1
|
V N D, Sen S, Chattopadhyaya M. Comparative study of the photocatalytic activity of g-C 3N 4/MN 4 (M = Mn, Fe, Co) for water splitting reaction: A theoretical study. J Comput Chem 2024; 45:2518-2529. [PMID: 38970347 DOI: 10.1002/jcc.27464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
In this study, nanocomposites of g-C3N4/MN4 (where M is Mn, Fe and Co) have been designed using advanced density functional theory (DFT) calculations. A comprehensive analysis was conducted on the geometry, electronic, optical properties, work function, charge transfer interaction and adhesion energy of the g-C3N4/MN4 heterostructures and concluded that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions exhibit higher photocatalytic performance than individual units. The better photocatalytic activity can be attributed mainly by two facts; (i) the visible light absorption of both g-C3N4/FeN4 and g-C3N4/CoN4 interfaces are higher compared to its isolated analogs and (ii) a significant enhancement of band gap energy in g-C3N4/FeN4 and g-C3N4/CoN4 heterostructures limited the electron-hole recombination significantly. The potential of the g-C3N4/MN4 heterojunctions as a photocatalyst for the water splitting reaction was assessed by examining its band alignment for water splitting reaction. Importantly, while the electronic and magnetic properties of MN4 systems were studied, this is the first example of inclusion of MN4 on graphene-based material (g-C3N4) for studying the photocatalytic activity. The state of the art DFT calculations emphasis that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions are half metallic photocatalysts, which is limited till date.
Collapse
Affiliation(s)
- Dhilshada V N
- Department of Chemistry, National Institute of Technology, Calicut, India
| | - Sabyasachi Sen
- Department of Physics, Shyampur Siddheswari Mahavidyalaya, Nadia, India
| | | |
Collapse
|
2
|
Sun R, Zhu Z, Tian N, Zhang Y, Huang H. Hydrogen Bonds and In situ Photoinduced Metallic Bi 0/Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202408862. [PMID: 38972856 DOI: 10.1002/anie.202408862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/09/2024]
Abstract
For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi0 and Ni0 are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi0 strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi0/BiOBr@Ni0/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.
Collapse
Affiliation(s)
- Rongjun Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Na Tian
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
3
|
Li J, Wei S, Dong Y, Zhang Y, Wang L. Theoretical Study on Photocatalytic Reduction of CO 2 on Anatase/Rutile Mixed-Phase TiO 2. Molecules 2024; 29:4105. [PMID: 39274952 PMCID: PMC11397365 DOI: 10.3390/molecules29174105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The construction of anatase/rutile heterojunctions in TiO2 is an effective way of improving the CO2 photoreduction activity. Yet, the origin of the superior photocatalytic performance is still unclear. To solve this issue, the band edges between anatase and rutile phases were theoretically determined based on the three-phase atomic model of (112)A/II/(101)R, and simultaneously the CO2 reduction processes were meticulously investigated. Our calculations show that photogenerated holes can move readily from anatase to rutile via the thin intermediated II phase, while photoelectrons flowing in the opposite direction may be impeded due to the electron trapping sites at the II phase. However, the large potential drop across the anatase/rutile interface and the strong built-in electric field can provide an effective driving force for photoelectrons' migration to anatase. In addition, the II phase can better enhance the solar light utilization of (112)A/(100)II, including a wide light response range and an intensive optical absorption coefficient. Meanwhile, the mixed-phase TiO2 possesses negligible hydrogenation energy (CO2 to COOH*) and lower rate-limiting energy (HCOOH* to HCO*), which greatly facilitate CH3OH generation. The efficient charge separation, strengthened light absorption, and facile CO2 reduction successfully demonstrate that the anatase/rutile mixed-phase TiO2 is an efficient photocatalyst utilized for CO2 conversion.
