for evaluation of putative retinal gliosis surface area and macular retinal nerve fiber layer (mRNFL) thickness. For all participants, correlations (adjusted for age and correlation between eyes) were assessed between retinal and blood-based biomarkers. A subgroup cohort of 57 eyes from 32 participants with recent Aβ positron emission tomography (PET) results, comprising 18 preclinical patients (Aβ PET + ve, 32 eyes) and 14 controls (Aβ PET -ve, 25 eyes) with a mean age of 69 vs. 66, p = 0.06, was included for the assessment of a multimodal model to distinguish between the two groups. For this subgroup cohort, receiver operating characteristic (ROC) analysis was performed to compare the multimodal model of retinal and plasma biomarkers vs. each biomarker alone to distinguish between the two groups. RESULTS Significant correlation was found between putative retinal gliosis and p-tau217 in the univariate mixed model (β = 0.48, p = 0.007) but not for the other plasma biomarkers (p > 0.05). This positive correlation was also retained in the multivariate mixed model (β = 0.43, p = 0.022). The multimodal ROC model based on retinal (gliosis area, inner inferior RNFL thickness, inner superior RNFL thickness, and inner nasal RNFL thickness) and plasma biomarkers (p-tau217 and Aβ42/Aβ40 ratio) had an excellent AUC of 0.97 (95% CI = 0.93-1.01; p < 0.001) compared to unimodal models of retinal and plasma biomarkers. CONCLUSIONS Our analyses show the potential of integrating retinal and blood-based biomarkers for improved detection and screening of preclinical AD.
Collapse
Affiliation(s)
- Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, US
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, US
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, US
- Butler Hospital Memory & Aging Program, Providence, RI, US
| | - Charles F Murchison
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, US
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, US
| | | | | | - Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US.
| |
Collapse
|
3
|
Chen C, Das SR, Tisdall MD, Hu F, Chen AA, Yushkevich PA, Wolk DA, Shinohara RT. Subject-Level Segmentation Precision Weights for Volumetric Studies Involving Label Fusion. Hum Brain Mapp 2024; 45:e70082. [PMID: 39697130 PMCID: PMC11656102 DOI: 10.1002/hbm.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/18/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024] Open
Abstract
In neuroimaging research, volumetric data contribute valuable information for understanding brain changes during both healthy aging and pathological processes. Extracting these measures from images requires segmenting the regions of interest (ROIs), and many popular methods accomplish this by fusing labels from multiple expert-segmented images called atlases. However, post-segmentation, current practices typically treat each subject's measurement equally without incorporating any information about variation in their segmentation precision. This naïve approach hinders comparing ROI volumes between different samples to identify associations between tissue volume and disease or phenotype. We propose a novel method that estimates the variance of the measured ROI volume for each subject due to the multi-atlas segmentation procedure. We demonstrate in real data that weighting by these estimates markedly improves the power to detect a mean difference in hippocampal volume between controls and subjects with mild cognitive impairment or Alzheimer's disease.
