1
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Elkasabgy NA, Salama A, Salama AH. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Liu M, Zheng P, Zheng M, Zhang W, Yang F, Hong L, Yu X, Xu H. Cuprizone-induced dopaminergic hyperactivity and locomotor deficit in zebrafish larvae. Brain Res 2022; 1780:147802. [PMID: 35085574 DOI: 10.1016/j.brainres.2022.147802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
Cuprizone (CPZ) is a copper-chelator and toxic to mitochondria. Recent studies have shown oligodendrocyte (OL) loss and demyelination along with dopamine (DA) increase and behavioral abnormalities in CPZ-exposed mice, demonstrating its application in schizophrenia research. This study examined effects of CPZ exposure on autonomous behavior and dopaminergic neurotransmission in larval zebra fish. CPZ exposure was found to reduce the swimming velocity of zebra fish thus decreased swimming distance during day and night time. Moreover, the treatment induced a movement response of zebra fish larvae reacting to light-on/off switch featured by swimming velocity increase and decrease during the first and second half of the light-on/off phase, respectively. But, it abolished responses of zebra fish to sound-on/off seen in Control group. HPLC analysis showed elevated DA levels in the zebra fish, no change in NE and 5-HT levels. Transcriptome analysis reported changes in gene expression related to dopaminergic synapse and oxidative phosphorylation in CPZ-exposed larvae relative to Control group. Of the gene expression changes, up-regulation of drd2a, drd2b, drd4a and drd4rs was confirmed by RT-PCR, although no difference existed between Control and CPZ groups in dopaminergic neuron numbers. These results demonstrated dopaminergic hyperactivity and locomotor deficit in CPZ-exposed zebra fish larvae, encouraging further application of this model in exploring neurotoxic effects of CPZ on mitochondria and dopaminergic neurotransmission in zebra fish.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peiwen Zheng
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Miaomiao Zheng
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weiwei Zhang
- Department of Pharmacology, College of Pharmacy, Dali University, Dali, Yunnan 671000, China
| | - Fan Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lan Hong
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Haiyun Xu
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Mooshekhian A, Sandini T, Wei Z, Van Bruggen R, Li H, Li XM, Zhang Y. Low‑field magnetic stimulation improved cuprizone‑induced depression‑like symptoms and demyelination in female mice. Exp Ther Med 2022; 23:210. [PMID: 35126713 PMCID: PMC8796645 DOI: 10.3892/etm.2022.11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Depression is a common and disabling comorbidity of multiple sclerosis (MS), with currently no clear guidelines for treatment. Low-field magnetic stimulation (LFMS), a novel non-invasive neuromodulation intervention, has been previously demonstrated to rapidly alleviate mood disorders. The aim of the present study was to investigate the effects of LFMS on depression-like behaviors and demyelination in a well-established mouse model of MS. C57BL/6 female mice were fed a 0.2% cuprizone (CPZ) diet for 3 or 6 weeks to induce acute demyelination. During this time, the mice were treated with either sham or LFMS for 20 min/day, 5 days/week. After 3 or 6 weeks of treatment, behavior was assessed with the open field task, Y-maze and the forced swim test. The prefrontal cortex and hippocampus were then collected to perform immunohistochemistry and western blot analysis to verify myelination status. The CPZ diet did not cause significant locomotor deficits; however, working memory, measured using the Y maze, depression-like behavior and adaptive learning, assayed using the forced swim test, were significantly impaired in these animals. LFMS treatment demonstrated a significant antidepressant-like effect and markedly attenuated the CPZ-induced demyelination in the prefrontal cortex after 3- and 6-weeks of treatment, as observed by changes in myelin basic protein immunostaining and western blot analysis. Therefore, the results of the present study indicated that LFMS may be a promising therapy for demyelinating diseases due to the improvement of depressive symptoms via regulation of myelination in cortical areas.
