1
|
Thome C, Janssen JM, Karabulut S, Acuna C, D'Este E, Soyka SJ, Baum K, Bock M, Lehmann N, Roos J, Stevens NA, Hasegawa M, Ganea DA, Benoit CM, Gründemann J, Min LY, Bird KM, Schultz C, Bennett V, Jenkins PM, Engelhardt M. Live imaging of excitable axonal microdomains in ankyrin-G-GFP mice. eLife 2025; 12:RP87078. [PMID: 39898808 PMCID: PMC11790247 DOI: 10.7554/elife.87078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.
Collapse
Affiliation(s)
- Christian Thome
- Institute of Anatomy and Cell Biology, Johannes Kepler UniversityLinzAustria
- Clinical Research Institute for Neurosciences, Johannes Kepler UniversityLinzAustria
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelbergGermany
| | - Jan Maximilian Janssen
- Institute of Anatomy and Cell Biology, Johannes Kepler UniversityLinzAustria
- Clinical Research Institute for Neurosciences, Johannes Kepler UniversityLinzAustria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Seda Karabulut
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg UniversityHeidelbergGermany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Stella J Soyka
- Institute of Anatomy and Cell Biology, Dept. of Functional Neuroanatomy, Heidelberg UniversityHeidelbergGermany
| | - Konrad Baum
- Institute of Anatomy and Cell Biology, Johannes Kepler UniversityLinzAustria
- Clinical Research Institute for Neurosciences, Johannes Kepler UniversityLinzAustria
| | - Michael Bock
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Johannes Roos
- Institute of Anatomy and Cell Biology, Johannes Kepler UniversityLinzAustria
- Clinical Research Institute for Neurosciences, Johannes Kepler UniversityLinzAustria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nikolas A Stevens
- Institute of Physiology and Pathophysiology, Heidelberg UniversityHeidelbergGermany
| | - Masashi Hasegawa
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit ComputationsBonnGermany
| | - Dan A Ganea
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Chloé M Benoit
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit ComputationsBonnGermany
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Jan Gründemann
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit ComputationsBonnGermany
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Lia Y Min
- Department of Pharmacology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Kalynn M Bird
- Department of Pharmacology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Christian Schultz
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Psychiatry, University of Michigan Medical SchoolAnn ArborUnited States
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Johannes Kepler UniversityLinzAustria
- Clinical Research Institute for Neurosciences, Johannes Kepler UniversityLinzAustria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Pavy CL, Shaw JC, Dyson RM, Palliser HK, Moloney RA, Sixtus RP, Berry MJ, Hirst JJ. Ganaxolone Therapy After Preterm Birth Restores Cerebellar Oligodendrocyte Maturation and Myelination in Guinea Pigs. Dev Psychobiol 2024; 66:e22554. [PMID: 39378309 DOI: 10.1002/dev.22554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development. Guinea pig sows delivered at term (∼69 days gestation) or were induced to deliver preterm (∼62 days), with preterm pups receiving ganaxolone or vehicle until TEA. Postnatal assessments comprised salivary cortisol (corrected postnatal age [CPA] 0, 7, 38), behavioral analysis (CPA7, 38), and tissue collection (CPA0 and CPA40). Neurodevelopmental markers (MBP, Olig2, and NeuN) were assessed in the cerebellum by immunohistochemistry, whereas RT-PCR was utilized to investigate key inhibitory/excitatory pathways and oligodendrocyte lineage markers. Following preterm birth, there was evidence of a hyperactive phenotype, increased salivary cortisol concentrations, and impaired myelination and oligodendrocyte maturation at the protein level. mRNA expressions of key inhibitory/excitatory pathways and myelin stability were also altered following preterm birth. Importantly, we showed that neurosteroid replacement therapy returns cerebellar development and behavior toward a term-like phenotype. Therefore, ganaxolone may reduce the vulnerability of the cerebellum to postnatal challenges arising from preterm birth.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
3
|
Thome C, Janssen JM, Karabulut S, Acuna C, D’Este E, Soyka SJ, Baum K, Bock M, Lehmann N, Roos J, Stevens NA, Hasegawa M, Ganea DA, Benoit CM, Gründemann J, Min L, Bird KM, Schultz C, Bennett V, Jenkins PM, Engelhardt M. Live imaging of excitable axonal microdomains in ankyrin-G-GFP mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.01.525891. [PMID: 38948770 PMCID: PMC11212890 DOI: 10.1101/2023.02.01.525891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.