Collapse
Affiliation(s)
- Christina Chen
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandhitsu R. Das
- Penn Image Computing and Science Laboratory (PICSL), Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics (CBICA), Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - M. Dylan Tisdall
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew A. Chen
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Penn Memory Center, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics (CBICA), Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
4
|
Lee EY, Kim J, Prado-Rico JM, Du G, Lewis MM, Kong L, Yanosky JD, Eslinger P, Kim BG, Hong YS, Mailman RB, Huang X. Effects of mixed metal exposures on MRI diffusion features in the medial temporal lobe. Neurotoxicology 2024; 105:196-207. [PMID: 39395642 PMCID: PMC11701722 DOI: 10.1016/j.neuro.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/01/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Environmental exposure to metal mixtures is common and may be associated with increased risk for neurodegenerative disorders including Alzheimer's disease. This study examined associations of mixed metal exposures with medial temporal lobe (MTL) MRI structural metrics and neuropsychological performance. METHODS Metal exposure history, whole blood metal, MRI R1 (1/T1) and R2* (1/T2*) metrics (estimates of brain Mn and Fe, respectively), and neuropsychological tests were obtained from subjects with/without a history of mixed metal exposure from welding fumes (42 exposed subjects; 31 controls). MTL structures (hippocampus, entorhinal and parahippocampal cortices) were assessed by morphologic (volume or cortical thickness) and diffusion tensor imaging [mean (MD), axial (AxD), radial diffusivity (RD), and fractional anisotropy (FA)] metrics. In exposed subjects, effects of mixed metal exposure on MTL structural and neuropsychological metrics were examined. RESULTS Compared to controls, exposed subjects displayed higher MD, AxD, and RD throughout all MTL ROIs (p's<0.001) with no morphological differences. They also had poorer performance in processing/psychomotor speed, executive, and visuospatial domains (p's<0.046). Long-term mixed metal exposure history indirectly predicted lower processing speed performance via lower parahippocampal FA (p's<0.023). Higher entorhinal R1 and whole blood Mn and Cu levels predicted higher entorhinal diffusivity (p's<0.043) and lower Delayed Story Recall performance (p=0.007). DISCUSSION Mixed metal exposure predicted certain MTL structural and neuropsychological features that are similar to those detected in Alzheimer's disease at-risk populations. These data warrant follow-up as they may illuminate a potential path for environmental exposure to brain changes associated with Alzheimer's disease-related health outcomes.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South Korea.
| | - Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan, South Korea
| | - Janina Manzieri Prado-Rico
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Guangwei Du
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Lan Kong
- Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Jeff D Yanosky
- Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Paul Eslinger
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Richard B Mailman
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurology, School of Medicine, University of Virgina, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Nicola L, Loo SJQ, Lyon G, Turknett J, Wood TR. Does resistance training in older adults lead to structural brain changes associated with a lower risk of Alzheimer's dementia? A narrative review. Ageing Res Rev 2024; 98:102356. [PMID: 38823487 DOI: 10.1016/j.arr.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dementia, particularly Alzheimer's Disease (AD), has links to several modifiable risk factors, especially physical inactivity. When considering the relationship between physcial activity and dementia risk, cognitive benefits are generally attributed to aerobic exercise, with resistance exercise (RE) receiving less attention. This review aims to address this gap by evaluating the impact of RE on brain structures and cognitive deficits associated with AD. Drawing insights from randomized controlled trials (RCTs) utilizing structural neuroimaging, the specific influence of RE on AD-affected brain structures and their correlation with cognitive function are discussed. Preliminary findings suggest that RE induces structural brain changes in older adults that could reduce the risk of AD or mitigate AD progression. Importantly, the impacts of RE appear to follow a dose-response effect, reversing pathological structural changes and improving associated cognitive functions if performed at least twice per week for at least six months, with greatest effects in those already experiencing some element of cognitive decline. While more research is eagerly awaited, this review contributes insights into the potential benefits of RE for cognitive health in the context of AD-related changes in brain structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Institute for Human and Machine Cognition, Pensacola, FL, USA.
| |
Collapse
|
6
|
Ravichandran S, Snyder PJ, Alber J, Kenny MR, Rothstein A, Brown K, Murchison CF, Clay OJ, Roberson ED, Arthur E. Quantifying Putative Retinal Gliosis in Preclinical Alzheimer's Disease. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 38696189 PMCID: PMC11077916 DOI: 10.1167/iovs.65.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.