Collapse
Affiliation(s)
- Ali Mooshekhian
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, USA
| | - Thaisa Sandini
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Zelan Wei
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, USA
| | - Rebekah Van Bruggen
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Haibo Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, USA
| |
Collapse
|
5
|
Cong H, Liang M, Wang Y, Chang H, Du L, Zhang X, Yin L. Icariin ameliorates the cuprizone-induced acute brain demyelination and modulates the number of oligodendrocytes, microglia and astrocytes in the brain of C57BL/6J mice. Brain Res Bull 2021; 175:37-47. [PMID: 34274431 DOI: 10.1016/j.brainresbull.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
This study aimed at testing the hypothesis that treatment with icariin (ICA, a type of flavonoid) could mitigate the cuprizone (CPZ)-induced acute demyelination in the brain of mice and the potential mechanisms. Female C57BL/6J mice were fed continually with regular rodent chow or the chow supplemented with CPZ (0.2 % w/w) for six weeks to induce acute demyelination. The CPZ-fed mice were treated with vehicle or ICA at 12.5 or 25 mg/kg beginning at three weeks post CPZ feeding daily for three weeks. Their brain tissue sections were stained with oil red O, luxol-fast blue (LFB) and immunohistochemistry to characterize the levels of brain demyelination, myelin basic protein (MBP) and brain-derived neurotrophic factor (BDNF) and the numbers of oligodendrocytes (Ols), oligodendrocyte progenitor cells (OPCs), microglia and astrocytes in mice. Compared with the healthy controls, CPZ feeding caused the brain demyelination by increasing NG2+ OPCs, but decreased oil red O and LFB staining, MBP level and GST-pi+ Ols in the brain corpus callosum region of mice. Furthermore, CPZ feeding decreased the number of BDNF+ cells in the brain cortex and hippocampus regions, but increased microglia in the brain corpus callosum, cortex and caudate putamen, and astrocytes in the corpus callosum regions of mice. Treatment with ICA significantly mitigated or abrogated the toxic demyelination of CPZ by preserving MBP and BDNF proteins and modulating the numbers of Ols, OPCs, microglia and astrocytes in the brain of mice. ICA treatment significantly ameliorated the CPZ-mediated demyelination and modulated the number of Ols, microglia and astrocytes in the brain of mice.
Collapse
Affiliation(s)
- Hengri Cong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Mengru Liang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yupeng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
6
|
Liao X, Lai S, Zhong S, Wang Y, Zhang Y, Shen S, Huang H, Chen G, Chen F, Jia Y. Interaction of Serum Copper and Neurometabolites on Executive Dysfunction in Unmedicated Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:564375. [PMID: 33746789 PMCID: PMC7965952 DOI: 10.3389/fpsyt.2021.564375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: The mechanism of executive function (EF) impairment in major depressive disorder (MDD) remains unclear. Previous studies have demonstrated that altered serum copper levels and neurometabolic alterations may be associated with the psychopathology and cognitive impairment of MDD. While, their inter-relationships in MDD remain uncertain. The present study aims to assess whether the interaction between serum copper levels and neurometabolic alterations is involved in the deficit of executive function (EF) in patients with unmedicated MDD. Methods: Serum copper levels and EFs were measured in 41 MDD patients and 50 control subjects. EFs were evaluated by Trail Making Test, Part-B (TMT-B), Digit Symbol Substitution Test (DSST), Wisconsin Card Sorting Task (WCST), and Semantic Verbal Fluency testing (SVFT). Additionally, 41 patients and 41 healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS) to obtain ratios of N-acetyl aspartate to creatine (NAA/Cr) and choline-containing compounds to creatine (Cho/Cr) in the lenticular nucleus (LN) of basal ganglia (BG). Finally, association and interaction analysis were conducted to investigate their inter-relationships. Results: The results showed that patients performed worse in the DSST, WCST, TMT-B time and SVFT. Moreover, patients had higher serum copper levels, but lower NAA/Cr ratios in left LN of BG than healthy controls. In patients, serum copper levels were found to significantly negative associated with Categories Completed (CC) number of WCST (r = -0.408, p = 0.008), and positive associated with the Total Errors (TE) and Nonperseverative Errors (PE) number of WCST (r = 0.356, p = 0.023; r = -0.356, p = 0.022). In addition, the NAA/Cr ratios of left LN were found to significantly negative associated with VFS (r = -0.401, p = 0.009), as well as negative associated with serum copper levels (r = -0.365, p = 0.019). Finally, the interaction between copper and NAA may as influencing factors for SVFT and CC number of WCST in patients. Conclusion: Our results indicated that the interaction of abnormal copper levels and NAA/Cr neurometabolic disruption of the LN may impact executive dysfunction, and this may relevant to the pathophysiology of executive impairment in MDD patients.
