1
|
Zhao B, Lian X, Zeng P, Wang Y, Cai G, Chen R, Liu J, Chen L. Hippocampal Subfields Related to Cognitive Decline and Peripheral TIM-3 Levels in Elderly with Knee Osteoarthritis. J Pain Res 2025; 18:1697-1709. [PMID: 40182324 PMCID: PMC11967357 DOI: 10.2147/jpr.s496944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose Knee osteoarthritis (KOA) has been linked to increased cognitive decline risk, but the specific mechanisms underlying this phenomenon remain unclear. Research suggests neuroimaging changes and chronic low-grade inflammation may play key roles as common pathways linking osteoarthritis (OA) to cognitive decline. Patients and Methods This cross-sectional study recruited 36 individuals diagnosed with KOA and 25 healthy controls (HCs). Cognition was assessed using the Montreal Cognitive Assessment (MoCA) and the Digit Cancellation Test (DCT). The gray matter volume of 12 hippocampal subfields and the serum TIM-3 levels were also measured. Results KOA patients had significantly lower MoCA scores (P < 0.01) and fewer correct responses on the DCT (P < 0.01). They also exhibited a larger volume of the right hippocampal tail (FDR-corrected P = 0.010) and a smaller volume of the right hippocampal fissure (FDR-corrected P = 0.036). Correlation analysis revealed that the volume of the right hippocampal tail was associated with the number of correct responses on the DCT (r = -0.356, P = 0.049). Additionally, a smaller volume of the left hippocampal fissure was linked to higher serum TIM-3 levels (r = -0.404, P = 0.030) in KOA patients. Conclusion The hippocampal tail and hippocampal fissure exhibited reduced volume in KOA patients, and these changes were associated with alterations in attention and serum TIM-3 levels, respectively. These findings suggest a potential link between KOA and cognitive decline through inflammation and neuroscience, offering a theoretical basis for further study. Meanwhile, serum TIM-3 and right hippocampal fissure/tail volume might be potential biomarkers for detecting cognitive decline in KOA patients. Further studies are necessary for the investigation of this possibility.
Collapse
Affiliation(s)
- Baoru Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Xiaowen Lian
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Peiling Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yajun Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Guiyan Cai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Ruilin Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, Fuzhou, Fujian, People’s Republic of China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Wu Y, Chen W, Jian J, Liu W, Wang H, Gao D, Liu W. The potential molecular markers of inflammatory response in KOA with AD based on single-cell transcriptome sequencing analysis and identification of ligands by virtual screening. Mol Divers 2025; 29:319-336. [PMID: 38622351 DOI: 10.1007/s11030-024-10854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.
Collapse
Affiliation(s)
- Yufeng Wu
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Junde Jian
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Weinian Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangzhou Orthopedic Hospital, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510045, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- The First Clinical Medical College, Guangdong Province, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dawei Gao
- Traditional Chinese Medicine Hospital of Zhongshan, Zhongshan, 528400, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Wengang Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- The Fifth Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510095, China.
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| |
Collapse
|
3
|
Xia Y, Wang X, Lin S, Dong TTX, Tsim KWK. Berberine and palmatine, acting as allosteric potential ligands of α7 nAChR, synergistically regulate inflammation and phagocytosis of microglial cells. FASEB J 2024; 38:e70094. [PMID: 39373933 DOI: 10.1096/fj.202302538rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Berberine and palmatine are isoquinoline quaternary alkaloids derived from Chinese medicinal herbs. These alkaloids have shown promising synergy in inhibiting acetylcholinesterase (AChE), indicating their potential in treating Alzheimer's disease (AD). Besides, the anti-inflammatory effects of berberine and palmatine have been widely reported, although the underlying mechanism remains unclear. Here, we found that berberine and palmatine could induce calcium ion (Ca2+) influx via activating α7 nicotinic acetylcholine receptor (α7 nAChR) in cultured microglial cells, possibly serving as its allosteric potential ligands. Furthermore, we examined the synergistic anti-inflammatory effects of berberine and palmatine in the LPS-induced microglia, that significantly suppressed the production of TNF-α and iNOS. Notably, this suppression was reversed by co-treatment with a selective antagonist of α7 nAChR. Moreover, the alkaloid-induced microglial phagocytosis was shown to be mediated by the induction of Ca2+ influx through α7 nAChR and subsequent CaMKII-Rac1-dependent pathway. Additionally, the combination of berberine and palmatine, at low concentration, protected against the LPS-induced endoplasmic reticulum stress and mitochondrial dysfunction in microglia. These findings indicate the potential of berberine and palmatine, either individually or in combination, in contributing to anti-AD drug development, which provide valuable insights into the mechanisms by which natural products, such as plant alkaloids, exert their anti-AD effects.