Collapse
Affiliation(s)
- Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Peter J. Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, United States
- Butler Hospital Memory and Aging Program, Providence, Rhode Island, United States
| | - Madelyn R. Kenny
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Andrew Rothstein
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Keisha Brown
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Charles F. Murchison
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Olivio J. Clay
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Erik D. Roberson
- Alzheimer's Disease Research Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
7
|
Hoshi H, Hirata Y, Fukasawa K, Kobayashi M, Shigihara Y. Oscillatory characteristics of resting-state magnetoencephalography reflect pathological and symptomatic conditions of cognitive impairment. Front Aging Neurosci 2024; 16:1273738. [PMID: 38352236 PMCID: PMC10861731 DOI: 10.3389/fnagi.2024.1273738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Background Dementia and mild cognitive impairment are characterised by symptoms of cognitive decline, which are typically assessed using neuropsychological assessments (NPAs), such as the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Magnetoencephalography (MEG) is a novel clinical assessment technique that measures brain activities (summarised as oscillatory parameters), which are associated with symptoms of cognitive impairment. However, the relevance of MEG and regional cerebral blood flow (rCBF) data obtained using single-photon emission computed tomography (SPECT) has not been examined using clinical datasets. Therefore, this study aimed to investigate the relationships among MEG oscillatory parameters, clinically validated biomarkers computed from rCBF, and NPAs using outpatient data retrieved from hospital records. Methods Clinical data from 64 individuals with mixed pathological backgrounds were retrieved and analysed. MEG oscillatory parameters, including relative power (RP) from delta to high gamma bands, mean frequency, individual alpha frequency, and Shannon's spectral entropy, were computed for each cortical region. For SPECT data, three pathological parameters-'severity', 'extent', and 'ratio'-were computed using an easy z-score imaging system (eZIS). As for NPAs, the MMSE and FAB scores were retrieved. Results MEG oscillatory parameters were correlated with eZIS parameters. The eZIS parameters associated with Alzheimer's disease pathology were reflected in theta power augmentation and slower shift of the alpha peak. Moreover, MEG oscillatory parameters were found to reflect NPAs. Global slowing and loss of diversity in neural oscillatory components correlated with MMSE and FAB scores, whereas the associations between eZIS parameters and NPAs were sparse. Conclusion MEG oscillatory parameters correlated with both SPECT (i.e. eZIS) parameters and NPAs, supporting the clinical validity of MEG oscillatory parameters as pathological and symptomatic indicators. The findings indicate that various components of MEG oscillatory characteristics can provide valuable pathological and symptomatic information, making MEG data a rich resource for clinical examinations of patients with cognitive impairments. SPECT (i.e. eZIS) parameters showed no correlations with NPAs. The results contributed to a better understanding of the characteristics of electrophysiological and pathological examinations for patients with cognitive impairments, which will help to facilitate their co-use in clinical application, thereby improving patient care.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Yoko Hirata
- Department of Neurosurgery, Kumagaya General Hospital, Kumagaya, Japan
| | | | - Momoko Kobayashi
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, Japan
| |
Collapse
|
8
|
Iwatsubo T, Irizarry MC, Lewcock JW, Carrillo MC. Alzheimer's Targeted Treatments: Focus on Amyloid and Inflammation. J Neurosci 2023; 43:7894-7898. [PMID: 37968119 PMCID: PMC10669738 DOI: 10.1523/jneurosci.1576-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia that is now threatening the lives of billions of elderly people on the globe, and recent progress in the elucidation of the pathomechanism of AD is now opening venue to tackle the disease by developing and implementing "disease-modifying therapies" that directly act on the pathophysiology and slow down the progression of neurodegeneration. A recent example is the success of clinical trials of anti-amyloid b antibody drugs, whereas other therapeutic targets, e.g., inflammation and tau, are being actively investigated. In this dual perspective session, we plan to have speakers from leading pharmas in the field representing distinct investments in the AD space, which will be followed by the comment from scientific leadership of the Alzheimer's Association who will speak on behalf of all stakeholders. Neuroscientists participating in the Society for Neuroscience may be able to gain insights into the cutting edge of the therapeutic approaches to AD and neurodegenerative disorders, and discuss future contribution of neuroscience to this field.
