1
|
Fu J, Ferreira D, Smedby Ö, Moreno R. Decomposing the effect of normal aging and Alzheimer's disease in brain morphological changes via learned aging templates. Sci Rep 2025; 15:11813. [PMID: 40189702 PMCID: PMC11973214 DOI: 10.1038/s41598-025-96234-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Alzheimer's disease (AD) subjects usually show more profound morphological changes with time compared to cognitively normal (CN) individuals. These changes are the combination of two major biological processes: normal aging and AD pathology. Investigating normal aging and residual morphological changes separately can increase our understanding of the disease. This paper proposes two scores, the aging score (AS) and the AD-specific score (ADS), whose purpose is to measure these two components of brain atrophy independently. For this, in the first step, we estimate the atrophy due to the normal aging of CN subjects by computing the expected deformation required to match imaging templates generated at different ages. We used a state-of-the-art generative deep learning model for generating such imaging templates. In the second step, we apply deep learning-based diffeomorphic registration to align the given image of a subject with a reference imaging template. Parametrization of this deformation field is then decomposed voxel-wise into their parallel and perpendicular components with respect to the parametrization of the expected atrophy of CN individuals in one year computed in the first step. AS and ADS are the normalized scores of these two components, respectively. We evaluated these two scores on the OASIS-3 dataset with 1,014 T1-weighted MRI scans. Of these, 326 scans were from CN subjects, and 688 scans were from subjects diagnosed with AD at various stages of clinical severity, as defined by clinical dementia rating (CDR) scores. Our results reveal that AD is marked by both disease-specific brain changes and an accelerated aging process. Such changes affect brain regions differently. Moreover, the proposed scores were sensitive to detect changes in the early stages of the disease, which is promising for its potential future use in clinical studies. Our code is freely available at https://github.com/Fjr9516/DBM_with_DL .
Collapse
Affiliation(s)
- Jingru Fu
- Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14157, Stockholm, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institute, 14186, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
- Department of Radiology , Mayo Clinic, Rochester, USA
| | - Örjan Smedby
- Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14157, Stockholm, Sweden
| | - Rodrigo Moreno
- Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14157, Stockholm, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institute, 14186, Stockholm, Sweden
| |
Collapse
|
2
|
Capó M, Vitali S, Athanasiou G, Cusimano N, García D, Cruickshank G, Patel B. UK Biobank MRI data can power the development of generalizable brain clocks: A study of standard ML/DL methodologies and performance analysis on external databases. Neuroimage 2025; 308:121064. [PMID: 39892529 DOI: 10.1016/j.neuroimage.2025.121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
In this study, we present a comprehensive pipeline to train and compare a broad spectrum of machine learning and deep learning brain clocks, integrating diverse preprocessing strategies and correction terms. Our analysis also includes established methodologies which have shown success in prior UK Biobank-related studies. For our analysis we used T1-weighted MRI scans and processed de novo all images via FastSurfer, transforming them into a conformed space for deep learning and extracting image-derived phenotypes for our machine learning approaches. We rigorously evaluated these approaches both as robust age predictors for healthy individuals and as potential biomarkers for various neurodegenerative conditions, leveraging data from the UK Biobank, ADNI, and NACC datasets. To this end we designed a statistical framework to assess age prediction performance, the robustness of the prediction across cohort variability (database, machine type and ethnicity) and its potential as a biomarker for neurodegenerative conditions. Results demonstrate that highly accurate brain age models, typically utilising penalised linear machine learning models adjusted with Zhang's methodology, with mean absolute errors under 1 year in external validation, can be achieved while maintaining consistent prediction performance across different age brackets and subgroups (e.g., ethnicity and MRI machine/manufacturer). Additionally, these models show strong potential as biomarkers for neurodegenerative conditions, such as dementia, where brain age prediction achieved an AUROC of up to 0.90 in distinguishing healthy individuals from those with dementia.