Collapse
Affiliation(s)
- Yingjie Xia
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Xiaoyang Wang
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Shengying Lin
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tina T X Dong
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
5
|
Gharpure M, Vyavahare S, Ahluwalia P, Gupta SK, Lee TJ, Lohakare J, Kolhe R, Lei Y, Deak F, Lu XY, Isales CM, Fulzele S. Alterations in Alzheimer's disease microglia transcriptome might be involved in bone pathophysiology. Neurobiol Dis 2024; 191:106404. [PMID: 38184014 DOI: 10.1016/j.nbd.2024.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.
Collapse
Affiliation(s)
- Mohini Gharpure
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | | | - Tae Jin Lee
- Division of Biostatistics and Data Science, Augusta University, Augusta, GA, USA
| | - Jayant Lohakare
- College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA 30912, USA
| | - Yun Lei
- Department of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Ferenc Deak
- Department of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA; Center for Healthy Aging, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Karnik SJ, Margetts TJ, Wang HS, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA, Plotkin LI. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health. Curr Osteoporos Rep 2024; 22:165-176. [PMID: 38285083 PMCID: PMC10912190 DOI: 10.1007/s11914-023-00847-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Culibrk RA, Ebbert KA, Yeisley DJ, Chen R, Qureshi FA, Hahn J, Hahn MS. Impact of Suramin on Key Pathological Features of Sporadic Alzheimer's Disease-Derived Forebrain Neurons. J Alzheimers Dis 2024; 98:301-318. [PMID: 38427475 DOI: 10.3233/jad-230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100μM suramin for 72 h, followed by assessments for amyloid-β, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.
Collapse
Affiliation(s)
- Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Katherine A Ebbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fatir A Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
8
|
Rajamaki B, Braithwaite B, Hartikainen S, Tolppanen AM. Identifying Comorbidity Patterns in People with and without Alzheimer's Disease Using Latent Dirichlet Allocation. J Alzheimers Dis 2024; 101:1393-1403. [PMID: 39302369 PMCID: PMC11492117 DOI: 10.3233/jad-240490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Background Multimorbidity is common in older adults and complicates diagnosing and care for this population. Objective We investigated co-occurrence patterns (clustering) of medical conditions in persons with Alzheimer's disease (AD) and their matched controls. Methods The register-based Medication use and Alzheimer's disease study (MEDALZ) includes 70,718 community-dwelling persons with incident AD diagnosed during 2005-2011 in Finland and a matched comparison cohort. Latent Dirichlet Allocation was used to cluster the comorbidities (ICD-10 diagnosis codes). Modeling was performed separately for AD and control cohorts. We experimented with different numbers of clusters (also known as topics in the field of Natural Language Processing) ranging from five to 20. Results In both cohorts, 17 of the 20 most frequent diagnoses were the same. Based on a qualitative assessment by medical experts, the cluster patterns were not affected by the number of clusters, but the best interpretability was observed in the 10-cluster model. Quantitative assessment of the optimal number of clusters by log-likelihood estimate did not imply a specific optimal number of clusters. Multidimensional scaling visualized the variability in cluster size and (dis)similarity between the clusters with more overlapping of clusters and variation in group size seen in the AD cohort. Conclusions Early signs and symptoms of AD were more commonly clustered together in the AD cohort than in the comparison cohort. This study experimented with using natural language processing techniques for clustering patterns from an epidemiological study. From the computed clusters, it was possible to qualitatively identify multimorbidity that differentiates AD cases and controls.
