1
|
Kwon HJ, Jung HY, Choi SY, Hwang IK, Kim DW, Shin MJ. TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons. Mol Cell Neurosci 2024; 131:103978. [PMID: 39488259 DOI: 10.1016/j.mcn.2024.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain, resulting in severe motor impairments. Inorganic pyrophosphatase 1 (PPA1) plays a key role in various biological processes, and this study introduces a cell-penetrating PPA1 fusion protein (TAT-PPA1) to explore its transduction into cells and brain tissues. TAT-PPA1 effectively penetrates SH-SY5Y cells and the SN region of PD animal models without toxicity, exhibiting protective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-)-induced cell death. TAT-PPA1 revealed an inhibitory influence on the MAPK signaling pathway and MPTP-induced reactive oxygen species (ROS) production. TAT-PPA1 suppresses JNK, AKT, p53, ERK, and p38 phosphorylation, showcasing its multifaceted role in cell survival pathways. In the MPTP-induced PD animal model, TAT-PPA1 prevents dopaminergic cell death and enhances motor function. This study shows that TAT-PPA1 protects against oxidative stress and cell death in neurodegenerative diseases, suggesting potential as a PD treatment.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
2
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
3
|
Bongioanni P, Del Carratore R, Dolciotti C, Diana A, Buizza R. Effects of Global Warming on Patients with Dementia, Motor Neuron or Parkinson's Diseases: A Comparison among Cortical and Subcortical Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013429. [PMID: 36294010 PMCID: PMC9602967 DOI: 10.3390/ijerph192013429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/13/2023]
Abstract
Exposure to global warming can be dangerous for health and can lead to an increase in the prevalence of neurological diseases worldwide. Such an effect is more evident in populations that are less prepared to cope with enhanced environmental temperatures. In this work, we extend our previous research on the link between climate change and Parkinson's disease (PD) to also include Alzheimer's Disease and other Dementias (AD/D) and Amyotrophic Lateral Sclerosis/Motor Neuron Diseases (ALS/MND). One hundred and eighty-four world countries were clustered into four groups according to their climate indices (warming and annual average temperature). Variations between 1990 and 2016 in the diseases' indices (prevalence, deaths, and disability-adjusted life years) and climate indices for the four clusters were analyzed. Unlike our previous work on PD, we did not find any significant correlation between warming and epidemiological indices for AD/D and ALS/MND patients. A significantly lower increment in prevalence in countries with higher temperatures was found for ALS/MND patients. It can be argued that the discordant findings between AD/D or ALS/MND and PD might be related to the different features of the neuronal types involved and the pathophysiology of thermoregulation. The neurons of AD/D and ALS/MND patients are less vulnerable to heat-related degeneration effects than PD patients. PD patients' substantia nigra pars compacta (SNpc), which are constitutively frailer due to their morphology and function, fall down under an overwhelming oxidative stress caused by climate warming.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare onlus, 56100 Pisa, Italy
| | | | - Cristina Dolciotti
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
- NeuroCare onlus, 56100 Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09100 Cagliari, Italy
| | - Roberto Buizza
- Life Science Institute, Scuola Superiore Sant’Anna, 56100 Pisa, Italy
| |
Collapse
|
4
|
Jung YJ, Choi H, Oh E. Effects of particulate matter and nicotine for the MPP+-induced SH-SY5Y cells: Implication for Parkinson's disease. Neurosci Lett 2021; 765:136265. [PMID: 34563623 DOI: 10.1016/j.neulet.2021.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Exposure to particulate matter (PM) has been considered a potential risk factor for various neurodegenerative diseases, whereas nicotine has protective effects on Parkinson's disease (PD). However, it is still unclear whether or how PM alone and in combination with nicotine affects the pathogenesis of PD. We investigated the potential neurotoxicity of PM and the protective properties of nicotine in an in vitro PD model. A 1-methyl-4-phenylpyridimium (MPP+)-induced neurotoxicity model was established with SH-SY5Y cells. Cell viability and apoptosis were measured using MTT and TUNEL assays, respectively. Intracellular reactive oxygen species (ROS) levels were analyzed using the cell-permeant fluorescent probe DCFH-DA. We investigated mitochondrial apoptotic markers such as Bax, Bcl2, cytochrome C, and cleaved caspase-3 and analyzed their levels by Western blotting. SH-SY5Y cells exposed to PM and MPP+ exhibited significantly increased intracellular ROS and decreased cell viability with those exposed to PM alone. PM strikingly exacerbated MPP+-induced mitochondrial dysfunction, including an increase in the Bax/Bcl2 ratio and the release of cytochrome C and cleaved caspase-3. On the other hand, pretreatment of SH-SY5Y cells with nicotine reduced the MPP+-induced loss of cell viability and levels of intracellular ROS and mitochondrial apoptotic signaling proteins. However, pretreatment with nicotine did not prevent PM-induced toxicity in MPP+-treated SHSY5Y cells. PM and MPP+ synergistically increased ROS levels and mitochondrial apoptosis, which led to SH-SY5Y cell death. The protective effect of nicotine cannot rescue PM-induced synergistic neurotoxicity in the MPP+-induced PD model. Our findings verified the opposing roles of PM and nicotine in a model of PD pathogenesis. A large number of in vivo and in vitro studies would verify the roles of PM and nicotine in the future.
Collapse
Affiliation(s)
- Yu Jin Jung
- Department of Neurology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lörentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet 2021; 29:1180-1191. [PMID: 32160287 PMCID: PMC7206857 DOI: 10.1093/hmg/ddaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Daniel Marsch
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Annika Dahms
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anna Brendler
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
6
|
Jaumotte JD, Saarma M, Zigmond MJ. Protection of dopamine neurons by CDNF and neurturin variant N4 against MPP+ in dissociated cultures from rat mesencephalon. PLoS One 2021; 16:e0245663. [PMID: 33534843 PMCID: PMC7857574 DOI: 10.1371/journal.pone.0245663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease is associated with the loss of dopamine (DA) neurons in ventral mesencephalon. We have previously reported that no single neurotrophic factor we tested protected DA neurons from the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) in dissociated cultures isolated from the P0 rat substantia nigra, but that a combination of five neurotrophic factors was protective. We now report that cerebral DA neurotrophic factor (CDNF) and a variant of neurturin (NRTN), N4, were also not protective when provided alone but were protective when added together. In cultures isolated from the substantia nigra, MPP+ (10 μM) decreased tyrosine hydroxylase-positive cells to 41.7 ± 5.4% of vehicle control. Although treatment of cultures with 100 ng/ml of either CDNF or N4 individually before and after toxin exposure did not significantly increase survival in MPP+-treated cultures, when the two trophic factors were added together at 100 ng/ml each, survival of cells was increased 28.2 ± 6.1% above the effect of MPP+ alone. In cultures isolated from the ventral tegmental area, another DA rich area, a higher dose of MPP+ (1 mM) was required to produce an EC50 in TH-positive cells but, as in the substantia nigra, only the combination of CDNF and N4 (100 ng/ml each) was successful at increasing the survival of these cells compared to MPP+ alone (by 22.5 ± 3.5%). These data support previous findings that CDNF and N4 may be of therapeutic value for treatment of PD, but suggest that they may need to be administered together.