Collapse
Affiliation(s)
- Marco Capó
- Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom.
| | - Silvia Vitali
- Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom
| | | | - Nicole Cusimano
- Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom
| | - Daniel García
- Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom
| | - Garth Cruickshank
- University of Birmingham, Birmingham B15 2TT, United Kingdom; Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2GW, United Kingdom
| | - Bipin Patel
- Oxcitas Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom; ElectronRX Limited, 28 Chesterton Road, Cambridge CB4 3AZ, United Kingdom
| |
Collapse
|
3
|
Marseglia A, Dartora C, Samuelsson J, Poulakis K, Mohanty R, Shams S, Lindberg O, Rydén L, Sterner TR, Skoog J, Zettergren A, Kern S, Skoog I, Westman E. Biological brain age and resilience in cognitively unimpaired 70-year-old individuals. Alzheimers Dement 2025; 21:e14435. [PMID: 39704304 PMCID: PMC11848408 DOI: 10.1002/alz.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION This study investigated the associations of brain age gap (BAG)-a biological marker of brain resilience-with life exposures, neuroimaging measures, biological processes, and cognitive function. METHODS We derived BAG by subtracting predicted brain age from chronological age in 739 septuagenarians without dementia or neurological disorders. Robust linear regression models assessed BAG associations with life exposures, plasma inflammatory and metabolic biomarkers, magnetic resonance imaging, and cerebrospinal fluid biomarkers of neurodegeneration and vascular brain injury, and cognitive performance. RESULTS Greater BAG (older-looking brains) was associated with physical inactivity, diabetes, and stroke, while prediabetes was related to lower BAG, that is, younger-looking brains. Physical activity mitigated the link between obesity and BAG. Greater BAG was associated with greater small vessel disease burden, white-matter alterations, inflammation, high glucose, poorer vascular-related cognitive domains. Sex-specific associations were identified. DISCUSSION Vascular-related lifestyles and health shape brain appearance. Inflammation and insulin-related processes may be keys to understanding vascular cognitive disorders. HIGHLIGHTS BAG, reflecting deviations from CA, can indicate resilience. Diabetes, stroke, and low physical activity link to "older" brains (greater BAG). Physical activity yielded to "younger" brains in septuagenarians with obesity. High cerebrovascular burden, inflammation, and glucose associate with "older" brains. Sex differences were detected in all BAG-associated factors.
Collapse
Affiliation(s)
- Anna Marseglia
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Caroline Dartora
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Jessica Samuelsson
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Konstantinos Poulakis
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
- McConnell Brain Imaging Centre (BIC), MNIFaculty of MedicineMcGill UniversityMontréalQuebecCanada
| | - Rosaleena Mohanty
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Sara Shams
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Olof Lindberg
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Lina Rydén
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Therese Rydberg Sterner
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Johan Skoog
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
- Region Västra GötalandSahlgrenska University HospitalNeuropsychiatry ClinicGothenburgSweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Silke Kern
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
- Region Västra GötalandSahlgrenska University HospitalNeuropsychiatry ClinicGothenburgSweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Eric Westman
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
4
|
Vakitbilir N, Islam A, Gomez A, Stein KY, Froese L, Bergmann T, Sainbhi AS, McClarty D, Raj R, Zeiler FA. Multivariate Modelling and Prediction of High-Frequency Sensor-Based Cerebral Physiologic Signals: Narrative Review of Machine Learning Methodologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:8148. [PMID: 39771880 PMCID: PMC11679405 DOI: 10.3390/s24248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies. Computational models play an essential role in linking sensor-derived signals to the underlying physiological state of the brain. Multivariate machine learning models have proven particularly effective in this domain, capturing intricate relationships among multiple variables simultaneously and enabling the accurate modeling of cerebral physiologic signals. These models facilitate the development of advanced diagnostic and prognostic tools, promote patient-specific interventions, and improve therapeutic outcomes. Additionally, machine learning models offer great flexibility, allowing different models to be combined synergistically to address complex challenges in sensor-based data analysis. Ensemble learning techniques, which aggregate predictions from diverse models, further enhance predictive accuracy and robustness. This review explores the use of multivariate machine learning models in cerebral physiology as a whole, with an emphasis on sensor-derived signals related to hemodynamics, cerebral oxygenation, metabolism, and other modalities such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) where applicable. It will detail the operational principles, mathematical foundations, and clinical implications of these models, providing a deeper understanding of their significance in monitoring cerebral function.