Collapse
Affiliation(s)
- Blair Rajamaki
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| | | | - Sirpa Hartikainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| | - Anna-Maija Tolppanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Ho A, Ngala B, Yamada C, Garcia C, Duarte C, Akkaoui J, Ciolac D, Nusbaum A, Kochen W, Efremova D, Groppa S, Nathanson L, Bissel S, Oblak A, Kacena MA, Movila A. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomed Pharmacother 2023; 166:115435. [PMID: 37666180 DOI: 10.1016/j.biopha.2023.115435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
Collapse
Affiliation(s)
- Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dumitru Ciolac
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Kochen
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Daniela Efremova
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Stanislav Groppa
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Stephanie Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
10
|
Curcumin Release from Biomaterials for Enhanced Tissue Regeneration Following Injury or Disease. Bioengineering (Basel) 2023; 10:bioengineering10020262. [PMID: 36829756 PMCID: PMC9951943 DOI: 10.3390/bioengineering10020262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Curcumin, a bioactive phenol derived from turmeric, is an antioxidant, anti-inflammatory, and antibacterial molecule. Although curcumin exhibits beneficial effects in its innate form, it is highly hydrophobic, which leads to poor water solubility and, consequently, low bioavailability. The lack of bioavailability limits curcumin's effectiveness as a treatment and restricts its use in clinical applications. Furthermore, to achieve beneficial, clinically relevant results, high doses of curcumin are required for systemic administration. Many researchers have utilized biomaterial carriers, including electrospun fibers, nanoparticles, hydrogels, and composite scaffolds, to overcome curcumin's principle therapeutic limitation of low bioavailability. By using biomaterials to deliver curcumin directly to injury sites, researchers have harnessed the beneficial natural properties of curcumin while providing scaffolding to support tissue regeneration. This review will provide an in-depth overview of the literature that utilizes biomaterial delivery of curcumin for tissue regeneration in injury and disease models.
Collapse
|
11
|
Ling Y, Upadhyaya P, Chen L, Jiang X, Kim Y. Emulate randomized clinical trials using heterogeneous treatment effect estimation for personalized treatments: Methodology review and benchmark. J Biomed Inform 2023; 137:104256. [PMID: 36455806 PMCID: PMC9845190 DOI: 10.1016/j.jbi.2022.104256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Big data and (deep) machine learning have been ambitious tools in digital medicine, but these tools focus mainly on association. Intervention in medicine is about the causal effects. The average treatment effect has long been studied as a measure of causal effect, assuming that all populations have the same effect size. However, no "one-size-fits-all" treatment seems to work in some complex diseases. Treatment effects may vary by patient. Estimating heterogeneous treatment effects (HTE) may have a high impact on developing personalized treatment. Lots of advanced machine learning models for estimating HTE have emerged in recent years, but there has been limited translational research into the real-world healthcare domain. To fill the gap, we reviewed and compared eleven recent HTE estimation methodologies, including meta-learner, representation learning models, and tree-based models. We performed a comprehensive benchmark experiment based on nationwide healthcare claim data with application to Alzheimer's disease drug repurposing. We provided some challenges and opportunities in HTE estimation analysis in the healthcare domain to close the gap between innovative HTE models and deployment to real-world healthcare problems.
Collapse
Affiliation(s)
- Yaobin Ling
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Fannin 7000, Houston, TX, United States.
| | - Pulakesh Upadhyaya
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Fannin 7000, Houston, TX, United States.
| | - Luyao Chen
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Fannin 7000, Houston, TX, United States.
