1
|
Yan XD, Fan RH, Wang Y, Duan XX, Wei X, Li LS, Yu Q. α-asarone activates mitophagy to relieve diabetic encephalopathy via inhibiting apoptosis and oxidative stress. Metab Brain Dis 2025; 40:126. [PMID: 39954135 DOI: 10.1007/s11011-025-01556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Diabetic encephalopathy (DE) is a common complication of diabetes that may result in cognitive impairment. Currently, there is limited effective therapy for DE. Herein, we explored the beneficial effect of α-Asarone on DE and its potential mechanisms. DE was induced in Type 2 diabetes mellitus mice and high-glucose (HG)-exposed PC-12 cells. Cognitive function was evaluated by MWM test. Pathological changes in the brain tissues were observed by HE staining. Cell viability was detected by CCK-8. Apoptosis was assessed by Hoechst 33,342 staining, Annexin V/PI staining and TUNEL. Mitochondrial membrane potential was analyzed by JC-1 probe. ROS production was measured by DCFH-DA staining. Target protein levels were analyzed by Western blotting. Network pharmacology was used to elucidate the beneficial mechanisms of α-Asarone in DE. Our study showed that α-Asarone enhanced cell viability and suppressed apoptosis in HG-stimulated PC-12 cells. Furthermore, α-Asarone relieved HG-induced reduction in mitochondrial membrane potential and ROS overproduction. In addition, mitophagy was triggered by α-Asarone, which was responsible for the inhibitory effect of α-Asarone on apoptosis and oxidative stress. Consistently, the in vivo experiments showed that α-Asarone treatment relieved cognitive dysfunction, apoptosis, and oxidative stress of DE mice via mitophagy induction. However, inhibition of mitophagy by Mdivi-1 counteracted the beneficial action of α-Asarone. Mechanistically, network pharmacology analysis identified 10 key targets of α-Asarone. Molecular docking substantiated a strong affinity of α-Asarone with CASP3, EGFR, NFKB1, and ESR1 proteins. Taken together, α-Asarone protected against mitochondrial dysfunction, oxidative stress and apoptosis via activating mitophagy, thereby alleviating DE. Our findings suggest α-Asarone as a potential drug for DE.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Rong-Hua Fan
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Yu Wang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, P.R. China
| | - Xiao-Xu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P.R. China
| | - Xuan Wei
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China
| | - Lin-Sen Li
- Graduate School, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, Xiao, 110034, Liaoning Province, P.R. China.
| | - Qing Yu
- Department of Medical and Health Industry, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang, 110034, Liaoning Province, P.R. China.
| |
Collapse
|
2
|
Wang Y, Chen Y, Lu J, Xiao Q, Li G, Wang R, Chen R, Zhang DQ. Forsythoside B ameliorates neuroinflammation via inhibiting NLRP3 inflammasome of glial cells in experimental autoimmune encephalomyelitis mice. Brain Res Bull 2025; 220:111182. [PMID: 39730017 DOI: 10.1016/j.brainresbull.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Neuroinflammation mediated by glial cells plays a crucial role in demyelination in experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS) model. Forsythoside B (FTS·B), a natural phenylethanoid glycoside isolated from the dried fruits and leaves of Forsythia suspensa (Thunb.) Vahl, has been found to have antioxidant, anti-apoptotic, and anti-inflammatory properties. However, there is currently no report or research on the effectiveness of FTS·B treatment for EAE. The aim of this study was to investigate the neuroprotective properties of (FTS·B) on EAE and reveal its potential mechanisms. Myelin oligodendrocyte glycoprotein-induced EAE mice were randomly categorized into the control, EAE model, and FTS·B treatment groups. Behavioral testing, pathology, immunohistochemistry, immunofluorescence staining, and western blot analysis of spinal cord tissue were used to determine the effects and mechanisms of FTS·B on EAE in mice. We found that FTS·B treatment could significantly alleviate and reduce the clinical symptoms and morbidity of EAE, respectively. In addition, FTS·B administration reduced inflammatory response and demyelination by inhibiting glial cell activation in the spinal cord of EAE mice. Further experiments confirmed that FTS·B inhibited the formation of NLRP3 inflammasome in microglia and astrocytes, thereby suppressing neuroinflammation and GSDMD-mediated pyroptosis. Altogether, these results suggest that FTS·B treatment attenuates central neuroinflammation and pyroptosis by inhibiting NLRP3 inflammasome of glial cells in EAE mice.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yongmin Chen
- Department of Functional Diagnosis, the Second Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Jing Lu
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Qinqin Xiao
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ge Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Rong Chen
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China.