Collapse
Affiliation(s)
- Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (A.I.); (K.Y.S.); (A.S.S.); (F.A.Z.)
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (A.I.); (K.Y.S.); (A.S.S.); (F.A.Z.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (A.I.); (K.Y.S.); (A.S.S.); (F.A.Z.)
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Tobias Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (A.I.); (K.Y.S.); (A.S.S.); (F.A.Z.)
| | - Davis McClarty
- Undergraduate Medicine, College of Medicine, Rady Faculty of Health Sciences, Winnipeg, MB R3E 3P5, Canada;
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, 00100 Helsinki, Finland;
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (A.I.); (K.Y.S.); (A.S.S.); (F.A.Z.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
| |
Collapse
|
5
|
De Bonis MLN, Fasano G, Lombardi A, Ardito C, Ferrara A, Di Sciascio E, Di Noia T. Explainable brain age prediction: a comparative evaluation of morphometric and deep learning pipelines. Brain Inform 2024; 11:33. [PMID: 39692946 DOI: 10.1186/s40708-024-00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024] Open
Abstract
Brain age, a biomarker reflecting brain health relative to chronological age, is increasingly used in neuroimaging to detect early signs of neurodegenerative diseases and support personalized treatment plans. Two primary approaches for brain age prediction have emerged: morphometric feature extraction from MRI scans and deep learning (DL) applied to raw MRI data. However, a systematic comparison of these methods regarding performance, interpretability, and clinical utility has been limited. In this study, we present a comparative evaluation of two pipelines: one using morphometric features from FreeSurfer and the other employing 3D convolutional neural networks (CNNs). Using a multisite neuroimaging dataset, we assessed both model performance and the interpretability of predictions through eXplainable Artificial Intelligence (XAI) methods, applying SHAP to the feature-based pipeline and Grad-CAM and DeepSHAP to the CNN-based pipeline. Our results show comparable performance between the two pipelines in Leave-One-Site-Out (LOSO) validation, achieving state-of-the-art performance on the independent test set ( M A E = 3.21 with DNN and morphometric features and M A E = 3.08 with a DenseNet-121 architecture). SHAP provided the most consistent and interpretable results, while DeepSHAP exhibited greater variability. Further work is needed to assess the clinical utility of Grad-CAM. This study addresses a critical gap by systematically comparing the interpretability of multiple XAI methods across distinct brain age prediction pipelines. Our findings underscore the importance of integrating XAI into clinical practice, offering insights into how XAI outputs vary and their potential utility for clinicians.
Collapse
Affiliation(s)
- Maria Luigia Natalia De Bonis
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Giuseppe Fasano
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Angela Lombardi
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Carmelo Ardito
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Antonio Ferrara
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Eugenio Di Sciascio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Tommaso Di Noia
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
6
|
Tan TWK, Nguyen KN, Zhang C, Kong R, Cheng SF, Ji F, Chong JSX, Yi Chong EJ, Venketasubramanian N, Orban C, Chee MWL, Chen C, Zhou JH, Yeo BTT. Evaluation of Brain Age as a Specific Marker of Brain Health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623903. [PMID: 39605400 PMCID: PMC11601463 DOI: 10.1101/2024.11.16.623903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brain age is a powerful marker of general brain health. Furthermore, brain age models are trained on large datasets, thus giving them a potential advantage in predicting specific outcomes - much like the success of finetuning large language models for specific applications. However, it is also well-accepted in machine learning that models trained to directly predict specific outcomes (i.e., direct models) often perform better than those trained on surrogate outcomes. Therefore, despite their much larger training data, it is unclear whether brain age models outperform direct models in predicting specific brain health outcomes. Here, we compare large-scale brain age models and direct models for predicting specific health outcomes in the context of Alzheimer's Disease (AD) dementia. Using anatomical T1 scans from three continents (N = 1,848), we find that direct models outperform brain age models without finetuning. Finetuned brain age models yielded similar performance as direct models, but importantly, did not outperform direct models although the brain age models were pretrained on 1000 times more data than the direct models: N = 53,542 vs N = 50. Overall, our results do not discount brain age as a useful marker of general brain health. However, in this era of large-scale brain age models, our results suggest that small-scale, targeted approaches for extracting specific brain health markers still hold significant value.