Collapse
Affiliation(s)
- Juliann D. Jaumotte
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michael J. Zigmond
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
7
|
Gabrielyan L, Liang H, Minalyan A, Hatami A, John V, Wang L. Behavioral Deficits and Brain α-Synuclein and Phosphorylated Serine-129 α-Synuclein in Male and Female Mice Overexpressing Human α-Synuclein. J Alzheimers Dis 2021; 79:875-893. [PMID: 33361597 PMCID: PMC8577576 DOI: 10.3233/jad-200983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is involved in pathology of Parkinson's disease, and 90% of α-syn in Lewy bodies is phosphorylated at serine 129 (pS129 α-syn). OBJECTIVE To assess behavior impairments and brain levels of α-syn and pS129 α-syn in mice overexpressing human α-syn under Thy1 promoter (Thy1-α-syn) and wild type (wt) littermates. METHODS Motor and non-motor behaviors were monitored, brain human α-syn levels measured by ELISA, and α-syn and pS129 α-syn mapped by immunohistochemistry. RESULTS Male and female wt littermates did not show differences in the behavioral tests. Male Thy1-α-syn mice displayed more severe impairments than female counterparts in cotton nesting, pole tests, adhesive removal, finding buried food, and marble burying. Concentrations of human α-syn in the olfactory regions, cortex, nigrostriatal system, and dorsal medulla were significantly increased in Thy1-α-syn mice, higher in males than females. Immunoreactivity of α-syn was not simply increased in Thy1-α-syn mice but had altered localization in somas and fibers in a few brain areas. Abundant pS129 α-syn existed in many brain areas of Thy1-α-syn mice, while there was none or only a small amount in a few brain regions of wt mice. The substantia nigra, olfactory regions, amygdala, lateral parabrachial nucleus, and dorsal vagal complex displayed different distribution patterns between wt and transgenic mice, but not between sexes. CONCLUSION The severer abnormal behaviors in male than female Thy1-α-syn mice may be related to higher brain levels of human α-syn, in the absence of sex differences in the altered brain immunoreactivity patterns of α-syn and pS129 α-syn.
Collapse
Affiliation(s)
- Lilit Gabrielyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Honghui Liang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Artem Minalyan
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
| | - Asa Hatami
- Drug Discovery Lab, Department of Neurology, UCLA
| | | | - Lixin Wang
- CURE/Digestive Disease Research Center, Med/Digestive, David Geffen Medical School, UCLA
- VA Great Los Angeles Health System
| |
Collapse
|
8
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
9
|
Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats. Proc Natl Acad Sci U S A 2019; 117:668-676. [PMID: 31848247 PMCID: PMC6955326 DOI: 10.1073/pnas.1914017117] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homeostasis and the daily rhythms in brain function and temperature are coupled to the circadian light–dark cycle. MRI was used to study the redistribution of intraventricular contrast agent in awake rats during the night when they are active and during the day when at rest. Redistribution is lowest during the day and highest at night and parallels the gradients and regional variations in brain temperatures reported in the literature. The brain areas of low parenchymal redistribution are associated with high temperatures and have a high density of blood vessels that may be an essential part of the organization of the glymphatic system regulating brain temperature, blood gases, nutrients, metabolites, and waste products over the light–dark cycle. The glymphatic system functions in the removal of potentially harmful metabolites and proteins from the brain. Dynamic, contrast-enhanced MRI was used in fully awake rats to follow the redistribution of intraventricular contrast agent entrained to the light–dark cycle and its hypothetical relationship to the sleep–waking cycle, blood flow, and brain temperature in specific brain areas. Brain areas involved in circadian timing and sleep–wake rhythms showed the lowest redistribution of contrast agent during the light phase or time of inactivity and sleep in rats. Global brain redistribution of contrast agent was heterogeneous. The redistribution was highest along the dorsal cerebrum and lowest in the midbrain/pons and along the ventral surface of the brain. This heterogeneous redistribution of contrast agent paralleled the gradients and regional variations in brain temperatures reported in the literature for awake animals. Three-dimensional quantitative ultrashort time-to-echo contrast-enhanced imaging was used to reconstruct small, medium, and large arteries and veins in the rat brain and revealed areas of lowest redistribution overlapped with this macrovasculature. This study raises new questions and theoretical considerations of the impact of the light–dark cycle, brain temperature, and blood flow on the function of the glymphatic system.
Collapse
|
10
|
Biochanin A protects against angiotensin II-induced damage of dopaminergic neurons in rats associated with the increased endophilin A2 expression. Behav Pharmacol 2019; 30:700-711. [PMID: 31703032 DOI: 10.1097/fbp.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brain renin-angiotensin system plays a vital role in the modulation of the neuroinflammatory responses and the progression of dopaminergic (DA) degeneration. Angiotensin II (Ang II) induces microglia activation via angiotensin II type 1 receptor (AT1R), which in turn affects the function of DA neurons. Endophilin A2 (EPA2) is involved in fast endophilin-mediated endocytosis and quickly endocytoses several G-protein-coupled receptor (GPCR), while AT1R belongs to GPCR family. Therefore, we speculated that EPA2 may modulate microglia activation via endocytosing AT1R. Biochanin A is an O-methylated isoflavone, classified as a kind of phytoestrogen due to its chemical structure that is similar to mammalian estrogens. In this study, we investigated the protective effects of biochanin A on Ang II-induced DA neurons damage in vivo, and molecular mechanisms. The results showed that biochanin A treatment for 7 days attenuated the behavioral dysfunction, inhibited the microglial activation, and prevented DA neuron damage in Ang II-induced rats. Furthermore, biochanin A increased EPA2 expression and decreased the expression of AT1R, gp91phox, p22 phox, NLRP3, ASC, Caspase-1, IL-1β, IL-6, IL-18, and TNF-α. In summary, these results suggest that biochanin A exerts protective effects in Ang II-induced model rats, and the mechanisms may involve inhibition of inflammatory responses, an increase in EPA2 expression and a decrease in AT1R expression.
Collapse
|
11
|
Dutta D, Kundu M, Mondal S, Roy A, Ruehl S, Hall DA, Pahan K. RANTES-induced invasion of Th17 cells into substantia nigra potentiates dopaminergic cell loss in MPTP mouse model of Parkinson's disease. Neurobiol Dis 2019; 132:104575. [PMID: 31445159 DOI: 10.1016/j.nbd.2019.104575] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022] Open
Abstract
Although Parkinson's disease (PD) is a progressive neurodegenerative disease, the disease does not progress or persist in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model, the most common animal model of PD. Recently, we have described that supplementation of regulated on activation, normal T cell expressed and secreted (RANTES), a chemokine known to drive infiltration of T cells, induces persistent nigrostriatal pathology in MPTP mouse model. However, which particular T cell subsets are recruited to the substantia nigra (SN) by RANTES is not known. Here, by adoptive transfer of different subset of T cells from tomato red transgenic mice to MPTP-intoxicated immunodeficient Rag1-/- mice, we describe that invasion of Th17 cells into the SN is stimulated by exogenous RANTES administration. On the other hand, RANTES supplementation remained unable to influence the infiltration of Th1 and Tregs into the SN of MPTP-insulted Rag1-/- mice. Accordingly, RANTES supplementation increased MPTP-induced TH cell loss in Rag1-/-mice receiving Th17, but neither Th1 nor Tregs. RANTES-mediated aggravation of nigral TH neurons also paralleled with significant DA loss in striatum and locomotor deficits in MPTP-intoxicated Rag1-/- mice receiving Th17 cells. Finally, we demonstrate that levels of IL-17 (a Th17-specific cytokine) and RANTES are higher in serum of PD patients than age-matched controls and that RANTES positively correlated with IL-17 in serum of PD patients. Together, these results highlight the importance of RANTES-Th17 pathway in progressive dopaminergic neuronal loss and associated PD pathology.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Samantha Ruehl
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.