Collapse
Affiliation(s)
- Jieqiong Li
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng 475004, China
| | - Shiyu Wei
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Ying Dong
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yongya Zhang
- Henan Engineering Center of New Energy Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Li Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
V N D, Chandran A, Sen S, Chattopadhyaya M. Density functional theory-based modeling of the half-metallic g-C 3N 4/CoN 4 heterojunction for photocatalytic water splitting reaction. Phys Chem Chem Phys 2024; 26:21117-21133. [PMID: 39058365 DOI: 10.1039/d4cp00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Using density functional theory (DFT), we have investigated the structural, optical, electronic and magnetic properties of a graphitic carbon nitride (g-C3N4) and CoN4 composite to explore the effect of the heterojunction on the photocatalytic performance of g-C3N4. The structure of g-C3N4 is modified while complexing with CoN4 and the corresponding stabilization is confirmed through adhesion energy calculation. The phonon spectra analysis furthermore guaranteed the lattice-dynamic stability of the CoN4 bulk and the CoN4 slab. Pristine g-C3N4 is a wide band gap semiconductor, which becomes half metallic upon CoN4 inclusion. The metallicity in the g-C3N4/CoN4 composite originates from the spin down channel, keeping the spin up channel in a semiconducting state. The charge density analysis and work function calculation suggest a substantial amount of charge transfer from g-C3N4 to the CoN4 unit in the g-C3N4/CoN4 heterojunction. The model heterojunction of the g-C3N4/CoN4 composite can enhance the utilization ratio of visible light for the g-C3N4 photocatalyst. In g-C3N4/CoN4, the valence band maximum (VBM) has a more positive potential compared to O2/H2O (+1.23 V) on the normal hydrogen electrode (NHE) scale. However, the conduction band minimum (CBM) displays a more negative potential compared to H+/H2 (0 V) on the NHE scale. The details of the band structure, density of states and band edge position determining calculations confirm that the g-C3N4/CoN4 composite forms a type 1 heterojunction, making it a suitable photocatalyst for water splitting reaction. The practical application of the g-C3N4/CoN4 heterostructure as a photocatalyst was substantiated in the presence of polar solvent (water) by calculating the band gap, charge transfer interaction and charge density difference. There is a significant decrease of charge transfer and thereby charge density difference in the g-C3N4/CoN4 heterojunction in the presence of water; however, it still holds potential for use as a photocatalyst for water splitting reaction. The state-of-the-art theoretical modeling of the g-C3N4/CoN4 heterojunction is the first theoretical study incorporating the CoN4 crystal.
Collapse
Affiliation(s)
- Dhilshada V N
- Department of Chemistry, National Institute of Technology, Calicut, Calicut Mukkam Road, Kattangal, Kerala 673601, India.
| | - Aiswarya Chandran
- Department of Chemistry, National Institute of Technology, Calicut, Calicut Mukkam Road, Kattangal, Kerala 673601, India.
| | - Sabyasachi Sen
- Department of Physics, Shyampur Siddheswari Mahavidyalaya, Ajodhya, Shyampur, Howrah, Pin-711312& JIS College of Engineering Block A, Phase-III, Kalyani, Nadia, Pin-741235, India
| | - Mausumi Chattopadhyaya
- Department of Chemistry, National Institute of Technology, Calicut, Calicut Mukkam Road, Kattangal, Kerala 673601, India.
| |
Collapse
|
5
|
Mustafa A, Guene Lougou B, Shuai Y, Wang Z, Ur-Rehman H, Razzaq S, Wang W, Pan R, Li F, Han L. Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO 2 reduction to CO. J Colloid Interface Sci 2024; 657:363-372. [PMID: 38043238 DOI: 10.1016/j.jcis.2023.11.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction (eCO2R) to industrially important feedstock has received great attention, but it faces different challenges. Among them, the poor CO2 mass transport due to low intrinsic CO2 solubility significantly limits the rate of reduction reactions, leading to lower catalytic performance; thereby, commercially relevant current densities can't be achieved. Moreover, the poor activity and selectivity of high-cost monometallic catalysts, including Cu, Zn, Ag, and Au, undermine the efficiency of eCO2R. Flow-through gas diffusion electrodes (FTGDE), a newly developed class of GDEs, can potentially solve the issue of poor CO2 mass transport because they directly feed the CO2 to the catalyst layer. In addition, abundant surface area, porous structure, and improved triple-phase interface make them an excellent candidate for extremely high rate eCO2R. Antimony, a low-cost and abundant metalloid, can be effectively tuned with Cu to produce useful products such as CO, formate, and C2H4 through eCO2R. Herein, a series of porous binary CuSb FTGDEs with different Sb compositions are fabricated for the electrocatalytic reduction of CO2 to CO. The results show that the catalytic performance of CuSb FTGDEs improved with increasing Sb content up to a certain threshold, beyond which it started to decrease. The CuSb FTGDE with 5.4 g of antimony demonstrated higher current density (206.4 mA/cm2) and faradaic efficiency (72.82 %) at relatively lower overpotentials. Compared to gas diffusion configuration, the poor catalytic activity and selectivity achieved by CuSb FTGDE in non-gas diffusion configuration signifies the importance of improved local CO2 concentration and improved triple-phase interface formation in GDE configuration. The several hours stable operation of CuSb FTGDEs during eCO2R demonstrates its potential for efficient electrocatalytic conversion applications.