Collapse
Affiliation(s)
- Trevor Wei Kiat Tan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Kim-Ngan Nguyen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chen Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Susan F Cheng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Fang Ji
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Eddie Jun Yi Chong
- Memory, Aging and Cognition Centre, National University Health System, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Csaba Orban
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
7
|
Guo K, Chaudhari N, Jafar T, Chowdhury N, Bogdan P, Irimia A. Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury. RESEARCH SQUARE 2024:rs.3.rs-4960427. [PMID: 39483910 PMCID: PMC11527355 DOI: 10.21203/rs.3.rs-4960427/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compares seven popular attribution-based saliency approaches to assign neuroanatomic interpretability to DNNs that estimate biological brain age (BA) from magnetic resonance imaging (MRI). Cognitively normal (CN) adults ( N = 13,394 , 5,900 males; mean age: 65.82 ± 8.89 years) are included for DNN training, testing, validation, and saliency map generation to estimate BA. To study saliency robustness to the presence of anatomic deviations from normality, saliency maps are also generated for adults with mild traumatic brain injury (mTBI, N = 214 , 135 males; mean age: 55.3 ± 9.9 years). We assess saliency methods' capacities to capture known anatomic features of brain aging and compare them to a surrogate ground truth whose anatomic saliency is known a priori. Anatomic aging features are identified most reliably by the integrated gradients method, which outperforms all others through its ability to localize relevant anatomic features. Gradient Shapley additive explanations, input × gradient, and masked gradient perform less consistently but still highlight ubiquitous neuroanatomic features of aging (ventricle dilation, hippocampal atrophy, sulcal widening). Saliency methods involving gradient saliency, guided backpropagation, and guided gradient-weight class attribution mapping localize saliency outside the brain, which is undesirable. Our research suggests the relative tradeoffs of saliency methods to interpret DNN findings during BA estimation in typical aging and after mTBI.
Collapse
Affiliation(s)
- Kevin Guo
- Thomas Lord Department of Computer Science, Viterbi School of Engineering, University of Southern California
| | - Nikhil Chaudhari
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Tamara Jafar
- Neuroscience Graduate Program, University of Southern California
| | - Nahian Chowdhury
- Neuroscience Graduate Program, University of Southern California
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
8
|
Li X, Hao Z, Li D, Jin Q, Tang Z, Yao X, Wu T. Brain age prediction via cross-stratified ensemble learning. Neuroimage 2024; 299:120825. [PMID: 39214438 DOI: 10.1016/j.neuroimage.2024.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
As an important biomarker of neural aging, the brain age reflects the integrity and health of the human brain. Accurate prediction of brain age could help to understand the underlying mechanism of neural aging. In this study, a cross-stratified ensemble learning algorithm with staking strategy was proposed to obtain brain age and the derived predicted age difference (PAD) using T1-weighted magnetic resonance imaging (MRI) data. The approach was characterized as by implementing two modules: one was three base learners of 3D-DenseNet, 3D-ResNeXt, 3D-Inception-v4; another was 14 secondary learners of liner regressions. To evaluate performance, our method was compared with single base learners, regular ensemble learning algorithms, and state-of-the-art (SOTA) methods. The results demonstrated that our proposed model outperformed others models, with three metrics of mean absolute error (MAE), root mean-squared error (RMSE), and coefficient of determination (R2) of 2.9405 years, 3.9458 years, and 0.9597, respectively. Furthermore, there existed significant differences in PAD among the three groups of normal control (NC), mild cognitive impairment (MCI) and Alzheimer's disease (AD), with an increased trend across NC, MCI, and AD. It was concluded that the proposed algorithm could be effectively used in computing brain aging and PAD, and offering potential for early diagnosis and assessment of normal brain aging and AD.