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Fannin 7000, Houston, TX, United States.
| | - Yejin Kim
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Fannin 7000, Houston, TX, United States.
| |
Collapse
|
12
|
Arabiyat AS, Yeisley DJ, Güiza-Argüello VR, Qureshi F, Culibrk RA, Hahn J, Hahn MS. Effects of Stromal Cell Conditioned Medium and Antipurinergic Treatment on Macrophage Phenotype. Tissue Eng Part C Methods 2022; 28:656-671. [PMID: 36329666 PMCID: PMC9807257 DOI: 10.1089/ten.tec.2022.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The immunomodulatory capacity of the human mesenchymal stromal cell (MSC) secretome has been a critical driver for the development of cell-free MSC products, such as conditioned medium (CM), for regenerative medicine applications. This is particularly true as cell-free MSC products present several advantages over direct autologous or allogeneic MSC delivery with respect to safety, manufacturability, and defined potency. Recently, significant effort has been placed into creating novel MSC CM formulations with an immunomodulatory capacity tailored for specific regenerative contexts. For instance, the immunoregulatory nature of MSC CM has previously been tuned through a number of cytokine-priming strategies. Herein, we propose an alternate method to tailor the immunomodulatory "phenotype" of cytokine-primed MSC CM through coupling with the pharmacological agent, suramin. Suramin interferes with the signaling of purines including extracellular adenosine triphosphate (ATP), which plays a critical role in the activation of the innate immune system after injury. Toward this end, human THP-1-derived macrophages were activated to a proinflammatory phenotype and treated with (1) unprimed/native MSC CM, (2) interferon-γ/tumor necrosis factor α-primed MSC CM (primed CM), (3) suramin alone, or (4) primed MSC CM and suramin (primed CM/suramin). Markers of key macrophage functions-cytokine secretion, autophagy, oxidative stress modulation, and activation/migration-were assessed. Consistent with previous literature, primed CM elevated macrophage secretion of several proinflammatory and pleiotropic cytokines relative to native CM; whereas addition of suramin imparted consistent shifts in terms of TNFα (↓), interleukin-10 (↓), and hepatocyte growth factor (↑) irrespective of CM. In addition, both primed CM and suramin, individually and combined, increased reactive oxygen species production relative to native CM, and addition of suramin to primed CM shifted levels of CX3CL1, a factor involved in ATP-associated macrophage regulation. Varimax rotation assessment of the secreted cytokine profiles confirmed that primed CM/suramin resulted in a THP-1 phenotypic shift away from the lipopolysaccharide-activated proinflammatory state that was distinct from that of primed CM or native CM alone. This altered primed CM/suramin-associated phenotype may prove beneficial for healing in certain regenerative contexts. These results may inform future work coupling antipurinergic treatments with MSC-derived therapies in regenerative medicine applications.