| |
Collapse
|
12
|
Hernandez-Baltazar D, Nadella R, Mireya Zavala-Flores L, Rosas-Jarquin CDJ, Rovirosa-Hernandez MDJ, Villanueva-Olivo A. Four main therapeutic keys for Parkinson's disease: A mini review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:716-721. [PMID: 32373291 PMCID: PMC7196346 DOI: 10.22038/ijbms.2019.33659.8025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions. The progressive degeneration of dopamine-producing neurons that are present in the substantia nigra pars compacta (SNpc) has been the main focus of study and PD therapies since ages. MATERIALS AND METHODS In this manuscript, a systematic revision of experimental and clinical evidence of PD-associated cell process was conducted. RESULTS Classically, the damage in the dopaminergic neuronal circuits of SNpc is favored by reactive oxidative/nitrosative stress, leading to cell death. Interestingly, the therapy for PD has only focused on avoiding the symptom progression but not in finding a complete reversion of the disease. Recent evidence suggests that the renin-angiotensin system imbalance and neuroinflammation are the main keys in the progression of experimental PD. CONCLUSION The progression of neurodegeneration in SNpc is due to the complex interaction of multiple processes. In this review, we analyzed the main contribution of four cellular processes and discussed in the perspective of novel experimental approaches.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID:1840; India
| | | | | | | | | |
Collapse
|
13
|
Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight 2019; 5:126769. [PMID: 31120439 DOI: 10.1172/jci.insight.126769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.
Collapse
Affiliation(s)
- Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katelin E Ahlers-Dannen
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mackenzie M Spicer
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program of Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2018; 360:216-227. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Asian-Indians are less vulnerable to Parkinson's disease (PD) than the Caucasians. Their admixed populace has even lesser risk. Studying this phenomenon using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6J, MPTP-resistant CD-1 and their resistant crossbred mice revealed differences in the nigrostriatal cyto-molecular features. Here, we investigated the electrophysiological and behavioural correlates for differential MPTP-susceptibility and their outcome upon admixing. We recorded local field potentials (LFPs) from dorsal striatum and assessed motor co-ordination using rotarod and grip strength measures. Nigral calbindin-D28K expression, a regulator of striatal activity through nigrostriatal projections was evaluated using immunohistochemistry. The crossbreds had significantly higher baseline striatal LFPs. MPTP significantly increased the neuronal activity in delta (0.5-4 Hz) and low beta (12-16 Hz) ranges in C57BL/6J; significant increase across frequency bands till high beta (0.5-30 Hz) in CD-1, and caused no alterations in crossbreds. MPTP further depleted the already low nigral calbindin-D28K expression in C57BL/6J. While in crossbreds, it was further up-regulated. MPTP affected the rotarod and grip strength performance of the C57BL/6J, while the injected CD-1 and crossbreds performed well. The increased striatal β-oscillations are comparable to that in PD patients. Higher power in CD-1 may be compensatory in nature, which were also reported in pre-symptomatic monkeys. Concurrent up-regulation of nigral calbindin-D28K may assist maintenance of striatal activity by buffering calcium overload in nigra. Thus, preserved motor behaviour in PD reminiscent conditions in CD-1 and crossbreds complement compensated/unaffected striatal LFPs. Similar electrophysiological correlates and cytomorphological features are envisaged in human phenomenon of differential PD prevalence, which are modulated upon admixing.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
15
|
Sekar S, Mani S, Rajamani B, Manivasagam T, Thenmozhi AJ, Bhat A, Ray B, Essa MM, Guillemin GJ, Chidambaram SB. Telmisartan Ameliorates Astroglial and Dopaminergic Functions in a Mouse Model of Chronic Parkinsonism. Neurotox Res 2018; 34:597-612. [DOI: 10.1007/s12640-018-9921-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
|
16
|
Lafuente JV, Requejo C, Carrasco A, Bengoetxea H. Nanoformulation: A Useful Therapeutic Strategy for Improving Neuroprotection and the Neurorestorative Potential in Experimental Models of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:99-122. [PMID: 29132545 DOI: 10.1016/bs.irn.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, but current therapies are only symptomatic. Experimental models are necessary to go deeper in the comprehension of pathophysiological mechanism and to assess new therapeutic strategies. The unilateral 6-hydroxydopamine (6-OHDA) lesion either in medial forebrain bundle (MFB) or into the striatum in rats affords to study various stages of PD depending on the evolution time lapsed. A promising alternative to address the neurodegenerative process is the use of neurotrophic factors; but its clinical use has been limited due to its short half-life and rapid degradation after in vivo administration, along with difficulties for crossing the blood-brain barrier (BBB). Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-ir neurons and axodendritic network (ADN) was higher in caudal sections showing a selective vulnerability of the topological distributed dopaminergic system. In addition to a remarkable depletion of dopamine in the nigrostriatal system, the administration of 6-OHDA into MFB induces some other neuropathological changes such as an increase of glial fibrillary acidic protein (GFAP) positive cells in substantia nigra (SN) as well as in striatum. Intrastriatal implantation of micro- or nanosystems delivering neurotrophic factor in parkinsonized rats for bypassing BBB leads to a significative functional and morphological recovery. Neurorestorative morphological changes (preservation of the TH-ir cells and ADN) along the rostrocaudal axis of caudoputamen complex and SN have been probed supporting a selective recovering after the treatment as well. Others innovative therapeutic strategies, such as the intranasal delivery, have been recently assessed in order to search the NTF effects. In addition some others methodological key points are reviewed.
Collapse
Affiliation(s)
- Jose V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain.
| | - Catalina Requejo
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| | - Alejandro Carrasco
- Group Nanoneurosurgery, Institute of Health Research Biocruces, Barakaldo, Spain; Service Neurosurgery, Cruces University Hospital, Barakaldo, Spain
| | - Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| |
Collapse
|
17
|
Quiroga-Varela A, Aguilar E, Iglesias E, Obeso JA, Marin C. Short- and long-term effects induced by repeated 6-OHDA intraventricular administration: A new progressive and bilateral rodent model of Parkinson's disease. Neuroscience 2017; 361:144-156. [PMID: 28823819 DOI: 10.1016/j.neuroscience.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the resulting striatal dopamine deficiency, which are responsible for the classic motor features. Although a diagnosis of PD relies on the clinical effects of dopamine deficiency, this disease is also associated with other neurotransmitter deficits that are recognized as causing various motor and non-motor symptoms. However, the cause of dopaminergic nigral neurodegeneration in PD and the underlying mechanisms remain unknown. While animal models are considered valuable tools with which to investigate dopaminergic cell vulnerability, rodent models usually fail to mimic the neurodegeneration progression that occurs in human PD. To find a convenient rat model for studying the progression of dopaminergic cell degeneration and motor signs, we have developed a progressive rodent model using a repeated daily, intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA) (100µg/day) in awakened rats for 1 to 10 consecutive days. The short- (6-day) and long-term (32-day) progression of motor alterations was studied. This model leads to a bilateral and progressive increase in catalepsy (evident from the 3rd infusion in the short-term groups (p<0.01) and from the 7th infusion in the long-term groups (p<0.01), which was associated with a progressive nigrostriatal dopaminergic deficit. All together this makes the new model an interesting experimental tool to investigate the mechanisms involved in the progression of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- A Quiroga-Varela
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - E Aguilar
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Iglesias
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J A Obeso
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
18
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
19
|
LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochem Soc Trans 2017; 45:131-139. [PMID: 28202666 PMCID: PMC5652224 DOI: 10.1042/bst20160262] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in familial and idiopathic cases of Parkinson's disease (PD), but are also associated with immune-related disorders, notably Crohn's disease and leprosy. Although the physiological function of LRRK2 protein remains largely elusive, increasing evidence suggests that it plays a role in innate immunity, a process that also has been implicated in neurodegenerative diseases, including PD. Innate immunity involves macrophages and microglia, in which endogenous LRRK2 expression is precisely regulated and expression is strongly up-regulated upon cell activation. This brief report discusses the current understanding of the involvement of LRRK2 in innate immunity particularly in relation to PD, critically examining its role in myeloid cells, particularly macrophages and microglia.