Collapse
Affiliation(s)
- Xinlin Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zezhou Hao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Di Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Qiuye Jin
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai 200032, PR China
| | - Zhixian Tang
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| |
Collapse
|
9
|
Guo KH, Chaudhari NN, Jafar T, Chowdhury NF, Bogdan P, Irimia A. Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury. Neuroinformatics 2024; 22:591-606. [PMID: 39503843 PMCID: PMC11579113 DOI: 10.1007/s12021-024-09694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compares seven popular attribution-based saliency approaches to assign neuroanatomic interpretability to DNNs that estimate biological brain age (BA) from magnetic resonance imaging (MRI). Cognitively normal (CN) adults (N = 13,394, 5,900 males; mean age: 65.82 ± 8.89 years) are included for DNN training, testing, validation, and saliency map generation to estimate BA. To study saliency robustness to the presence of anatomic deviations from normality, saliency maps are also generated for adults with mild traumatic brain injury (mTBI, N = 214, 135 males; mean age: 55.3 ± 9.9 years). We assess saliency methods' capacities to capture known anatomic features of brain aging and compare them to a surrogate ground truth whose anatomic saliency is known a priori. Anatomic aging features are identified most reliably by the integrated gradients method, which outperforms all others through its ability to localize relevant anatomic features. Gradient Shapley additive explanations, input × gradient, and masked gradient perform less consistently but still highlight ubiquitous neuroanatomic features of aging (ventricle dilation, hippocampal atrophy, sulcal widening). Saliency methods involving gradient saliency, guided backpropagation, and guided gradient-weight class attribution mapping localize saliency outside the brain, which is undesirable. Our research suggests the relative tradeoffs of saliency methods to interpret DNN findings during BA estimation in typical aging and after mTBI.
Collapse
Affiliation(s)
- Kevin H Guo
- Thomas Lord Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tamara Jafar
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nahian F Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Quantitative and Computational Biology, Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Centre for Healthy Brain Aging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 de Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
10
|
Dular L, Špiclin Ž. Analysis of Brain Age Gap across Subject Cohorts and Prediction Model Architectures. Biomedicines 2024; 12:2139. [PMID: 39335651 PMCID: PMC11428686 DOI: 10.3390/biomedicines12092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Brain age prediction from brain MRI scans and the resulting brain age gap (BAG)-the difference between predicted brain age and chronological age-is a general biomarker for a variety of neurological, psychiatric, and other diseases or disorders. Methods: This study examined the differences in BAG values derived from T1-weighted scans using five state-of-the-art deep learning model architectures previously used in the brain age literature: 2D/3D VGG, RelationNet, ResNet, and SFCN. The models were evaluated on healthy controls and cohorts with sleep apnea, diabetes, multiple sclerosis, Parkinson's disease, mild cognitive impairment, and Alzheimer's disease, employing rigorous statistical analysis, including repeated model training and linear mixed-effects models. Results: All five models consistently identified a statistically significant positive BAG for diabetes (ranging from 0.79 years with RelationNet to 2.13 years with SFCN), multiple sclerosis (2.67 years with 3D VGG to 4.24 years with 2D VGG), mild cognitive impairment (2.13 years with 2D VGG to 2.59 years with 3D VGG), and Alzheimer's dementia (5.54 years with ResNet to 6.48 years with SFCN). For Parkinson's disease, a statistically significant BAG increase was observed in all models except ResNet (1.30 years with 2D VGG to 2.59 years with 3D VGG). For sleep apnea, a statistically significant BAG increase was only detected with the SFCN model (1.59 years). Additionally, we observed a trend of decreasing BAG with increasing chronological age, which was more pronounced in diseased cohorts, particularly those with the largest BAG, such as multiple sclerosis (-0.34 to -0.2), mild cognitive impairment (-0.37 to -0.26), and Alzheimer's dementia (-0.66 to -0.47), compared to healthy controls (-0.18 to -0.1). Conclusions: Consistent with previous research, Alzheimer's dementia and multiple sclerosis exhibited the largest BAG across all models, with SFCN predicting the highest BAG overall. The negative BAG trend suggests a complex interplay of survival bias, disease progression, adaptation, and therapy that influences brain age prediction across the age spectrum.