Collapse
Affiliation(s)
- Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China.,Jiangmen Central Hospital, Jiangmen, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou, China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Kopanitsa MV, Lehtimäki KK, Forsman M, Suhonen A, Koponen J, Piiponniemi TO, Kärkkäinen AM, Pavlidi P, Shatillo A, Sweeney PJ, Merenlender-Wagner A, Kaye J, Orbach A, Nurmi A. Cognitive disturbances in the cuprizone model of multiple sclerosis. GENES BRAIN AND BEHAVIOR 2020; 20:e12663. [PMID: 32372528 DOI: 10.1111/gbb.12663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10-week-old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle-treated mice. Cuprizone-treated animals showed multiple deficits in short touchscreen-based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule-learning task. In contextual/cued fear conditioning experiments, cuprizone-treated mice showed significantly lower levels of contextual freezing than vehicle-treated mice. Diffusion tensor imaging showed treatment-dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone-treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits.
Collapse
Affiliation(s)
- Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute, Department of Brain Sciences, Imperial College, London, UK
| | | | | | - Ari Suhonen
- Charles River Discovery Services, Kuopio, Finland
| | - Juho Koponen
- Charles River Discovery Services, Kuopio, Finland
| | | | | | - Pavlina Pavlidi
- MSc Programme in Translational Neuroscience, Imperial College, London, UK
| | | | | | | | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Aric Orbach
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| |
Collapse
|
8
|
Ji E, Guevara P, Guevara M, Grigis A, Labra N, Sarrazin S, Hamdani N, Bellivier F, Delavest M, Leboyer M, Tamouza R, Poupon C, Mangin JF, Houenou J. Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:1367-1378. [PMID: 30953566 PMCID: PMC6811818 DOI: 10.1093/schbul/sbz015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are often conceptualized as "disconnection syndromes," with substantial evidence of abnormalities in deep white matter tracts, forming the substrates of long-range connectivity, seen in both disorders. However, the study of superficial white matter (SWM) U-shaped short-range tracts remained challenging until recently, although findings from postmortem studies suggest they are likely integral components of SZ and BD neuropathology. This diffusion weighted imaging (DWI) study aimed to investigate SWM microstructure in vivo in both SZ and BD for the first time. We performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls using BrainVISA and Connectomist 2.0. Segmentation and labeling of SWM tracts were performed using a novel, comprehensive U-fiber atlas. Analysis of covariances yielded significant generalized fractional anisotropy (gFA) differences for 17 SWM bundles in frontal, parietal, and temporal cortices. Post hoc analyses showed gFA reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). We also found increased gFA in SZ patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), supporting functional hyperconnectivity of this network evidenced in SZ. We thus illustrate that short U-fibers are vulnerable to the pathological processes in major psychiatric illnesses, encouraging improved understanding of their anatomy and function.