Collapse
Affiliation(s)
- Azeem Mustafa
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Bachirou Guene Lougou
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haseeb Ur-Rehman
- Mechanical Engineering Department, University of Engineering and Technology, 47050, Taxila, Pakistan
| | - Samia Razzaq
- School of Aerospace, Mechanical and Mechatronics Engineering, University of Sydney, Sydney 2006, Australia
| | - Wei Wang
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ruming Pan
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Fanghua Li
- Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Han
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
6
|
Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-Scheme Heterojunction Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310600. [PMID: 37988721 DOI: 10.1002/adma.202310600] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Semiconductor photocatalytic technology holds immense promise for converting sustainable solar energy into chemically storable energy, with significant applications in the realms of energy and the environment. However, the inherent issue of rapid recombination of photogenerated electrons and holes hinders the performance of single photocatalysts. To overcome this challenge, the construction of 2D S-scheme heterojunction photocatalysts emerges as an effective strategy. The deliberate design of dimensionality ensures a substantial interfacial area; while, the S-scheme charge transfer mechanism facilitates efficient charge separation and maximizes redox capabilities. This review commences with a fresh perspective on the charge transfer mechanism in S-scheme heterojunctions, followed by a comprehensive exploration of preparation methods and characterization techniques. Subsequently, the recent advancements in 2D S-scheme heterojunction photocatalysts are summarized. Notably, the mechanism behind activity enhancement is elucidated. Finally, the prospects for the development of 2D S-scheme photocatalysts are presented.
Collapse
Affiliation(s)
- Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jian Sun
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Yanyan Zhao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
7
|
Wu J, Meng Y, Wu F, Shi J, Sun Q, Jiang X, Liu Y, Zhao P, Wang Q, Guo L, Wu Y, Zheng X, Bu W. Ultrasound-Driven Non-Metallic Fenton-Active Center Construction for Extensive Chemodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307980. [PMID: 37823714 DOI: 10.1002/adma.202307980] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging tumor microenvironment-responsive cancer therapeutic strategy based on Fenton/Fenton-like reactions. However, the effectiveness of CDT is subject to the slow kinetic rate and non-homogeneous distribution of H2 O2 . In this study, a conceptual non-metallic "Fenton-active" center construction strategy is proposed to enhance CDT efficiency using Bi0.44 Ba0.06 Na0.5 TiO2.97 (BNBT-6) nanocrystals. The separated charge carriers under a piezoelectric-induced electric field synchronize the oxidation of H2 O and reduction of H2 O2 , which consequently increases hydroxyl radical (·OH) yield even under low H2 O2 levels. Moreover, acceptor doping induces electron-rich oxygen vacancies to facilitate the dissociation of H2 O2 and H2 O and further promote ·OH generation. In vitro and in vivo experiments demonstrate that BNBT-6 induces extensive intracellular oxidative stress and enhances cell-killing efficiency by activating necroptosis in addition to the conventional apoptotic pathway. This study proposes a novel design approach for nanomaterials used in CDT and presents a new treatment strategy for apoptosis-resistant tumors.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Yun Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Fan Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Jieyun Shi
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Qingwen Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Qiao Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China
- Department of Radiation Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
8
|
Li S, Hasan N, Zhang F, Bae JS, Liu C. 2D Bi 2MoO 6/Zn 3V 2O 8 heterojunction photocatalyst for efficient photocatalytic reduction of CO 2 to CO and CH 4. J Colloid Interface Sci 2023; 652:1533-1544. [PMID: 37660610 DOI: 10.1016/j.jcis.2023.08.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Two-dimensional (2D) "face-to-face" heterojunctions promote interfacial charge transfer and separation in composite photocatalysts. Here, we report an efficient 2D/2D step-scheme (S-scheme) photocatalyst composed of Bi2MoO6/Zn3V2O8 (BMO/ZVO), which has been designed and prepared via the self-assembly of BMO and ZVO nanoflakes. The heterojunction with an optimized composition of 30% BMO/ZVO showed extended light absorption capacity and enhanced separation efficiency of photogenerated carriers. Density functional theory (DFT) calculation on work function and charge density revealed the presence of a built-in electric field at the interface region, which should facilitate the separation of photogenerated electron-hole pairs. This work showed that it is essential to select two photocatalysts with interlaced band arrangement and to fine-tune the heterojunction interface for the preparation of S-scheme heterojunctions to achieve high photocatalytic efficiency.