Collapse
Affiliation(s)
- Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| | - Daniel J. Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| | - Viviana R. Güiza-Argüello
- Department of Metallurgical Engineering and Materials Science, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Fatir Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| | - Robert A. Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA
| |
Collapse
|
13
|
Li Y, Zhao Y, Li X, Zhai L, Zheng H, Yan Y, Fu Q, Ma J, Fu H, Zhang Z, Li Z. Biological and therapeutic role of LSD1 in Alzheimer’s diseases. Front Pharmacol 2022; 13:1020556. [PMID: 36386192 PMCID: PMC9640401 DOI: 10.3389/fphar.2022.1020556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a common chronic neurodegenerative disease characterized by cognitive learning and memory impairments, however, current treatments only provide symptomatic relief. Lysine-specific demethylase 1 (LSD1), regulating the homeostasis of histone methylation, plays an important role in the pathogenesis of many neurodegenerative disorders. LSD1 functions in regulating gene expression via transcriptional repression or activation, and is involved in initiation and progression of AD. Pharmacological inhibition of LSD1 has shown promising therapeutic benefits for AD treatment. In this review, we attempt to elaborate on the role of LSD1 in some aspects of AD including neuroinflammation, autophagy, neurotransmitters, ferroptosis, tau protein, as well as LSD1 inhibitors under clinical assessments for AD treatment.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Yuanyuan Zhao
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Xiaona Li
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Liuqun Zhai
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Hua Zheng
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Ying Yan
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
| | - Qiang Fu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haier Fu
- Department of Pharmacy, Yellow River Central Hospital of Yellow River Conservancy Commission, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Haier Fu, ; Zhenqiang Zhang, ; Zhonghua Li,
| |
Collapse
|
14
|
Alzheimer Disease Occurs More Frequently In Patients With Inflammatory Bowel Disease: Insight From a Nationwide Study. J Clin Gastroenterol 2022; 57:501-507. [PMID: 35470286 DOI: 10.1097/mcg.0000000000001714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) affects 5 million Americans and early recognition improves cognitive function. Chronic inflammation and gut microbiome alteration are linked to cognitive decline which are common in inflammatory bowel disease (IBD). We investigated the association of IBD with development of AD. A commercial database (Explorys Inc., Cleveland, OH), an aggregate of electronic health records from 26 major US health care systems, was surveyed. Cohorts of patients with Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) diagnoses of Crohn's disease (CD), ulcerative colitis (UC), and AD were identified. IBD patients with new diagnosis of AD were characterized based on demographic and traditional AD risk factors and IBD-related features. Among 342,740 IBD patients in the database, AD developed in 5750 IBD patients (1.55%). After adjusting for traditional AD risk factors, IBD was identified as an independent risk factor for development of AD [odds ratio (OR)=2.30, 95% confidence interval (CI)=2.10-2.51]. IBD patients with AD were younger in comparison to AD patients without IBD. On sub-group analysis, patients with CD had higher odds of developing AD (adjusted OR=3.34, 95% CI=3.25-3.42) than UC (adjusted OR=1.09, 95% CI=1.06-1.14). Use of tumor necrosis factor (TNF-α) inhibitors in IBD was associated with significantly lower odds of developing AD in both CD and UC. In this population based study, IBD was independently associated with development of AD. Among IBD; the association was stronger in patients with CD in comparison with UC. Use of TNF-α inhibitors was associated with lower odds of developing AD.
Collapse
|
15
|
Kwon MJ, Kim JH, Kim JH, Cho SJ, Nam ES, Choi HG. The Occurrence of Alzheimer's Disease and Parkinson's Disease in Individuals With Osteoporosis: A Longitudinal Follow-Up Study Using a National Health Screening Database in Korea. Front Aging Neurosci 2021; 13:786337. [PMID: 34955816 PMCID: PMC8692765 DOI: 10.3389/fnagi.2021.786337] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Public health concerns regarding the potential link between osteoporosis and the increased occurrence of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have been raised, but the results remain inconsistent and require further validation. Here, we investigated the long-term relationship of osteoporosis with the occurrence of AD/PD using data from a large-scale nationwide cohort. Methods: This longitudinal follow-up study included 78,994 patients with osteoporosis and 78,994 controls from the Korean National Health Insurance Service-Health Screening Cohort database (2002–2015) who were matched using propensity score matching at a 1:1 ratio based on age, sex, income, and residential area. A Cox proportional hazard model was used to assess the association between osteoporosis and the occurrence of AD/PD after adjusting for multiple covariates. Results: During the follow-up period, AD occurred in 5,856 patients with osteoporosis and 3,761 controls (incidence rates: 10.4 and 6.8 per 1,000 person-years, respectively), and PD occurred in 1,397 patients and 790 controls (incidence rates: 2.4 and 1.4 per 1,000 person-years, respectively). The incidences of AD and PD were significantly higher in the osteoporosis group than in the matched control group. After adjustment, the osteoporosis group exhibited 1.27-fold and 1.49-fold higher occurrences of AD (95% confidence interval (CI) = 1.22–1.32) and PD (95% CI = 1.36–1.63) than the controls, respectively. The results of subgroup analyses supported the increased occurrence of AD and PD in patients with osteoporosis, independent of income, residential area, obesity, smoking, alcohol consumption, hyperlipidemia, hypertension, or blood glucose level. Conclusion: Our results indicate that the presence of osteoporosis may increase the likelihood of developing two common neurodegenerative diseases in adults aged ≥40 years.