| | - Da-Qi Zhang
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China.
| |
Collapse
|
3
|
Chen X, Song Y, Hong Y, Zhang X, Li Q, Zhou H. "NO" controversy?: A controversial role in insulin signaling of diabetic encephalopathy. Mol Cell Endocrinol 2024; 593:112346. [PMID: 39151653 DOI: 10.1016/j.mce.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Insulin, a critical hormone in the human body, exerts its effects by binding to insulin receptors and regulating various cellular processes. While nitric oxide (NO) plays an important role in insulin secretion and acts as a mediator in the signal transduction pathway between upstream molecules and downstream effectors, holds a significant position in the downstream signal network of insulin. Researches have shown that the insulin-NO system exhibits a dual regulatory effect within the central nervous system, which is crucial in the regulation of diabetic encephalopathy (DE). Understanding this system holds immense practical importance in comprehending the targets of existing drugs and the development of potential therapeutic interventions. This review extensively examines the characterization of insulin, NO, Nitric oxide synthase (NOS), specific NO pathway, their interconnections, and the mechanisms underlying their regulatory effects in DE, providing a reference for new therapeutic targets of DE.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd, Hangzhou, Zhejiang, 310007, China.
| | - Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qisong Li
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hongling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
4
|
Baali F, Boudjelal A, Smeriglio A, Righi N, Djemouai N, Deghima A, Bouafia Z, Trombetta D. Phlomis crinita Cav. From Algeria: A source of bioactive compounds possessing antioxidant and wound healing activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118295. [PMID: 38710460 DOI: 10.1016/j.jep.2024.118295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, β-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 μg/mL and a moderate iron chelating activity (IC50 327.44 μg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.
Collapse
Affiliation(s)
- Faiza Baali
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria.
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Nadjat Righi
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria.
| | - Nadjette Djemouai
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria; Microbial Systems Biology Laboratory (LBSM), Higher Normal School of Kouba, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Amirouche Deghima
- Department of Nature and Life Sciences, Faculty of Exact Nature and Life Sciences, University of Biskra, 7000, Algeria.
| | - Zineb Bouafia
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
5
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Xu ZY, Fu SX, Zhao HC, Wang YM, Liu Y, Ma JY, Yu Y, Zhang JL, Han ZP, Zheng MX. Dynamic changes in key factors of the blood-brain barrier in early diabetic mice. J Neuropathol Exp Neurol 2024; 83:763-771. [PMID: 38874450 DOI: 10.1093/jnen/nlae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu-Xian Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hui-Chao Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yin-Min Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Liu
- The 83rd Army Group Hospital of the Chinese People's Liberation Army, Xinxiang, China
| | - Jin-You Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jia-Le Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhan-Peng Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ming-Xue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Yang Y, Wang Y, Wang Y, Ke T, Zhao L. PCSK9 inhibitor effectively alleviated cognitive dysfunction in a type 2 diabetes mellitus rat model. PeerJ 2024; 12:e17676. [PMID: 39157774 PMCID: PMC11330219 DOI: 10.7717/peerj.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background The incidence of diabetes-associated cognitive dysfunction (DACD) is increasing; however, few clinical intervention measures are available for the prevention and treatment of this disease. Research has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, particularly SBC-115076, have a protective effect against various neurodegenerative diseases. However, their role in DACD remains unknown. In this study, we aimed to explore the impact of PCSK9 inhibitors on DACD. Methods Male Sprague-Dawley (SD) rats were used to establish an animal model of type 2 diabetes mellitus (T2DM). The rats were randomly divided into three groups: the Control group (Control, healthy rats, n = 8), the Model group (Model, rats with T2DM, n = 8), and the PCSK9 inhibitor-treated group (Treat, T2DM rats treated with PCSK9 inhibitors, n = 8). To assess the spatial learning and memory of the rats in each group, the Morris water maze (MWM) test was conducted. Hematoxylin-eosin staining and Nissl staining procedures were performed to assess the structural characteristics and functional status of the neurons of rats from each group. Transmission electron microscopy was used to examine the morphology and structure of the hippocampal neurons. Determine serum PCSK9 and lipid metabolism indicators in each group of rats. Use qRT-PCR to detect the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in the hippocampal tissues of each group of rats. Western blot was used to detect the expression of PCSK9 and low-density lipoprotein receptor (LDLR) in the hippocampal tissues of rats. In addition, a 4D label-free quantitative proteomics approach was used to analyse protein expression in rat hippocampal tissues. The expression of selected proteins in hippocampal tissues was verified by parallel reaction monitoring (PRM) and immunohistochemistry (IHC). Results The results showed that the PCSK9 inhibitor alleviated cognitive dysfunction in T2DM rats. PCSK9 inhibitors can reduce PCSK9, total cholesterol (TC), and low-density lipoprotein (LDL) levels in the serum of T2DM rats. Meanwhile, it was found that PCSK9 inhibitors can reduce the expression of PCSK9, IL-1β, IL-6, and TNF-α in the hippocampal tissues of T2DM rats, while increasing the expression of LDLR. Thirteen potential target proteins for the action of PCSK9 inhibitors on DACD rats were identified. PRM and IHC revealed that PCSK9 inhibitors effectively counteracted the downregulation of transthyretin in DACD rats. Conclusion This study uncovered the target proteins and specific mechanisms of PCSK9 inhibitors in DACD, providing an experimental basis for the clinical application of PCSK9 inhibitors for the potential treatment of DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Owona PE, Mengue Ngadena YS, Bilanda DC, Ngoungouré MC, Mbolang Nguegan L, Bidingha A Goufani R, Kahou Tadah RB, Noubom M, Ella AF, Tcheutchoua YC, Ambamba Akamba BD, Bouguem Yandja PC, Keumedjio Teko P, Dzeufiet Djomeni PD, Kamtchouing P. Pterocarpus soyauxii (Fabaceae) aqueous extract to prevent neuropsychiatric disorders associated with menopause by triggering ROS-dependent oxidative damage and inhibiting acetylcholinesterase, GABA-transaminase, and monoamine oxidase A: In vitro, in vivo, and in silico approaches. Heliyon 2024; 10:e33843. [PMID: 39055825 PMCID: PMC11269881 DOI: 10.1016/j.heliyon.2024.e33843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Pterocarpus soyauxii (PS) is traditionally used in Cameroon medicine to alleviate postmenopausal symptoms. Previous research has shown that it has tissue-selective potential and estrogen-mimetic effects on vaginal atrophy. Phytoestrogens like 7-O-acetyl formononetin, khrinone A, and 3',5'-dimethoxy-4-stilbenol were found in its water extract by UHPLC, but there is no evidence of its effects on neurological disorders linked to post-menopause (ND-PO). The study aimed to investigate the phytochemical profile of PS aqueous extract, assess its neuroprotective potential in rats, and explore possible underlying pathways. We used colorimetric assays to study the phytochemical profile of PS extract. Effects of the extract on behavioral parameters, neuronal signaling, and integrity in an 84-day ovariectomized rat model. Molecular docking was performed to assess the ability of 7-O-acetyl formononetin, an isoflavone contained in PS, to cross the BBB and its binding affinity to the active sites of AChE, MAO-A, and GABA-T. Besides, the anti-AChE/BChE, antioxidant, and anti-inflammatory effects of PS were assessed by in vitro tests. PS aqueous extract contains polyphenols (656.58 ± 9.18 mgEAG/100gMS), flavonoids (201.25 ± 5.52 mgEQ/100gDW), and tannins (18.42 ± 1.25 mg/100gDW). It slows down anxiety, depressive disorders, cellular disorganization, and neuronal death in the hippocampus, dentate gyrus, and neocortex. In silico modeling was a powerful tool to assess the 7-O-acetylformononetin's ability to cross the BBB and strongly bind and inhibit AChE, MAO-A, and GABA-T. Thus, by combining GABAergic, cholinergic, and serotoninergic modulation, PS aqueous extract also possesses remarkable anti-AChE/BChE in vitro and induces antioxidant and anti-inflammatory potential in macrophages. Such estromimetics, antioxidant, anti-inflammatory, cholinergic, and monoaminergic modulators represent promising activities to develop neuroprotective drugs with optimal therapeutic profiles for menopausal women.