Collapse
Affiliation(s)
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
11
|
Srikrishna M, Seo W, Zettergren A, Kern S, Cantré D, Gessler F, Sotoudeh H, Seidlitz J, Bernstock JD, Wahlund LO, Westman E, Skoog I, Virhammar J, Fällmar D, Schöll M. Assessing CT-based Volumetric Analysis via Transfer Learning with MRI and Manual Labels for Idiopathic Normal Pressure Hydrocephalus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309144. [PMID: 38978640 PMCID: PMC11230337 DOI: 10.1101/2024.06.23.24309144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Brain computed tomography (CT) is an accessible and commonly utilized technique for assessing brain structure. In cases of idiopathic normal pressure hydrocephalus (iNPH), the presence of ventriculomegaly is often neuroradiologically evaluated by visual rating and manually measuring each image. Previously, we have developed and tested a deep-learning-model that utilizes transfer learning from magnetic resonance imaging (MRI) for CT-based intracranial tissue segmentation. Accordingly, herein we aimed to enhance the segmentation of ventricular cerebrospinal fluid (VCSF) in brain CT scans and assess the performance of automated brain CT volumetrics in iNPH patient diagnostics. Methods The development of the model used a two-stage approach. Initially, a 2D U-Net model was trained to predict VCSF segmentations from CT scans, using paired MR-VCSF labels from healthy controls. This model was subsequently refined by incorporating manually segmented lateral CT-VCSF labels from iNPH patients, building on the features learned from the initial U-Net model. The training dataset included 734 CT datasets from healthy controls paired with T1-weighted MRI scans from the Gothenburg H70 Birth Cohort Studies and 62 CT scans from iNPH patients at Uppsala University Hospital. To validate the model's performance across diverse patient populations, external clinical images including scans of 11 iNPH patients from the Universitatsmedizin Rostock, Germany, and 30 iNPH patients from the University of Alabama at Birmingham, United States were used. Further, we obtained three CT-based volumetric measures (CTVMs) related to iNPH. Results Our analyses demonstrated strong volumetric correlations (ϱ=0.91, p<0.001) between automatically and manually derived CT-VCSF measurements in iNPH patients. The CTVMs exhibited high accuracy in differentiating iNPH patients from controls in external clinical datasets with an AUC of 0.97 and in the Uppsala University Hospital datasets with an AUC of 0.99. Discussion CTVMs derived through deep learning, show potential for assessing and quantifying morphological features in hydrocephalus. Critically, these measures performed comparably to gold-standard neuroradiology assessments in distinguishing iNPH from healthy controls, even in the presence of intraventricular shunt catheters. Accordingly, such an approach may serve to improve the radiological evaluation of iNPH diagnosis/monitoring (i.e., treatment responses). Since CT is much more widely available than MRI, our results have considerable clinical impact.
Collapse
Affiliation(s)
- Meera Srikrishna
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Woosung Seo
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Daniel Cantré
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Florian Gessler
- Department of Neurosurgery, University Medicine of Rostock, 18057 Rostock, Germany
| | - Houman Sotoudeh
- Department of Neuroradiology, University of Alabama, Birmingham, AL, United States
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry, Cognition and Aging Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
12
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models. Comput Biol Med 2024; 173:108320. [PMID: 38531250 DOI: 10.1016/j.compbiomed.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines, which differed in terms of registration transform, grayscale correction, and software implementation, were evaluated. The results showed that the choice of software or preprocessing steps could significantly affect the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with isotropic 1mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during training, applying some form of offset correction is essential to enable the model's performance to generalize effectively on datasets from unseen sites, regardless of whether they have undergone the same or different T1w preprocessing as the training set.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| |
Collapse
|