Collapse
Affiliation(s)
- Ellen Ji
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,To whom correspondence should be addressed; INSERM U955, Hôpitaux Universitaires Mondor, 40 rue de Mesly, Créteil 94010, France; tel: +33-1-49-81-30-51, fax: +33-1-49-81-30-59, e-mail:
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Samuel Sarrazin
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France
| | - Nora Hamdani
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Frank Bellivier
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marine Delavest
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marion Leboyer
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Ryad Tamouza
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | | | | | - Josselin Houenou
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| |
Collapse
|
9
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
10
|
Wang Q, Wang J, Yang Z, Sui R, Miao Q, Li Y, Yu J, Liu C, Zhang G, Xiao B, Ma C. Therapeutic effect of oligomeric proanthocyanidin in cuprizone-induced demyelination. Exp Physiol 2019; 104:876-886. [PMID: 30811744 DOI: 10.1113/ep087480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oligomeric proanthocyanidin has the capacity to alleviate abnormalities in neurological functioning. However, whether oligomeric proanthocyanidin can reduce the progression of demyelination or promote remyelination in demyelinating diseases remains unknown. What is the main finding and its importance? Oligomeric proanthocyanidin can improve cuprizone-induced demyelination by inhibiting immune cell infiltration, reversing overactivated microglia, decreasing the inflammatory cytokines secreted by inflammatory cells and decreasing the production of myelin oligodendrocyte glycoprotein35-55 -specific antibody in the brain. ABSTRACT Demyelinating diseases of the CNS, including multiple sclerosis, neuromyelitis optica and acute disseminated encephalomylitis, are characterized by recurrent primary demyelination-remyelination and progressive neurodegeneration. In the present study, we investigated the therapeutic effect of oligomeric proanthocyanidin (OPC), the most effective component of grape seed extract, in cuprizone-fed C57BL/6 mice, a classic demyelination-remyelination model. Our results showed that OPC attenuated abnormal behaviour, reduced demyelination and increased expression of myelin basic protein and expression of O4+ oligodendrocytes in the corpus callosum. Oligomeric proanthocyanidin also reduced the numbers of B and T cells, activated microglia in the corpus callosum and inhibited secretion of inflammatory factors. Furthermore, concentrations of myelin oligodendrocyte glycoprotein-specific antibodies were significantly reduced in serum and brain homogenates after OPC treatment. Together, these results demonstrate a potent therapeutic effect for OPC in cuprizone-mediated demyelination and clearly highlight multiple effects of this natural product in attenuating myelin-specific autoantibodies and the inflammatory microenvironment in the brain.
Collapse
Affiliation(s)
- Qing Wang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jing Wang
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhichao Yang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruoxuan Sui
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Qiang Miao
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Chunyun Liu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Guangxian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Baoguo Xiao
- Insitute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University,, Shanghai, 200040, China
| | - Cungen Ma
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.,Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| |
Collapse
|
11
|
Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res 2019; 204:238-244. [PMID: 30177343 DOI: 10.1016/j.schres.2018.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Potential effects of initiating acute antipsychotic treatment on white matter (WM) microstructure in schizophrenia patients remain poorly characterized. Thirty-five drug-naïve first-episode schizophrenia patients were scanned before and after six weeks of treatment with second-generation antipsychotic medications. Nineteen demographically matched healthy subjects were scanned twice over the same time interval. Tract-based spatial statistics was used to test for changes in WM microstructural integrity after treatment. Widespread fractional anisotropy (FA) decrease was found in patients after antipsychotic treatment in bilateral posterior corona radiata, anterior corona radiata, superior corona radiata and posterior thalamic radiation, left posterior limb of the internal capsule, and mid-body of the corpus callosum. These effects appeared to result primarily from decreased axial diffusivity. These findings suggest an effect on brain white matter from acute antipsychotic therapy in schizophrenia.
Collapse
|
12
|
Crocker CE, Tibbo PG. Confused Connections? Targeting White Matter to Address Treatment Resistant Schizophrenia. Front Pharmacol 2018; 9:1172. [PMID: 30405407 PMCID: PMC6201564 DOI: 10.3389/fphar.2018.01172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Despite development of comprehensive approaches to treat schizophrenia and other psychotic disorders and improve outcomes, there remains a proportion (approximately one-third) of patients who are treatment resistant and will not have remission of psychotic symptoms despite adequate trials of pharmacotherapy. This level of treatment response is stable across all stages of the spectrum of psychotic disorders, including early phase psychosis and chronic schizophrenia. Our current pharmacotherapies are beneficial in decreasing positive symptomology in most cases, however, with little to no impact on negative or cognitive symptoms. Not all individuals with treatment resistant psychosis unfortunately, even benefit from the potential pharmacological reductions in positive symptoms. The existing pharmacotherapy for psychosis is targeted at neurotransmitter receptors. The current first and second generation antipsychotic medications all act on dopamine type 2 receptors with the second generation drugs also interacting significantly with serotonin type 1 and 2 receptors, and with varying pharmacodynamic profiles overall. This focus on developing dopaminergic/serotonergic antipsychotics, while beneficial, has not reduced the proportion of patients experiencing treatment resistance to date. Another pharmacological approach is imperative to address treatment resistance both for response overall and for negative symptoms in particular. There is research suggesting that changes in white matter integrity occur in schizophrenia and these may be more associated with cognition and even negative symptomology. Here we review the evidence that white matter abnormalities in the brain may be contributing to the symptomology of psychotic disorders. Additionally, we propose that white matter may be a viable pharmacological target for pharmacoresistant schizophrenia and discuss current treatments in development for schizophrenia that target white matter.