Collapse
|
20
|
De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, Zhang HY, Liu QR, Shen H, Xi ZX, Goldman D, Bonci A. Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron 2017; 95:341-356.e6. [PMID: 28689984 DOI: 10.1016/j.neuron.2017.06.020] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/13/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022]
Abstract
Microglia play critical roles in tissue homeostasis and can also modulate neuronal function and synaptic connectivity. In contrast to astrocytes and oligodendrocytes, which arise from multiple progenitor pools, microglia arise from yolk sac progenitors and are widely considered to be equivalent throughout the CNS. However, little is known about basic properties of deep brain microglia, such as those within the basal ganglia (BG). Here, we show that microglial anatomical features, lysosome content, membrane properties, and transcriptomes differ significantly across BG nuclei. Region-specific phenotypes of BG microglia emerged during the second postnatal week and were re-established following genetic or pharmacological microglial ablation and repopulation in the adult, indicating that local cues play an ongoing role in shaping microglial diversity. These findings demonstrate that microglia in the healthy brain exhibit a spectrum of distinct functional states and provide a critical foundation for defining microglial contributions to BG circuit function.
Collapse
Affiliation(s)
- Lindsay M De Biase
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Kornel E Schuebel
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Zachary H Fusfeld
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kamwing Jair
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Isobel A Hawes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Raffaello Cimbro
- Division of Rheumatology, Bayview Flow Cytometry Core, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Qing-Rong Liu
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hui Shen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Goldman
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Garrido-Gil P, Fernandez-Rodríguez P, Rodríguez-Pallares J, Labandeira-Garcia JL. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem Cell Biol 2017; 148:299-311. [PMID: 28560490 DOI: 10.1007/s00418-017-1585-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Laser capture microdissection (LCM) allows the isolation of specific cell populations from complex tissues that can be then used for gene expression studies. However, there are no reproducible protocols to study RNA in the brain and, particularly, in the substantia nigra. RNA is a very labile biomolecule that is easily degraded during manipulation. LCM studies use low amounts of material and special precautions must be taken to preserve RNA yield and integrity, which are decisive for PCR analysis. The RNA yield and/or integrity can be affected negatively by tissue manipulation, LCM process and RNA extraction. We have optimized these three critical steps using nigral tissue sections, and developed a LCM protocol to obtain high-quality RNA for gene expression analysis. The optimal LCM protocol requires the use of 20 µm-thick tissue sections mounted on glass slides and processed for rapid tyrosine hydroxylase immunofluorescence. Additionally, a total microdissected tissue area of 1 mm2 and a column-based RNA extraction method were used to obtain a high RNA yield and integrity. In the rat substantia nigra, we demonstrated the expression of RNA for the angiotensin type 1 and type 2 receptors using this optimized LCM protocol. In conclusion, the LCM protocol reported here can be used to study the expression of both scarcely or abundantly expressed genes in the different brain regions of mammals under both physiological and pathological conditions.
Collapse
Affiliation(s)
- P Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - P Fernandez-Rodríguez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain
| | - J Rodríguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain. .,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
22
|
Hu J, Ferchmin PA, Hemmerle AM, Seroogy KB, Eterovic VA, Hao J. 4R-Cembranoid Improves Outcomes after 6-Hydroxydopamine Challenge in Both In vitro and In vivo Models of Parkinson's Disease. Front Neurosci 2017; 11:272. [PMID: 28611572 PMCID: PMC5447022 DOI: 10.3389/fnins.2017.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
(1S, 2E, 4R, 6R,-7E, 11E)-2, 7, 11-cembratriene-4, 6-diol (4R) is one of the cembranoids found in tobacco leaves. Previous studies have found that 4R protected acute rat hippocampal slices against neurotoxicity induced by N-methyl-D-aspartate (NMDA) and against the toxic organophosphorus compounds paraoxon and diisopropylfluorophosphate (DFP). Furthermore, in vivo, 4R reduced the infarct size in a rodent ischemic stroke model and neurodegeneration caused by DFP. The present study expanded our previous study by focusing on the effect of 4R in Parkinson's disease (PD) and elucidating its underlying mechanisms using 6-hydroxydopamine (6-OHDA)-induced injury models. We found that 4R exhibited significant neuroprotective activity in the rat unilateral 6-OHDA-induced PD model in vivo. The therapeutic effect was evident both at morphological and behavioral levels. 4R (6 and 12 mg/kg) treatments significantly improved outcomes of 6-OHDA-induced PD in vivo as indicated by reducing forelimb asymmetry scores and corner test scores 4 weeks after injection of 6-OHDA (p < 0.05). The therapeutic effect of 4R was also reflected by decreased depletion of tyrosine hydroxylase (TH) in the striatum and substantia nigra (SN) on the side injected with 6-OHDA. TH expression was 70.3 and 62.8% of the contralateral side in striatum and SN, respectively, after 6 mg/kg 4R treatment; furthermore, it was 80.1 and 79.3% after treatment with 12 mg/kg of 4R. In the control group, it was 51.9 and 23.6% of the contralateral striatum and SN (p < 0.05). Moreover, 4R also protected differentiated neuro-2a cells from 6-OHDA-induced cytotoxicity in vitro. The activation of p-AKT and HAX-1, and inhibition of caspase-3 and endothelial inflammation, were involved in 4R-mediated protection against 6-OHDA-induced injury. In conclusion, the present study indicates that 4R shows a therapeutic effect in the rat 6-OHDA-induced PD model in vivo and in 6-OHDA-challenged neuro-2a cells in vitro.