Collapse
Affiliation(s)
- Christian Thome
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jan Maximilian Janssen
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Seda Karabulut
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Stella J. Soyka
- Institute of Anatomy and Cell Biology, Dept. of Functional Neuroanatomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Konrad Baum
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
| | - Michael Bock
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nadja Lehmann
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Roos
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Nikolas A. Stevens
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Masashi Hasegawa
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
| | - Dan A. Ganea
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Chloé M. Benoit
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Jan Gründemann
- German Center for Neurodegenerative Disease (DZNE), Neural Circuit Computations, 53127 Bonn, Germany
- University of Basel, Department of Biomedicine, 4031 Basel, Switzerland
| | - Lia Min
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kalynn M. Bird
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christian Schultz
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul M. Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maren Engelhardt
- Institute of Anatomy and Cell Biology, Johannes Kepler University, 4020 Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University, 4020 Linz, Austria
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Bakhtogarimov IR, Kudryavtseva AV, Krasnov GS, Gladysh NS, Volodin VV, Kudryavtsev AA, Bulavkina EV, Goncharova MA, Ledyaeva VS, Pastukhov IS, Vershinina YS, Starkova AM, Snezhkina AV, Shuvalova AI, Pavlov VS, Nikiforov-Nikishin DL, Moskalev AA, Guvatova ZG. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int J Mol Sci 2022; 23:ijms23052491. [PMID: 35269638 PMCID: PMC8910246 DOI: 10.3390/ijms23052491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Annual fish of the genus Nothobranchius are promising models for aging research. Nothobranchius reproduces typical aspects of vertebrate aging, including hallmarks of brain aging. Meclofenoxate (MF) is a well-known compound that can enhance cognitive performance. The drug is prescribed for asthenic conditions, trauma, and vascular diseases of the brain. It is believed that MF is able to delay age-dependent changes in the human brain. However, until now, there has been no study of the MF effect on the brain transcriptome. In the present work, we performed an RNA-Seq study of brain tissues from aged Nothobranchius guentheri, which were almost lifetime administered with MF, as well as young and aged control fish. As expected, in response to MF, we revealed significant overexpression of neuron-specific genes including genes involved in synaptic activity and plasticity, neurotransmitter secretion, and neuron projection. The effect was more pronounced in female fish. In this aspect, MF alleviated age-dependent decreased expression of genes involved in neuronal activity. In both treated and untreated animals, we observed strong aging-associated overexpression of immune and inflammatory response genes. MF treatment did not prevent this effect, and moreover, some of these genes tended to be slightly upregulated under MF treatment. Additionally, we noticed upregulation of some genes associated with aging and cellular senescence, including isoforms of putative vascular cell adhesion molecule 1 (VCAM1), protein O-GlcNAcase (OGA), protein kinase C alpha type (KPCA), prolow-density lipoprotein receptor-related protein 1 (LRP1). Noteworthy, MF treatment was also associated with the elevated transcription of transposons, which are highly abundant in the N. guentheri genome. In conclusion, MF compensates for the age-dependent downregulation of neuronal activity genes, but its effect on aging brain transcriptome still cannot be considered unambiguously positive.
Collapse
Affiliation(s)
- Ildar R. Bakhtogarimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| | - George S. Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Natalya S. Gladysh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Vsevolod V. Volodin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Alexander A. Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Margarita A. Goncharova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Veronika S. Ledyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Ivan S. Pastukhov
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Yulia S. Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anna M. Starkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Vladislav S. Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.A.K.); (E.V.B.); (M.A.G.); (V.S.L.); (Y.S.V.); (A.M.S.); (A.V.S.); (A.I.S.); (V.S.P.)
| | - Dmitry L. Nikiforov-Nikishin
- Institute of Biotechnology and Fisheries, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004 Moscow, Russia; (I.S.P.); (D.L.N.-N.)
| | - Alexey A. Moskalev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
| | - Zulfiya G. Guvatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (I.R.B.); (G.S.K.); (N.S.G.); (V.V.V.); (A.A.M.)
- Correspondence: (A.V.K.); (Z.G.G.); Tel.: +7-(499)-135-23-91 (A.V.K. & Z.G.G.)