Collapse
Affiliation(s)
- Shiping Li
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Najmul Hasan
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Fuchun Zhang
- College of Physics and Electronic Information, Yan'an University, Yan'an 716000, People's Republic of China
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
| |
Collapse
|
9
|
Hsu CY, Abdul Kareem Al-Hetty HR, Alsailawi HA, Islam S, Shather AH, Mekkey SM, Ahmed AA, Hadrawi SK, Ali Kahi N. A DFT study on the probability of using the heteroatom decorated graphitic carbonitride (g-C 3N 4) species for delivering of three novel Multiple sclerosis drugs. J Mol Graph Model 2023; 125:108605. [PMID: 37660616 DOI: 10.1016/j.jmgm.2023.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
In this project, the possibility of drug delivery application of three anti-Multiple sclerosis (MS) agents (containing diroximel fumarate (DXF), dimethyl fumarate (DMF), and mono methyl fumarate (MMF)) by using some heteroatom decorated graphitic carbonitride (g-C3N4) (as nano-sized carriers) have been systematically investigated. The results of the study have indicated that As-g-C3N4 QD is not a suitable candidate for drug delivery (at least in the cases of DMF, and DXF drugs); while, it would be an accurate semiconductor sensor for selective detection of each mentioned agents. Also, the use of the P-doped as well as pristine g-C3N4 QD could lead to weak electronic signals with relatively same values (in electronvolts). It means that P-g-C3N4, and g-C3N4 QDs are not good sensors for detection of each of the three considered drugs. However, those two sorbents would be suitable carriers for delivering of all three mentioned pharmaceuticals.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
| | | | - H A Alsailawi
- Department of Anesthesia Techniques, AlSafwa University College, Karbala, Iraq; Department of Biochemistry, Faculty of Medicine, University of Kerbala, 56001, Karbala, Iraq
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - A H Shather
- Department of computer engineering technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Shereen M Mekkey
- College of Pharmacy, Al- Mustaqbal University, 51001 Hilla, Babylon, Iraq
| | - Ahmed Aziz Ahmed
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Salema K Hadrawi
- Refrigeration and Air Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Naghmeh Ali Kahi
- Department of Applied Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Qiao Z, Chu W, Zhou H, Peng C, Guan Z, Wu J, Yoriya S, He P, Zhang H, Qi Y. Construction of Z scheme S-g-C 3N 4/Bi 5O 7I photocatalysts for enhanced photocatalytic removal of Hg 0 and carrier separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162309. [PMID: 36804970 DOI: 10.1016/j.scitotenv.2023.162309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Photocatalysis has demonstrated the potential to solve challenges in various practical application fields such as energy and environmental science due to its environmental friendliness. However, the photocatalytic activity is mainly affected by the weak absorption of visible light and the low separation efficiency of photogenerated carriers. Herein, an S-doped g-C3N4/Bi5O7I heterojunction was designed by the calcination method. It was found that S doping not only reduces the band gap of g-C3N4, which raises the optical absorption boundary of g-C3N4 from 465 nm to 550 nm. At the same time, the introduction of S elements leads to new doping energy levels, which can act as photogenerated electron trapping centers and thus inhibit the complexation of photogenerated carriers. Second, the construction of the heterojunction greatly facilitates the transport of carriers and the separation of electrons and holes driven by the built-in electric field. Finally, the abundant oxygen vacancies in the system result in defective energy levels that not only promote the activation of molecular oxygen, but also act as photogenerated electron traps, which further boost the separation of electron-hole pairs. Benefiting from the optimized performance, the photocatalytic reaction rates of S-doped g-C3N4/Bi5O7I are 5.2 and 2.1 times higher than those of g-C3N4 and Bi5O7I, respectively. This work provides a viable idea for the potential development of non-metal doping combined with heterojunction photocatalytic systems.