Collapse
Affiliation(s)
- Jing Hu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of CincinnatiCincinnati, OH, United States
| | - P A Ferchmin
- Department of Neurosciences, School of Medicine, Universidad Central del CaribeBayamón, Puerto Rico
| | - Ann M Hemmerle
- Department of Neurology and Rehabilitation Medicine, University of CincinnatiCincinnati, OH, United States
| | - Kim B Seroogy
- Department of Neurology and Rehabilitation Medicine, University of CincinnatiCincinnati, OH, United States
| | - Vesna A Eterovic
- Department of Neurosciences, School of Medicine, Universidad Central del CaribeBayamón, Puerto Rico
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of CincinnatiCincinnati, OH, United States
| |
Collapse
|
23
|
Ambrosi G, Kustrimovic N, Siani F, Rasini E, Cerri S, Ghezzi C, Dicorato G, Caputo S, Marino F, Cosentino M, Blandini F. Complex Changes in the Innate and Adaptive Immunity Accompany Progressive Degeneration of the Nigrostriatal Pathway Induced by Intrastriatal Injection of 6-Hydroxydopamine in the Rat. Neurotox Res 2017; 32:71-81. [PMID: 28285346 DOI: 10.1007/s12640-017-9712-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/24/2022]
Abstract
We investigated changes in innate and adaptive immunity paralleling the progressive nigrostriatal damage occurring in a neurotoxic model of Parkinson's disease (PD) based on unilateral infusion of 6-hydroxydopamine (6-OHDA) into the rat striatum. A time-course analysis was conducted to assess changes in morphology (activation) and cell density of microglia and astrocytes, microglia polarization (M1 vs. M2 phenotype), lymphocyte infiltration in the lesioned substantia nigra pars compacta (SNc), and modifications of CD8+ and subsets of CD4+ T cell in peripheral blood accompanying nigrostriatal degeneration. Confirming previous results, we observed slightly different profiles of activation for astrocytes and microglia paralleling nigral neuronal loss. For astrocytes, morphological changes and cell density increases were mostly evident at the latest time points (14 and 28 days post-surgery), while moderate microglia activation was present since the earliest time point. For the first time, in this model, we described the time-dependent profile of microglia polarization. Activated microglia clearly expressed the M2 phenotype in the earlier phase of the experiment, before cell death became manifest, gradually shifting to the M1 phenotype as SNc cell death started. In parallel, a reduction in the percentage of circulating CD4+ T regulatory (Treg) cells, starting as early as day 3 post-6-OHDA injection, was detected in 6-OHDA-injected rats. Our data show that nigrostriatal degeneration is associated with complex changes in central and peripheral immunity. Microglia activation and polarization, Treg cells, and the factors involved in their cross-talk should be further investigated as targets for the development of therapeutic strategies for disease modification in PD.
Collapse
Affiliation(s)
- Giulia Ambrosi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Natasa Kustrimovic
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Francesca Siani
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Emanuela Rasini
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Giuseppe Dicorato
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Sofia Caputo
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy.
| |
Collapse
|
24
|
Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors. Mol Neurobiol 2016; 54:7722-7735. [PMID: 27844282 DOI: 10.1007/s12035-016-0244-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson's disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.
Collapse
|
25
|
Bifsha P, Balsalobre A, Drouin J. Specificity of Pitx3-Dependent Gene Regulatory Networks in Subsets of Midbrain Dopamine Neurons. Mol Neurobiol 2016; 54:4921-4935. [PMID: 27514757 DOI: 10.1007/s12035-016-0040-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
Abstract
Dysfunction of midbrain dopaminergic (mDA) neurons is involved in Parkinson's disease (PD) and neuropsychiatric disorders. Pitx3 is expressed in mDA neuron subsets of the substantia nigra compacta (SNc) and of the ventral tegmental area (VTA) that are degeneration-sensitive in PD. The genetic network(s) and mode(s) of action of Pitx3 in these mDA neurons remain poorly characterized. We hypothesized that, given their distinct neuronal identities, Pitx3-expressing neurons of SNc and VTA should differ in their Pitx3-controlled gene expression networks and this may involve subset-specific co-regulators. Expression profiling of purified mDA neuronal subsets indicates that Pitx3 regulates different sets of genes in SNc and VTA, such as activating the expression of primary cilium gene products specifically in VTA neurons. Interaction network analysis pointed to the participation of differentially expressed Lhx/Lmo family members in the modulation of Pitx3 action in SNc and VTA mDA neurons. Conversely, global binding patterns of Pitx3 on genomic DNA of human dopaminergic cells revealed that Pitx3 is often co-recruited to regions that foster the formation of GATA-bHLH-BRN complexes, which usually involve Lmo co-regulatory proteins. We focused on Lmo3 for its preferential expression in SNc neurons and demonstrated that it functions as a transcriptional co-activator of Pitx3 by enhancing its activity on genomic regulatory elements. In summary, we defined the SN and VTA-specific programs of Pitx3-dependent gene expression and identified Lmo3 as a SN-specific co-regulator of Pitx3-dependent transcription.
Collapse
Affiliation(s)
- Panojot Bifsha
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada.,Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 1A3, Canada
| | - Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada. .,Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 1A3, Canada.
| |
Collapse
|
26
|
Ray A, Kambali M, Ravindranath V. Thiol Oxidation by Diamide Leads to Dopaminergic Degeneration and Parkinsonism Phenotype in Mice: A Model for Parkinson's Disease. Antioxid Redox Signal 2016; 25:252-67. [PMID: 27121974 DOI: 10.1089/ars.2015.6602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS This study investigates the role of thiol homeostasis disruption in Parkinson's disease (PD) pathogenesis using a novel animal model. A single unilateral administration of the thiol oxidant, diamide (1.45 μmol) into substantia nigra (SN) of mice leads to locomotor deficits and degeneration of dopaminergic (DA) neurons in SN pars compacta (SNpc). RESULTS Diamide-injected mice showed hemiparkinsonian behavior, measured as spontaneous contralateral body rotations, poor grip strength, and impaired locomotion on a rotarod. We observed a significant loss of DA neurons in ipsilateral but not contralateral SNpc and their striatal fibers. This was accompanied by increased Fluoro-Jade C-positive cells and a loss of NeuN-positive neurons, indicative of neurodegeneration. Importantly, diamide injection led to α-synuclein aggregation in ipsilateral SNpc, a hallmark of PD pathology not often seen in animal models of PD. On investigating putative mechanism(s) involved, we observed a loss of glutathione, which is essential for maintaining protein thiol homeostasis (PTH). Concomitantly, the redox-sensitive ASK1-p38 mitogen-activated protein kinase (MAPK) death signaling pathway was activated in the ipsilateral but not contralateral ventral midbrain through dissociation of ASK1-Trx1 complex. In Neuro-2a cells, diamide activated ASK1-p38 cascade through Trx1 oxidation, leading to cell death, which was abolished by ASK1 knockdown. INNOVATION Since diamide selectively disrupts PTH, DA neurons appear to be vulnerable to such perturbations and even a single insult with a thiol oxidant can result in long-lasting degeneration. CONCLUSION Identification of the role of PTH dysregulation in neurodegeneration, especially in early PD, not only facilitates an understanding of novel regulatory features of molecular signaling cascades but also may aid in developing disease-modifying strategies for PD. Antioxid. Redox Signal. 25, 252-267.
Collapse
Affiliation(s)
- Ajit Ray
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India .,2 National Brain Research Centre , Manesar, India
| | - Maltesh Kambali
- 1 Centre for Neuroscience, Indian Institute of Science , Bangalore, India
| | | |
Collapse
|
27
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
28
|
Ahlers KE, Chakravarti B, Fisher RA. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS JOURNAL 2016; 18:560-72. [PMID: 27002730 DOI: 10.1208/s12248-016-9899-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Bandana Chakravarti
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Rory A Fisher
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA. .,Department of Internal Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
29
|
Vidyadhara DJ, Yarreiphang H, Abhilash PL, Raju TR, Alladi PA. Differential expression of calbindin in nigral dopaminergic neurons in two mice strains with differential susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Chem Neuroanat 2016; 76:82-89. [PMID: 26775762 DOI: 10.1016/j.jchemneu.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/04/2016] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) affects the A9 dopaminergic (DA) neurons of substantia nigra pars compacta (SNpc) whereas other DA neuronal subtypes are spared. The role of calbindin in this differential vulnerability has been long elicited, and is seen in the MPTP induced mice models of PD. A peculiar feature of mice models is the strain specific differences in the susceptibility to MPTP. Here, calbindin-D28K expression in DA neurons of SNpc of MPTP susceptible C57BL/6 mice and MPTP resistant CD-1 mice was studied as a susceptibility marker of degeneration. Unbiased stereological estimation of immunoperoxidase stained midbrain sections revealed significantly higher number of calbindin immunoreactive cells in SNpc of CD-1 mice compared to that of C57BL/6 strain. Western blotting showed minimal differences in the levels. Calbindin-tyrosine hydroxylase immunofluorescence co-labeling was performed to map the calbindin immunoreactive DA neurons in SNpc and ventral tegmental area (VTA) and to quantify the calbindin expression at cellular level. While the levels were comparable in VTA of both mice strains, the SNpc of CD-1 mice showed significantly higher calbindin expression. Within the SNpc, the medial and dorsal subdivisions showed higher calbindin expression in CD-1. The expression in the ventrolateral SNpc of both strains remained comparable. Our observations clearly point at overall higher levels and sizeable percentage of cells expressing more calbindin in SNpc of CD-1 mice, which might confer neuroprotection against MPTP, while its lower expression makes C57BL/6 mice more susceptible. Similar mechanism may be attributed to the phenomenon of differential prevalence of PD in different ethnic populations.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - H Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, India.