| |
Collapse
|
5
|
Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka SK, Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E, Tyynismaa H. Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front Cell Dev Biol 2022; 9:820105. [PMID: 35237613 PMCID: PMC8883324 DOI: 10.3389/fcell.2021.820105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M. Molchanova
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Kouchaki E, Dashti F, Mirazimi SMA, Alirezaei Z, Jafari SH, Hamblin MR, Mirzaei H. Neurofilament light chain as a biomarker for diagnosis of multiple sclerosis. EXCLI JOURNAL 2021; 20:1308-1325. [PMID: 34602928 PMCID: PMC8481790 DOI: 10.17179/excli2021-3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
The treatments for multiple sclerosis (MS) have improved over the past 25 years, but now the main question for physicians is deciding who should receive treatment, for how long, and when to switch to other options. These decisions are typically based on treatment tolerance and a reasonable expectation of long-term efficacy. A significant unmet need is the lack of accurate laboratory measurements for diagnosis, and monitoring of treatment response, including deterioration and disease progression. There are few validated biomarkers for MS, and in practice, physicians employ two biomarkers discovered fifty years ago for MS diagnosis, often in combination with MRI scans. These biomarkers are intrathecal IgG and oligoclonal bands in the CSF (cerebrospinal fluid). Neurofilament light chain (NfL) is a relatively new biomarker for MS diagnosis and follow up. Neurofilaments are neuron-specific cytoskeleton proteins that can be measured in various body compartments. NfL is a new biomarker for MS that can be measured in serum samples, but this still needs further study to specify the laboratory cut-off values in clinical practice. In the present review we discuss the evidence for NfL as a reliable biomarker for the early detection and management of MS. Moreover, we highlight the correlation between MRI and NfL, and ask whether they can be combined.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- MS Fellowship, Department of Neurology, School of Medicine, Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
7
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
8
|
Xu Y, Yao Y, Lyu H, Ng S, Xu Y, Poon WS, Zheng Y, Zhang S, Hu X. Rehabilitation Effects of Fatigue-Controlled Treadmill Training After Stroke: A Rat Model Study. Front Bioeng Biotechnol 2020; 8:590013. [PMID: 33330421 PMCID: PMC7734251 DOI: 10.3389/fbioe.2020.590013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Traditional rehabilitation with uniformed intensity would ignore individual tolerance and introduce the second injury to stroke survivors due to overloaded training. However, effective control of the training intensity of different stroke survivors is still lacking. The purpose of the study was to investigate the rehabilitative effects of electromyography (EMG)-based fatigue-controlled treadmill training on rat stroke model. Methods: Sprague-Dawley rats after intracerebral hemorrhage and EMG electrode implantation surgeries were randomly distributed into three groups: the control group (CTRL, n = 11), forced training group (FOR-T, n = 11), and fatigue-controlled training group (FAT-C, n = 11). The rehabilitation interventions were delivered every day from day 2 to day 14 post-stroke. No training was delivered to the CTRL group. The rats in the FOR-T group were forced to run on the treadmill without rest. The fatigue level was monitored in the FAT-C group through the drop rate of EMG mean power frequency, and rest was applied to the rats when the fatigue level exceeded the moderate fatigue threshold. The speed and accumulated running duration were comparable in the FAT-C and the FOR-T groups. Daily evaluation of the motor functions was performed using the modified Neurological Severity Score. Running symmetry was investigated by the symmetry index of EMG bursts collected from both hind limbs during training. The expression level of neurofilament-light in the striatum was measured to evaluate the neuroplasticity. Results: The FAT-C group showed significantly lower modified Neurological Severity Score compared with the FOR-T (P ≤ 0.003) and CTRL (P ≤ 0.003) groups. The FAT-C group showed a significant increase in the symmetry of hind limbs since day 7 (P = 0.000), whereas the FOR-T group did not (P = 0.349). The FAT-C group showed a higher concentration of neurofilament-light compared to the CTRL group (P = 0.005) in the unaffected striatum and the FOR-T group (P = 0.021) in the affected striatum. Conclusion: The treadmill training with moderate fatigue level controlled was more effective in motor restoration than forced training. The fatigue-controlled physical training also demonstrated positive effects in the striatum neuroplasticity. This study indicated that protocol with individual fatigue-controlled training should be considered in both animal and clinical studies for better stroke rehabilitation.
Collapse
Affiliation(s)
- Yuchen Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yuanfa Yao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Lyu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Stephanie Ng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Yingke Xu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
9
|
Blood Neurofilament Light Chain: The Neurologist's Troponin? Biomedicines 2020; 8:biomedicines8110523. [PMID: 33233404 PMCID: PMC7700209 DOI: 10.3390/biomedicines8110523] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Blood neurofilament light chain (NfL) is a marker of neuro-axonal injury showing promising associations with outcomes of interest in several neurological conditions. Although initially discovered and investigated in the cerebrospinal fluid (CSF), the recent development of ultrasensitive digital immunoassay technologies has enabled reliable detection in serum/plasma, obviating the need for invasive lumbar punctures for longitudinal assessment. The most evidence for utility relates to multiple sclerosis (MS) where it serves as an objective measure of both the inflammatory and degenerative pathologies that characterise this disease. In this review, we summarise the physiology and pathophysiology of neurofilaments before focusing on the technological advancements that have enabled reliable quantification of NfL in blood. As the test case for clinical translation, we then highlight important recent developments linking blood NfL levels to outcomes in MS and the next steps to be overcome before this test is adopted on a routine clinical basis.
Collapse
|
10
|
Neurodegenerative Implications of Neuronal Cytoplasmic Protein Dysfunction in Response to Environmental Contaminants. Neurotox Res 2020; 39:533-541. [PMID: 33175324 DOI: 10.1007/s12640-020-00308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases account for a significant portion of public health concerns particularly in the aging population. The dysfunction of interfilament proteins has been identified as a key event in the initiation of neurodegeneration and subsequent progression to neurodegenerative diseases. In addition, several studies have found associations between the dysfunction of interfilament proteins and exposure to environmental contaminants. Therefore, in this review, the role of interfilament proteins in neuronal cells, their connection to neurotoxicity from environmental contaminants, and finally the resulting neurodegeneration are discussed.
Collapse
|
11
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|