Collapse
Affiliation(s)
- Takeshi Iwatsubo
- The University of Tokyo, Tokyo 113-0033, Japan
- National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | | | | | | |
Collapse
|
9
|
Duchateau L, Küҫükali F, De Roeck A, Wittens MMJ, Temmerman J, Weets I, Timmers M, Engelborghs S, Bjerke M, Sleegers K. CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response. Alzheimers Res Ther 2023; 15:195. [PMID: 37946268 PMCID: PMC10634183 DOI: 10.1186/s13195-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aβ1-42, Aβ1-40, P-tau181, T-tau, sAPPα, sAPPβ, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aβ ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS Carriers of ABCA7 expansion mutations had significantly lower Aβ1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aβ1-40 (P = 0.023), sAPPα (P = 0.047), sAPPβ (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Fahri Küҫükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Arne De Roeck
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Present Address: Argenx, Ghent, Belgium
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Joke Temmerman
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Ilse Weets
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Experimental Pharmacology (EFAR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium.
| |
Collapse
|
10
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
11
|
Igarashi KM. Entorhinal cortex dysfunction in Alzheimer's disease. Trends Neurosci 2023; 46:124-136. [PMID: 36513524 PMCID: PMC9877178 DOI: 10.1016/j.tins.2022.11.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
The entorhinal cortex (EC) is the brain region that often exhibits the earliest histological alterations in Alzheimer's disease (AD), including the formation of neurofibrillary tangles and cell death. Recently, brain imaging studies from preclinical AD patients and electrophysiological recordings from AD animal models have shown that impaired neuronal activity in the EC precedes neurodegeneration. This implies that memory impairments and spatial navigation deficits at the initial stage of AD are likely caused by activity dysfunction rather than by cell death. This review focuses on recent findings on EC dysfunction in AD, and discusses the potential pathways for mitigating AD progression by protecting the EC.
Collapse
Affiliation(s)
- Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Tetz G. Editorial: Neurodegenerative diseases: From gut-brain axis to brain microbiome. Front Aging Neurosci 2022; 14:1052805. [PMID: 36313030 PMCID: PMC9597617 DOI: 10.3389/fnagi.2022.1052805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
|
13
|
Bjorkli C, Hemler M, Julian JB, Sandvig A, Sandvig I. Combined targeting of pathways regulating synaptic formation and autophagy attenuates Alzheimer’s disease pathology in mice. Front Pharmacol 2022; 13:913971. [PMID: 36052130 PMCID: PMC9426773 DOI: 10.3389/fphar.2022.913971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
All drug trials completed to date have fallen short of meeting the clinical endpoint of significantly slowing cognitive decline in Alzheimer’s disease (AD) patients. In this study, we repurposed two FDA-approved drugs, Fasudil and Lonafarnib, targeting synaptic formation (i.e., Wnt signaling) and cellular clearance (i.e., autophagic) pathways respectively, to test their therapeutic potential for attenuating AD-related pathology. We characterized our 3xTg AD mouse colony to select timepoints for separate and combinatorial treatment of both drugs while collecting cerebrospinal fluid (CSF) using an optimized microdialysis method. We found that treatment with Fasudil reduced Aβ at early and later stages of AD, whereas administration of Lonafarnib had no effect on Aβ, but did reduce tau, at early stages of the disease. Induction of autophagy led to increased size of amyloid plaques when administered at late phases of the disease. We show that combinatorial treatment with both drugs was effective at reducing intraneuronal Aβ and led to improved cognitive performance in mice. These findings lend support to regulating Wnt and autophagic pathways in order to attenuate AD-related pathology.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- *Correspondence: Christiana Bjorkli,
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| | - Joshua B. Julian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
- Department of Clinical Neurosciences, Division of Neuro Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim, Norway
| |
Collapse
|
14
|