| |
Collapse
|
30
|
Tosatto L, Horrocks MH, Dear AJ, Knowles TPJ, Dalla Serra M, Cremades N, Dobson CM, Klenerman D. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Sci Rep 2015; 5:16696. [PMID: 26582456 PMCID: PMC4652217 DOI: 10.1038/srep16696] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson's disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.
Collapse
Affiliation(s)
- Laura Tosatto
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via alla Cascata 56/C, 38123 Trento, Italy
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via alla Cascata 56/C, 38123 Trento, Italy
| | - Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.,Institute for Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| |
Collapse
|
31
|
Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet 2014; 10:e1004863. [PMID: 25501001 PMCID: PMC4263397 DOI: 10.1371/journal.pgen.1004863] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/29/2014] [Indexed: 12/03/2022] Open
Abstract
Parkinson disease (PD) is characterized by the preferential, but poorly understood, vulnerability to degeneration of midbrain dopaminergic (mDA) neurons in the ventral substantia nigra compacta (vSNc). These sensitive mDA neurons express Pitx3, a transcription factor that is critical for their survival during development. We used this dependence to identify, by flow cytometry and expression profiling, the negative regulator of G-protein signaling Rgs6 for its restricted expression in these neurons. In contrast to Pitx3−/− mDA neurons that die during fetal (vSNc) or post-natal (VTA) period, the vSNc mDA neurons of Rgs6−/− mutant mice begin to exhibit unilateral signs of degeneration at around 6 months of age, and by one year cell loss is observed in a fraction of mice. Unilateral cell loss is accompanied by contralateral degenerating neurons that exhibit smaller cell size, altered morphology and reduced dendritic network. The degenerating neurons have low levels of tyrosine hydroxylase (TH) and decreased nuclear Pitx3; accordingly, expression of many Pitx3 target gene products is altered, including Vmat2, Bdnf, Aldh1a1 (Adh2) and Fgf10. These low TH neurons also express markers of increased dopamine signaling, namely increased DAT and phospho-Erk1/2 expression. The late onset degeneration may reflect the protective action of Rgs6 against excessive DA signaling throughout life. Rgs6-dependent protection is thus critical for adult survival and maintenance of the vSNc mDA neurons that are most affected in PD. The locomotor deficits associated with Parkinson disease result from the death of a specific subset of dopamine neurons in the ventral part of the midbrain. The reason for the greater sensitivity to degeneration of those, relative to other, neurons is not clear. Prior work showed that the Pitx3 transcription factor is specifically expressed in these neurons where it has a survival role during development. The present work identified a cell signaling component, Rgs6, that is also restricted to the sensitive neurons in the midbrain and that exerts a protective function, particularly late in life. While the loss of Rgs6 function may predispose or contribute to Parkinson disease, its stimulation may provide a novel therapeutic avenue to treat Parkinson disease.
Collapse
|
32
|
Moehle MS, West AB. M1 and M2 immune activation in Parkinson's Disease: Foe and ally? Neuroscience 2014; 302:59-73. [PMID: 25463515 DOI: 10.1016/j.neuroscience.2014.11.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/03/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a chronic and progressive neurodegenerative disorder of unknown etiology. Autopsy findings, genetics, retrospective studies, and molecular imaging all suggest a role for inflammation in the neurodegenerative process. However, relatively little is understood about the causes and implications of neuroinflammation in PD. Understanding how inflammation arises in PD, in particular the activation state of cells of the innate immune system, may provide an exciting opportunity for novel neuroprotective therapeutics. We analyze the evidence of immune system involvement in PD susceptibility, specifically in the context of M1 and M2 activation states. Tracking and modulating these activation states may provide new insights into both PD etiology and therapeutic strategies.
Collapse
Affiliation(s)
- M S Moehle
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - A B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2014; 63:466-82. [DOI: 10.1002/glia.22765] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Ana I. Rodriguez-Perez
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Ana Borrajo
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jannette Rodriguez-Pallares
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Maria J. Guerra
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| | - Jose L. Labandeira-Garcia
- Department of Morphological Sciences; Laboratory of Neuroanatomy and Experimental Neurology; CIMUS, University of Santiago de Compostela, Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Spain
| |
Collapse
|
34
|
Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra MJ. Rho Kinase and Dopaminergic Degeneration. Neuroscientist 2014; 21:616-29. [DOI: 10.1177/1073858414554954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small GTP-binding protein Rho plays an important role in several cellular functions. RhoA, which is a member of the Rho family, initiates cellular processes that act on its direct downstream effector Rho-associated kinase (ROCK). ROCK inhibition protects against dopaminergic cell death induced by dopaminergic neurotoxins. It has been suggested that ROCK inhibition activates neuroprotective survival cascades in dopaminergic neurons. Axon-stabilizing effects in damaged neurons may represent another mechanism of neuroprotection of dopaminergic neurons by ROCK inhibition. However, it has been shown that microglial cells play a crucial role in neuroprotection by ROCK inhibition and that activation of microglial ROCK mediates major components of the microglial inflammatory response. Additional mechanisms such as interaction with autophagy may also contribute to the neuroprotective effects of ROCK inhibition. Interestingly, ROCK interacts with several brain factors that play a major role in dopaminergic neuron vulnerability such as NADPH-oxidase, angiotensin, and estrogen. ROCK inhibition may provide a new neuroprotective strategy for Parkinson’s disease. This is of particular interest because ROCK inhibitors are currently used against vascular diseases in clinical practice. However, it is necessary to develop more potent and selective ROCK inhibitors to reduce side effects and enhance the efficacy.
Collapse
Affiliation(s)
- Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I. Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J. Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
35
|
Chorley B, Ward W, Simmons SO, Vallanat B, Veronesi B. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver. Neurotoxicology 2014; 45:12-21. [PMID: 25194297 DOI: 10.1016/j.neuro.2014.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/27/2023]
Abstract
This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.