Collapse
Affiliation(s)
- Pascal Emmanuel Owona
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Yolande Sandrine Mengue Ngadena
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
- Neurosciences and psychogerontology axis, Laboratory of Development and Maldevelopment, Department of Psychology, Faculty of Arts, Letters, and Social Science, University of Yaoundé 1, P.O. Box. 755 Yaoundé, Cameroon
| | - Danielle Claude Bilanda
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Madeleine Chantal Ngoungouré
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Lohik Mbolang Nguegan
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Ronald Bidingha A Goufani
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Rivaldo Bernes Kahou Tadah
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Michel Noubom
- Department of Biological Sciences, Faculty of Medicine, University of Dschang, P.O. Box. 67, Dschang, Cameroon
| | - Armand Fils Ella
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Yannick Carlos Tcheutchoua
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Bruno Dupon Ambamba Akamba
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paule Cynthia Bouguem Yandja
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paulin Keumedjio Teko
- Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Paul Desire Dzeufiet Djomeni
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon
| |
Collapse
|
9
|
Yang Y, Wang N, Wang Z, Zhao M, Chen L, Shi Z. Protective role of forsythoside B in Kawasaki disease-induced cardiac injury: Inhibition of pyroptosis via the SIRT1-NF-κB-p65 signaling pathway. Chem Biol Interact 2024; 392:110953. [PMID: 38471628 DOI: 10.1016/j.cbi.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Kawasaki disease (KD), an acute exanthematous febrile pediatric illness involving systemic non-specific inflammatory reactions in small- and medium-sized arteries, poses a significant risk of coronary artery and myocardial inflammatory injury. Developing new KD treatments with improved safety and fewer side-effects is highly desirable. Forsythoside B (FTS-B), extracted from the Forsythia suspensa plant, exerts anti-inflammatory activity by inhibiting NF-κB, which is regulated by SIRT1, the reduced expression of which is strongly associated with cardiovascular disease. However, it has yet to be established whether FTS-B influences KD-related inflammatory damage. In this study, we investigated the effects of FTS-B on inflammation in cellular and murine models of KD. Our findings revealed that KD is associated with cardiac dysfunction and inflammatory injury to myocardial and human coronary artery endothelial cells (HCAECs), resulting in a pyroptosis-feedback loop. Both cellular and KD models were characterized by reduced SIRT1 expression and increased NF-κB p65 expression. Contrastingly, the rates of pyroptosis in both murine model myocardial tissues and HCAECs were significantly alleviated in response to FTS-B treatment. Also in both models, we detected an increase of SIRT1 expression and a decrease in the expression of p65. Further examination of the protective mechanism of FTS-B using the SIRT1-specific inhibitor, EX 527, revealed that this inhibitor blocked the palliative effects of FTS-B on inflammatory injury-induced pyroptosis. These results highlight the potential utility of the SIRT1-NF-κB-p65 pathway as a therapeutic target for KD treatment and demonstrate that FTS-B can alleviate KD-induced cardiac and HCAEC inflammatory injury via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Yitong Yang
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Nisha Wang
- Department of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xiaozhai Road Street, Yanta District, Xi'an, 710049, China.
| | - Zhenyi Wang
- Department of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xiaozhai Road Street, Yanta District, Xi'an, 710049, China.
| | - Miaomiao Zhao
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Luping Chen
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Zhaoling Shi
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| |
Collapse
|
10
|
Park SH, Ko JR, Han J. Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:145-152. [PMID: 38414397 PMCID: PMC10902592 DOI: 10.4196/kjpp.2024.28.2.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Chemotherapy-induced cognitive impairment is recognized as the most typical symptom in patients with cancer that occurs during and following the chemotherapy treatment. Recently many studies focused on pharmaceutical strategies to control the chemotherapy side effects, however it is far from satisfactory. There may be a need for more effective treatment options. The aim of this study was to investigate the protective effect of exercise on cisplatin-induced neurotoxicity. Eightweek- old C57BL6 mice were separated into three group: normal control (CON, n = 8); cisplatin injection control (Cis-CON, n = 8); cisplatin with aerobic exercise (Cis-EXE, n = 8). Cisplatin was administered intraperitoneally at a dose of 3.5 mg/kg/day. The Cis-EXE group exercise by treadmill running (14-16 m/min for 45 min daily, 3 times/ week) for 12 weeks. Compared to the CON group, the cisplatin injection groups showed significant decrease in body weight and food intake, indicating successful induction of cisplatin toxicity. The Cis-CON group showed significantly increased levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α in the hippocampus, while the Cis-EXE group was significantly decreased in the expression of IL- 6, IL-1β, and TNF-α. In addition, compared to the CON group, the levels of synapserelated proteins including synapsin-1 and -2 were significantly reduced in the Cis- CON group, and there was a significant difference between the Cis-CON and Cis-EXE groups. Antioxidant and apoptosis factors were significantly improved in the Cis-EXE group compared with the Cis-CON group. This study suggest that exercise could be meaningful approach to prevent or improve cisplatin-induced cognitive impairment.
Collapse
Affiliation(s)
- Se Hwan Park
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
| | - Jeong Rim Ko
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
| | - Jin Han
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Korea
- Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
11
|
Zhang L, Lang F, Feng J, Wang J. Review of the therapeutic potential of Forsythiae Fructus on the central nervous system: Active ingredients and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117275. [PMID: 37797873 DOI: 10.1016/j.jep.2023.117275] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Fenglong Lang
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|