Collapse
Affiliation(s)
- Zhanwei Qiao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Weiqun Chu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hao Zhou
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Cheng Peng
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhenzhen Guan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jiang Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Sorachon Yoriya
- National Metal and Materials Technology Center, 114 Thailand Science Park, Pahonyothin Rd., Khlong Nueng, Khlong Luang, Thailand
| | - Ping He
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hai Zhang
- School of Mechanical Engineering, Shanghai Jiaotong University, 200240, China
| | - Yongfeng Qi
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
11
|
Bai X, She M, Ji Y, Zhang Z, Xue W, Liu E, Wan K, Liu P, Zhang S, Li J. Photocatalytic Cascade Reaction Driven by Directed Charge Transfer over V S -Zn 0.5 Cd 0.5 S/GO for Controllable Benzyl Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207250. [PMID: 37127899 PMCID: PMC10369240 DOI: 10.1002/advs.202207250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Indexed: 05/03/2023]
Abstract
Photocatalysis is an important technique for synthetic transformations. However, little attention has been paid to light-driven synergistic redox reactions for directed synthesis. Herein, the authors report tunable oxidation of benzyl to phenylcarbinol with the modest yield (47%) in 5 h via singlet oxygen (1 O2 ) and proton-coupled electron transfer (PCET) over the photocatalyst Zn0.5 Cd0.5 S (ZCS)/graphene oxide (GO) under exceptionally mild conditions. Theoretical calculations indicate that the presence of S vacancies on the surface of ZCS/GO photocatalyst is crucial for the adsorption and activation of O2 , successively generating the superoxide radical (• O2 - ) and 1 O2 , attributing to the regulation of local electron density on the surface of ZCS/GO and photogenerated holes (h+ ). Meanwhile, accelerated transfer of photogenerated electrons (e- ) to GO caused by the π-π stacking effect is conducive to the subsequent aldehyde hydrogenation to benzyl alcohol rather than non-selective oxidation of aldehyde to carboxylic acid. Anisotropic charge transport driven by the built-in electric field can further promote the separation of e- and h+ for multistep reactions. Promisingly, one-pot photocatalytic conversion of p-xylene to 4-methylbenzyl alcohol is beneficial for reducing the harmful effects of aromatics on human health. Furthermore, this study provides novel insights into the design of photocatalysts for cascade reactions.
Collapse
Affiliation(s)
- Xue Bai
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Mengyao She
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Yali Ji
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zhe Zhang
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Wenhua Xue
- School of Chemical Engineering, Northwest University, Xi'an, 710127, P. R. China
| | - Enzhou Liu
- School of Chemical Engineering, Northwest University, Xi'an, 710127, P. R. China
| | - Kerou Wan
- Key Laboratory of Catalytic Materials and Technology of Shaanxi Province, Kaili Catalyst & New Materials Co., Ltd., Xi'an, 710201, P. R. China
| | - Ping Liu
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Shengyong Zhang
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Chemistry Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Abbass R, Chlib Alkaaby HH, Kadhim ZJ, Izzat SE, Kadhim AA, Adhab AH, Pakravan P. Using the aluminum decorated graphitic-C 3N 4 quantum dote (QD) as a sensor, sorbent, and photocatalyst for artificial photosynthesis; a DFT study. J Mol Graph Model 2022; 117:108302. [PMID: 36049401 DOI: 10.1016/j.jmgm.2022.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/14/2023]
Abstract
In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δμh-e = 1.43 V), and for water splitting process for the H2 generation (Δμh-e = 1.23 V) as a clean fuel for near future.