Collapse
Affiliation(s)
- Brian Chorley
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States
| | - William Ward
- Research Genomics Core, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Steven O Simmons
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States
| | - Beena Vallanat
- Research Genomics Core, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Bellina Veronesi
- National Health and Environmental Effects Research Laboratory (Integrated Systems Toxicology Division), United States.
| |
Collapse
|
36
|
Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 2014; 85:1-8. [PMID: 24878243 DOI: 10.1016/j.neuropharm.2014.05.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 01/20/2023]
Abstract
Several recent studies have shown that activation of the RhoA/Rho-associated kinase (ROCK) pathway is involved in the MPTP-induced dopaminergic cell degeneration and possibly in Parkinson's disease. ROCK inhibitors have been suggested as candidate neuroprotective drugs for Parkinson's disease. However, the mechanism responsible for the increased survival of dopaminergic neurons after treatment with ROCK inhibitors is not clear. We exposed primary (neuron-glia) mesencephalic cultures, cultures of the MES 23.5 dopaminergic neuron cell line and primary mesencephalic cultures lacking microglial cells to the dopaminergic neurotoxin MPP+ and the ROCK inhibitor Y-27632 in order to study the effects of ROCK inhibition on dopaminergic cell loss and the length of neurites of surviving dopaminergic neurons. In primary (neuron-glia) cultures, simultaneous treatment with MPP+ and the ROCK inhibitor significantly reduced the loss of dopaminergic neurons. In the absence of microglia, treatment with the ROCK inhibitor did not induce a significant reduction in the dopaminergic cell loss. Treatment with the ROCK inhibitor induced a significant decrease in axonal retraction in primary cultures with and without microglia and in cultures of the MES 23.5 neuron cell line. In conclusion, inhibition of microglial ROCK is essential for the neuroprotective effects of ROCK inhibitors against cell death induced by the dopaminergic neurotoxin MPP+. In addition, ROCK inhibition induced a direct effect against axonal retraction in surviving neurons. However, the latter effect was not sufficient to cause a significant increase in the survival of dopaminergic neurons after treatment with MPP+.
Collapse
Affiliation(s)
- Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
37
|
Features and timing of the response of single neurons to novelty in the substantia nigra. Brain Res 2014; 1542:79-84. [DOI: 10.1016/j.brainres.2013.10.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/05/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022]
|
38
|
Omega-3 deficiency and neurodegeneration in the substantia nigra: involvement of increased nitric oxide production and reduced BDNF expression. Biochim Biophys Acta Gen Subj 2013; 1840:1902-12. [PMID: 24361617 DOI: 10.1016/j.bbagen.2013.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/01/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our previous study demonstrated that essential fatty acid (EFA) dietary restriction over two generations induced midbrain dopaminergic cell loss and oxidative stress in the substantia nigra (SN) but not in the striatum of young rats. In the present study we hypothesized that omega-3 deficiency until adulthood would reduce striatum's resilience, increase nitric oxide (NO) levels and the number of BDNF-expressing neurons, both potential mechanisms involved in SN neurodegeneration. METHODS Second generation rats were raised from gestation on control or EFA-restricted diets until young or adulthood. Lipoperoxidation, NO content, total superoxide dismutase (t-SOD) and catalase enzymatic activities were assessed in the SN and striatum. The number of tyrosine hydroxylase (TH)- and BDNF-expressing neurons was analyzed in the SN. RESULTS Increased NO levels were observed in the striatum of both young and adult EFA-deficient animals but not in the SN, despite a similar omega-3 depletion (~65%) in these regions. Increased lipoperoxidation and decreased catalase activity were found in both regions, while lower tSOD activity was observed only in the striatum. Fewer TH- (~40%) and BDNF-positive cells (~20%) were detected at the SN compared to the control. CONCLUSION The present findings demonstrate a differential effect of omega-3 deficiency on NO production in the rat's nigrostriatal system. Prolonging omega-3 depletion until adulthood impaired striatum's anti-oxidant resources and BDNF distribution in the SN, worsening dopaminergic cell degeneration. GENERAL SIGNIFICANCE Omega-3 deficiency can reduce the nigrostriatal system's ability to maintain homeostasis under oxidative conditions, which may enhance the risk of Parkinson's disease.
Collapse
|
39
|
Abstract
Chemosensory stimulation is vital for the expression of rodent sexual behavior. As sexual activity decreases with aging, this study investigated whether aging also impacts the integration of sex-relevant chemosensory cues. To this end, several measures were obtained from adult (10-12 months) and aged (30-36 months) male rats after exposure to a conspecific estrous female. These included rates of investigatory behaviors, levels of stimulus-induced Fos immunoreactivity, activation of gonadotropin-releasing hormone-containing cells, and levels of circulating testosterone and corticosterone. The results indicated no significant differences in investigatory behaviors, levels of corticosterone, or activation of gonadotropin-releasing hormone-containing cells between the two groups. As has been reported previously, the levels of testosterone were lower in the aged rats. However, stimulus-induced neural activity was higher in the bed nucleus of the stria terminalis and the medial preoptic area of aged rats, whereas no differences were found in the main olfactory bulb, accessory olfactory bulb, medial amygdala, ventral tegmental area, or nucleus accumbens. These findings suggest the presence of a compensatory mechanism in the hypothalamus of aged animals versus adults, whereby more cells are recruited to elicit a sexual response in the presence of a sexually exciting stimulus.
Collapse
|
40
|
Chassain C, Bielicki G, Carcenac C, Ronsin AC, Renou JP, Savasta M, Durif F. Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A ¹H nuclear MRS study. NMR IN BIOMEDICINE 2013; 26:336-347. [PMID: 23059905 DOI: 10.1002/nbm.2853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
Using in vivo ¹H NMR spectroscopy in a mouse model of Parkinson's disease, we previously showed that glutamate concentrations in the dorsal striatum were highest after dopamine denervation associated with an increase in gamma-aminobutyric acid (GABA) and (Gln) glutamine levels. The aim of this study was to determine whether the changes previously observed in the motor part of the striatum were reproduced in a ventral part of the striatum, the nucleus accumbens (NAc). This study was carried out on controls and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In vivo spectra were acquired for a voxel (8 μL) in the dorsal striatum, and in the NAc (1.56 μL). NMR acquisitions were first performed 10 days after the last MPTP injection in a basal condition [after saline intraperitoneal (i.p.) injection] and then in the same animal the week after basal NMR acquisitions, after acute levodopa administration (200 mg kg⁻¹, i.p.). Immunohistochemistry was used to determine the levels of (Glu) glutamate, glutamine synthetase (GS) and glutamic acid decarboxylase (GAD) isoform 67 in these two structures. The Glu, Gln and GABA concentrations obtained in the basal state were higher in the NAc of MPTP-intoxicated mice which have the higher dopamine denervation in the ventral tegmental area (VTA) and in the dorsal striatum. Levodopa decreased the levels of these metabolites in MPTP-intoxicated mice to levels similar to those in controls. In parallel, immunohistochemical staining showed that glutamate, GS and GAD67 immunoreactivity increased in the dorsal striatum of MPTP-intoxicated mice and in the NAc for animals with a severe dopamine denervation in VTA. These findings strongly supported a hyperactivity of the glutamatergic cortico-striatal pathway and changes in glial activity when the dopaminergic denervation in the VTA and substantia nigra pars compacta (SNc) was severe.