Prins S, de Kam ML, Teunissen CE, Groeneveld GJ. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer's disease. Alzheimers Res Ther 2022; 14:106. [PMID: 35922871 PMCID: PMC9347121 DOI: 10.1186/s13195-022-01051-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND This study investigated plasma biomarkers for neuroinflammation associated with Alzheimer's disease (AD) in subjects with preclinical AD compared to healthy elderly. How these biomarkers behave in patients with AD, compared to healthy elderly is well known, but determining these in subjects with preclinical AD is not and will add information related to the onset of AD. When found to be different in preclinical AD, these inflammatory biomarkers may be used to select preclinical AD subjects who are most likely to develop AD, to participate in clinical trials with new disease-modifying drugs. METHODS Healthy elderly (n= 50; age 71.9; MMSE >24) and subjects with preclinical AD (n=50; age 73.4; MMSE >24) defined by CSF Aβ1-42 levels < 1000 pg/mL were included. Four neuroinflammatory biomarkers were determined in plasma, GFAP, YKL-40, MCP-1, and eotaxin-1. Differences in biomarker outcomes were compared using ANCOVA. Subject characteristics age, gender, and APOE ε4 status were reported per group and were covariates in the ANCOVA. Least square means were calculated for all 4 inflammatory biomarkers using both the Aβ+/Aβ- cutoff and Ptau/Aβ1-42 ratio. RESULTS The mean (standard deviation, SD) age of the subjects (n=100) was 72.6 (4.6) years old with 62 male and 38 female subjects. Mean (SD) overall MMSE score was 28.7 (0.49) and 32 subjects were APOE ε4 carriers. The number of subjects in the different APOE ε4 status categories differed significantly between the Aβ+ and Aβ- groups. Plasma GFAP concentration was significantly higher in the Aβ+ group compared to the Aβ- group with significant covariates age and sex, variables that also correlated significantly with GFAP. CONCLUSION GFAP was significantly higher in subjects with preclinical AD compared to healthy elderly which agrees with previous studies. When defining preclinical AD based on the Ptau181/Aβ1-42 ratio, YKL-40 was also significantly different between groups. This could indicate that GFAP and YKL-40 are more sensitive markers of the inflammatory process in response to the Aβ misfolding and aggregation that is ongoing as indicated by the lowered Aβ1-42 levels in the CSF. Characterizing subjects with preclinical AD using neuroinflammatory biomarkers is important for subject selection in new disease-modifying clinical trials. TRIAL REGISTRATION ISRCTN.org identifier: ISRCTN79036545 (retrospectively registered).
Collapse
Affiliation(s)
- Samantha Prins
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, the Netherlands.
- Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Polsky LR, Rentscher KE, Carroll JE. Stress-induced biological aging: A review and guide for research priorities. Brain Behav Immun 2022; 104:97-109. [PMID: 35661679 PMCID: PMC10243290 DOI: 10.1016/j.bbi.2022.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/29/2022] [Indexed: 01/13/2023] Open
Abstract
Exposure to chronic adverse conditions, and the resultant activation of the neurobiological response cascade, has been associated with an increased risk of early onset of age-related disease and, recently, with an older biological age. This body of research has led to the hypothesis that exposure to stressful life experiences, when occurring repeatedly or over a prolonged period, may accelerate the rate at which the body ages. The mechanisms through which chronic psychosocial stress influences distinct biological aging pathways to alter rates of aging likely involve multiple layers in the physiological-molecular network. In this review, we integrate research using animal, human, and in vitro models to begin to delineate the distinct pathways through which chronic psychosocial stress may impact biological aging, as well as the neuroendocrine mediators (i.e., norepinephrine, epinephrine, and glucocorticoids) that may drive these effects. Findings highlight key connections between stress and aging, namely cellular metabolic activity, DNA damage, telomere length, cellular senescence, and inflammatory response patterns. We conclude with a guiding framework and conceptual model that outlines the most promising biological pathways by which chronic adverse conditions could accelerate aging and point to key missing gaps in knowledge where future research could best answer these pressing questions.
Collapse
Affiliation(s)
- Lilian R Polsky
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Kelly E Rentscher
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States; Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, United States.