Collapse
Affiliation(s)
- Mi Jung Kwon
- Division of Neuropathology, Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
16
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
17
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
18
|
Römer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front Neurosci 2021; 15:648629. [PMID: 33776642 PMCID: PMC7994506 DOI: 10.3389/fnins.2021.648629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases are associated with chronic inflammation in the brain and periphery giving rise to a continuous imbalance of immune processes. Next to inflammation markers, activation of transposable elements, including long intrespersed nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been identified during neurodegenerative disease progression and even correlated with the clinical severity of the disease. ERVs are remnants of viral infections in the human genome acquired during evolution. Upon activation, they produce transcripts and the phylogenetically youngest ones are still able to produce viral-like particles. In addition, ERVs can bind transcription factors and modulate immune response. Being between own and foreign, ERVs are reviewed in the context of viral infections of the central nervous system, in aging and neurodegenerative diseases. Moreover, this review tests the hypothesis that viral infection may be a trigger at the onset of neuroinflammation and that ERVs sustain the inflammatory imbalance by summarizing existing data of neurodegenerative diseases associated with viruses and/or ERVs.
Collapse
Affiliation(s)
- Christine Römer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
19
|
Culibrk RA, Arabiyat AS, DeKalb CA, Hahn MS. Modeling Sympathetic Hyperactivity in Alzheimer's Related Bone Loss. J Alzheimers Dis 2021; 84:647-658. [PMID: 34569964 DOI: 10.3233/jad-215007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A significant subset of patients with Alzheimer's disease (AD) exhibit low bone mineral density and are therefore more fracture-prone, relative to their similarly aged neurotypical counterparts. In addition to chronic immune hyperactivity, behavioral dysregulation of effector peripheral sympathetic neurons-which densely innervate bone and potently modulate bone remodeling-is implicated in this pathological bone reformation. OBJECTIVE Thus, there exists a pressing need for a robust in vitro model which allows interrogation of the paracrine interactions between the putative mediators of AD-related osteopenia: sympathetic neurons (SNs) and mesenchymal stem cells (MSCs). METHODS Toward this end, activated SN-like PC12 cells and bone marrow derived MSCs were cultured in poly(ethylene glycol) diacrylate (PEGDA) hydrogels in the presence or absence of the AD-relevant inflammatory cytokine tumor necrosis factor alpha (TNF-α) under mono- and co-culture conditions. RESULTS PC12s and MSCs exposed separately to TNF-α displayed increased expression of pro-inflammatory mediators and decreased osteopontin (OPN), respectively. These data indicate that TNF-α was capable of inducing a dysregulated state in both cell types consistent with AD. Co-culture of TNF-α-activated PC12s and MSCs further exacerbated pathological behaviors in both cell types. Specifically, PC12s displayed increased secretion of interleukin 6 relative to TNF-α stimulated monoculture controls. Similarly, MSCs demonstrated a further reduction in osteogenic capacity relative to TNF-α stimulated monoculture controls, as illustrated by a significant decrease in OPN and collagen type I alpha I chain. CONCLUSION Taken together, these data may indicate that dysregulated sympathetic activity may contribute to AD-related bone loss.
Collapse
Affiliation(s)
- Robert A Culibrk
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ahmad S Arabiyat
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carisa A DeKalb
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Hahn Tissue Lab, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|