Collapse
Affiliation(s)
- Rathab Abbass
- Medical Lab, Techniques Department, College of Medical Techology, Al-Farahidi University, Iraq
| | | | - Zainab Jawad Kadhim
- Optics Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Athmar Ali Kadhim
- Medical Laboratories Teachniques, Hilla University College, Babylon, Iraq
| | | | - Parvaneh Pakravan
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
13
|
Ni S, Fu Z, Li L, Ma M, Liu Y. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. J Colloid Interface Sci 2022; 629:206-214. [DOI: 10.1016/j.jcis.2022.08.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
|
15
|
Zhang L, Zhang J, Yu H, Yu J. Emerging S-Scheme Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107668. [PMID: 34962659 DOI: 10.1002/adma.202107668] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is a green technology to use ubiquitous and intermittent sunlight. The emerging S-scheme heterojunction has demonstrated its superiority in photocatalysis. This article covers the state-of-the-art progress and provides new insights into its general designing criteria. It starts with the challenges confronted by single photocatalyst from the perspective of energy dissipation by borrowing the common behaviors in the dye molecule. Subsequently, other problems faced by single photocatalyst are summarized. Then a viable solution for these problems is the construction of heterojunctions. To overcome the problems and mistakes of type-II and Z-scheme heterojunctions, S-scheme heterojunction is proposed and the underlying reaction mechanism is summarized. Afterward, the design principles for S-scheme heterojunction are proposed and four types of S-scheme heterojunctions are suggested. Following this, direct characterization techniques for testifying the charge transfer in S-scheme heterojunction are presented. Finally, different photocatalytic applications of S-scheme heterojunctions are summarized. Specifically, this work endeavors to clarify the critical understanding on curved Fermi level in S-scheme heterojunction interface, which can help strengthen and advance the fundamental theories of photocatalysis. Moreover, the current challenges and prospects of the S-scheme heterojunction photocatalyst are critically discussed.
Collapse
Affiliation(s)
- Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
16
|
Wei Y, Zhang Q, Zhou Y, Ma X, Wang L, Wang Y, Sa R, Long J, Fu X, Yuan R. Noble-metal-free plasmonic MoO3−-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Tang Z, Xiong L, Zhang X, Shen J, Sun A, Lin X, Yang Y. Biomass-Induced Diphasic Carbon Decoration for Carbon Nitride: Band and Electronic Engineering Targeting Efficient N 2 Photofixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105217. [PMID: 34796651 DOI: 10.1002/smll.202105217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Boosting the replacement of traditional NH3 production (Haber-Bosch process) with photocatalytic technology is of great importance for energy and environment remediation. Herein, to develop a photocatalyst with efficient charge separation and abundant reactive sites for photocatalytic N2 fixation, a biomass-induced diphase-carbon doping strategy is proposed by adding lotus root starch which can be environmentally produced into the preparation of carbon nitride (CN). The adjustment to the CN framework by planar-fused carbon optimizes the band alignment of the catalyst, improving its response to sunlight. In particular, the in-plane-fused carbon in collaboration with the physically piled carbon initiates unique dual electron transfer pathways from different dimensions. The diphasic carbons can both function as qualified reactive sites according to the experimental explorations and further theoretical calculations, which effectively regulate the electron transfer and energy barrier associated with the N2 reduction on catalyst. The bio-carbon-doped catalyst exhibits drastically enhanced photocatalytic N2 fixation performance, and the NH3 yield on the optimized DC-CN0.1 reaches 167.35 µmol g-1 h-1 , which is fivefold of g-C3 N4 and stands far out from the single-phase doped systems. These explorations expand the metal-free skeleton engineering toolbox and provide new guidance for the solar energy utilizations.
Collapse
Affiliation(s)
- Zheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lijun Xiong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Aiwu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, Jiangsu Province, 223001, P. R. China
| | - Xiangyang Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
18
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
19
|
Barzegar MH, Sabzehmeidani MM, Ghaedi M, Avargani VM, Moradi Z, Roy VA, Heidari H. S-scheme heterojunction g-C3N4/TiO2 with enhanced photocatalytic activity for degradation of a binary mixture of cationic dyes using solar parabolic trough reactor. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|