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| |
Collapse
|
16
|
Lu WH, Giudici KV, Morley JE, Guyonnet S, Parini A, Aggarwal G, Nguyen AD, Li Y, Bateman RJ, Vellas B, de Souto Barreto P. Investigating the combination of plasma amyloid-beta and geroscience biomarkers on the incidence of clinically meaningful cognitive decline in older adults. GeroScience 2022; 44:1489-1503. [PMID: 35445358 PMCID: PMC9213609 DOI: 10.1007/s11357-022-00554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022] Open
Abstract
We investigated combining a core AD neuropathology measure (plasma amyloid-beta [Aβ] 42/40) with five plasma markers of inflammation, cellular stress, and neurodegeneration to predict cognitive decline. Among 401 participants free of dementia (median [IQR] age, 76 [73-80] years) from the Multidomain Alzheimer Preventive Trial (MAPT), 28 (7.0%) participants developed dementia, and 137 (34.2%) had worsening of clinical dementia rating (CDR) scale over 4 years. In the models utilizing plasma Aβ alone, a tenfold increased risk of incident dementia (nonsignificant) and a fivefold increased risk of worsening CDR were observed as each nature log unit increased in plasma Aβ levels. Models incorporating Aβ plus multiple plasma biomarkers performed similarly to models included Aβ alone in predicting dementia and CDR progression. However, improving Aβ model performance for composite cognitive score (CCS) decline, a proxy of dementia, was observed after including plasma monocyte chemoattractant protein 1 (MCP1) and growth differentiation factor 15 (GDF15) as covariates. Participants with abnormal Aβ, GDF15, and MCP1 presented higher CCS decline (worsening cognitive function) compared to their normal-biomarker counterparts (adjusted β [95% CI], - 0.21 [- 0.35 to - 0.06], p = 0.005). In conclusion, our study found limited added values of multi-biomarkers beyond the basic Aβ models for predicting clinically meaningful cognitive decline among non-demented older adults. However, a combined assessment of inflammatory and cellular stress status with Aβ pathology through measuring plasma biomarkers may improve the evaluation of cognitive performance.
Collapse
Affiliation(s)
- Wan-Hsuan Lu
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Kelly Virecoulon Giudici
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sophie Guyonnet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR 1048, University of Toulouse, 31400, Toulouse, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), 31000, Toulouse, France
- Inserm CERPOP - UMR1295, University of Toulouse III, 31000, Toulouse, France
| |
Collapse
|
17
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
18
|
Bjorkli C, Louet C, Flo TH, Hemler M, Sandvig A, Sandvig I. In Vivo Microdialysis in Mice Captures Changes in Alzheimer's Disease Cerebrospinal Fluid Biomarkers Consistent with Developing Pathology. J Alzheimers Dis 2021; 84:1781-1794. [PMID: 34719495 DOI: 10.3233/jad-210715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Preclinical models of Alzheimer's disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. OBJECTIVE An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. METHODS Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. RESULTS We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. CONCLUSION Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude Helen Flo
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neuroscience, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
The relationship of soluble TREM2 to other biomarkers of sporadic Alzheimer's disease. Sci Rep 2021; 11:13050. [PMID: 34158530 PMCID: PMC8219697 DOI: 10.1038/s41598-021-92101-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Microglial activation is a central player in the pathophysiology of Alzheimer’s disease (AD). The soluble fragment of triggering receptor expressed on myeloid cells 2 (sTREM2) can serve as a marker for microglial activation and has been shown to be overexpressed in AD. However, the relationship of sTREM2 with other AD biomarkers has not been extensively studied. We investigated the relationship between cerebrospinal fluid (CSF) sTREM2 and other AD biomarkers and examined the correlation of plasma sTREM2 with CSF sTREM2 in a cohort of individuals with AD and without AD. Participants were consecutively recruited from Asan Medical Center from 2018 to 2020. Subjects were stratified by their amyloid positivity and clinical status. Along with other AD biomarkers, sTREM2 level was measured in the plasma as well as CSF. In 101 patients with either amyloid-positive or negative status, CSF sTREM2 was closely associated with CSF T-tau and P-tau and not with Abeta42. CSF sTREM2 levels were found to be strongly correlated with CSF neurofilament light chain. The comparison of CSF and plasma sTREM2 levels tended to have an inverse correlation. Plasma sTREM2 and P-tau levels were oppositely influenced by age. Our results suggest that neuroinflammation may be closely associated with tau-induced neurodegeneration.
Collapse
|