Collapse
Affiliation(s)
- Carine Chassain
- CHU Clermont-Ferrand, Service of Neurology, F-63001, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hoban DB, Connaughton E, Connaughton C, Hogan G, Thornton C, Mulcahy P, Moloney TC, Dowd E. Further characterisation of the LPS model of Parkinson's disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain Behav Immun 2013; 27:91-100. [PMID: 23044176 DOI: 10.1016/j.bbi.2012.10.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic neuroinflammation has been established as one of the many processes involved in the pathogenesis of Parkinson's disease (PD). Because of this, researchers have attempted to replicate this pathogenic feature in animal models using the potent inflammagen, lipopolysaccharide (LPS), in order to gain better understanding of immune-mediated events in PD. However, although the effect of intra-cerebral LPS on neuroinflammation and neurodegeneration has been relatively well characterised, its impact on motor function has been less well studied. Therefore, the aim of this study was to further characterise the neuropathological and behavioural impact of intra-nigral and intra-striatal administration of LPS. To do, LPS (10 μg) or vehicle (sterile saline) were stereotaxically injected into the adult rat substantia nigra or striatum on one side only. The effect of LPS administration on lateralised motor function was assessed using the Corridor, Stepping and Whisker tests for two weeks post-injection, after which, amphetamine-induced rotational asymmetry was completed. Post-mortem, the impact of LPS on nigrostriatal degeneration and microgliosis was assessed using quantitative tyrosine hydroxylase and OX-42 immunohistochemistry respectively. We found that intra-nigral administration of LPS led to localised microgliosis in the substantia nigra and this was accompanied by nigrostriatal neurodegeneration and stable spontaneous motor deficits. In contrast, intra-striatal administration of LPS led to localised microgliosis in the striatum but this did not lead to any nigrostriatal neurodegeneration and only induced transient motor dysfunction. In conclusion, this study reveals the impact of intra-cerebral LPS administration on PD-related neuropathology and motor function, and it indicates that the intra-nigral model may be a highly relevant model as it is associated with stable motor decline underpinned by nigral microgliosis and nigrostriatal neurodegeneration.
Collapse
Affiliation(s)
- Deirdre B Hoban
- The Department of Pharmacology & Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res 2012; 7:2653-62. [PMID: 25337111 PMCID: PMC4200733 DOI: 10.3969/j.issn.1673-5374.2012.34.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson’s disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson’s disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function, tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson’s disease.
Collapse
Affiliation(s)
- Yue Huang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Cheng Chang
- Department of Anatomy, Zhengzhou University, Zhengzhou 450004, Henan Province, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Xiaoqun Gao
- Department of Anatomy, Zhengzhou University, Zhengzhou 450004, Henan Province, China
| |
Collapse
|
43
|
Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis 2012; 47:268-79. [DOI: 10.1016/j.nbd.2012.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022] Open
|
44
|
Kamanu FK, Medvedeva YA, Schaefer U, Jankovic BR, Archer JAC, Bajic VB. Mutations and binding sites of human transcription factors. Front Genet 2012; 3:100. [PMID: 22670148 PMCID: PMC3365286 DOI: 10.3389/fgene.2012.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/16/2012] [Indexed: 11/13/2022] Open
Abstract
Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, "insertions" are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways.
Collapse
Affiliation(s)
- Frederick Kinyua Kamanu
- Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
45
|
Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct 2012; 218:373-88. [PMID: 22407459 PMCID: PMC3580133 DOI: 10.1007/s00429-012-0402-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/22/2012] [Indexed: 02/07/2023]
Abstract
We have previously obtained in rodents a considerable amount of data suggesting a major role for the brain renin–angiotensin system (RAS) in dopaminergic neuron degeneration and potentially in Parkinson’s disease. However, the presence of a local RAS has not been demonstrated in the monkey or the human substantia nigra compacta (SNc). The present study demonstrates the presence of major RAS components in dopaminergic neurons, astrocytes and microglia in both the monkey and the human SNc. Angiotensin type 1 and 2 and renin–prorenin receptors were located at the surface of dopaminergic neurons and glial cells, as expected for a tissular RAS. However, angiotensinogen and receptors for angiotensin and renin–prorenin were also observed at the cytoplasm and nuclear level, which suggests the presence of an intracrine or intracellular RAS in monkey and human SNc. Although astrocytes and microglia were labeled for angiotensin and prorenin receptors in the normal SNc, most glial cells appeared less immunoreactive than the dopaminergic neurons. However, our previous studies in rodent models of PD and studies in other animal models of brain diseases suggest that the RAS activity is significantly upregulated in glial cells in pathological conditions. The present results together with our previous findings in rodents suggest a major role for the nigral RAS in the normal functioning of the dopaminergic neurons, and in the progression of the dopaminergic degeneration.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
46
|
Lanciego JL. Basal Ganglia Circuits: What's Now and Next? Front Neuroanat 2012; 6:4. [PMID: 22347847 PMCID: PMC3277909 DOI: 10.3389/fnana.2012.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jose L Lanciego
- Neurosciences Division, Basal Ganglia Neuromorphology Laboratory, University of Navarra Pamplona, Spain
| |
Collapse
|
47
|
Abstract
Parkinson's disease (PD) is the most common age-related motoric neurodegenerative disease initially described in the 1800's by James Parkinson as the 'Shaking Palsy'. Loss of the neurotransmitter dopamine was recognized as underlying the pathophysiology of the motor dysfunction; subsequently discovery of dopamine replacement therapies brought substantial symptomatic benefit to PD patients. However, these therapies do not fully treat the clinical syndrome nor do they alter the natural history of this disorder motivating clinicians and researchers to further investigate the clinical phenotype, pathophysiology/pathobiology and etiology of this devastating disease. Although the exact cause of sporadic PD remains enigmatic studies of familial and rare toxicant forms of this disorder have laid the foundation for genome wide explorations and environmental studies. The combination of methodical clinical evaluation, systematic pathological studies and detailed genetic analyses have revealed that PD is a multifaceted disorder with a wide-range of clinical symptoms and pathology that include regions outside the dopamine system. One common thread in PD is the presence of intracytoplasmic inclusions that contain the protein, α-synuclein. The presence of toxic aggregated forms of α-synuclein (e.g., amyloid structures) are purported to be a harbinger of subsequent pathology. In fact, PD is both a cerebral amyloid disease and the most common synucleinopathy, that is, diseases that display accumulations of α-synuclein. Here we present our current understanding of PD etiology, pathology, clinical symptoms and therapeutic approaches with an emphasis on misfolded α-synuclein.
Collapse
Affiliation(s)
- Timothy R. Mhyre
- Department of Neuroscience, Georgetown University Medical Center, NRB EP08, 3970 Reservoir Road NW, 20057, Washington, DC, USA,
| | - James T. Boyd
- University of Vermont College of Medicine, 1 South Prospect Street, DU-Arnold 4416-UHC, 05401, Burlington, VT, USA,
| | - Robert W. Hamill
- Department of Neurology, University of Vermont College of Medicine, 89 Beaumont Avenue, Given Hall Room C225, 05405, Burlington, VT, USA,
| | - Kathleen A. Maguire-Zeiss
- Department of Neuroscience, Center for Neural Injury and RecoveryGeorgetown University Medical Center, 3970 Reservoir Road, NW NRB EP08, 20057, Washington, DC, USA,
| |
Collapse
|
48
|
Gillespie P, Tajuba J, Lippmann M, Chen LC, Veronesi B. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology 2011; 36:112-7. [PMID: 22057156 DOI: 10.1016/j.neuro.2011.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
Abstract
Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum.
Collapse
Affiliation(s)
- Patricia Gillespie
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States
| | | | | | | | | |
Collapse
|
49
|
Rodriguez-Perez AI, Valenzuela R, Joglar B, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Renin angiotensin system and gender differences in dopaminergic degeneration. Mol Neurodegener 2011; 6:58. [PMID: 21846363 PMCID: PMC3169490 DOI: 10.1186/1750-1326-6-58] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD). It has been shown that the local renin angiotensin system (RAS) plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1) receptors. RESULTS In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen). However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. CONCLUSIONS The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Rita Valenzuela
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Belen Joglar
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Pablo Garrido-Gil
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Maria J Guerra
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| | - Jose L Labandeira-Garcia
- Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
| |
Collapse
|