Collapse
Affiliation(s)
- Candice E Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Diagnostic Imaging, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Zhang J, Yang L, Fang Z, Kong J, Huang Q, Xu H. Adenosine Promotes the Recovery of Mice from the Cuprizone-Induced Behavioral and Morphological Changes while Effecting on Microglia and Inflammatory Cytokines in the Brain. J Neuroimmune Pharmacol 2018; 13:412-425. [PMID: 30069711 DOI: 10.1007/s11481-018-9799-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that multiple sclerosis (MS) and schizophrenia share similarities in some respects, including white matter damage and neuroinflammation. On the other hand, adenosine was reported to promote oligodendrocyte precursor maturation and remyelinating while influencing microglia activation. The aim of the present study was to examine possible beneficial effects of adenosine on the recovery of cuprizone (CPZ)-exposed mouse which has been used as an animal model of MS and schizophrenia as the CPZ-exposed mouse presents demyelination, oligodendrocyte loss, microglia accumulation, as well as behavioral changes. As reported previously, C57BL/6 mice, after fed CPZ for 5 weeks, showed salient demyelination and oligodendrocyte loss in the cerebral cortex (CTX) and hippocampus, in addition to displaying anxiety-like behavior, spatial working memory deficit, and social interaction impairment. Administration of adenosine for 7 days during the recovery period after CPZ withdrawal promoted the behavioral recovery of CPZ-exposed mice and accelerated the remyelinating process in the brains of mice after CPZ withdrawal in a dose-dependent manner. In addition, the effective dose (10 mg/kg) of adenosine inhibited microglia activation and suppressed abnormal elevation of the pro-inflammatory cytokines IL-1β and TNF-α in CTX and hippocampus, but increased levels of the anti-inflammatory cytokines IL-4 or IL-10 in the same brain regions during the remyelinating process. These results provided an evidence-based rationale for the application of adenosine or its analogues as add-on therapy for schizophrenia.
Collapse
Affiliation(s)
- Jinling Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Liu Yang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Zeman Fang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China.
- Department of Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
15
|
Zhang L, Xu S, Huang Q, Xu H. N-acetylcysteine attenuates the cuprizone-induced behavioral changes and oligodendrocyte loss in male C57BL/7 mice via its anti-inflammation actions. J Neurosci Res 2018; 96:803-816. [PMID: 29114910 DOI: 10.1002/jnr.24189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Previous animal studies have linked white matter damage to certain schizophrenia-like behaviors in cuprizone (CPZ)-exposed mouse. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and oligodendrocyte loss coexist in the brain of such mice. The aim of this study was to examine effects of the antioxidant N-acetylcysteine (NAC) on CPZ-induced behavioral changes and concurrent oligodendrocyte loss, oxidative stress, and neuroinflammation in these animals. Male C57BL/6 mice were given intraperitoneal saline or NAC at doses of 100, 200, and 400 mg/kg/day for 2 weeks; animals were fed a CPZ-containing diet (0.2%, w/w) during days 5-14. During days 15-17, the mice were examined in open-field, social recognition, and Y-maze tests (1 test per day). Six mice in each group were then used for biochemical and enzyme-linked immunosorbent assay analyses, while the remaining animals were used for immunohistochemical and immunofluorescence staining. The mice exposed to CPZ for 10 days showed significantly lower spontaneous alternation in the Y-maze, lower activity of total superoxide dismutase, and glutathione peroxidase, but higher levels of malondialdehyde in the cerebral cortex and hippocampus, elevated concentrations of interleukin-1β and tumor necrosis factor-α in the brain regions mentioned above and caudate putamen, and a decreased number of mature oligodendrocytes, but increased number of microglia in all the brain regions examined. These changes, however, were not seen or effectively alleviated in NAC-treated mice at all three doses. These results demonstrate that NAC protected mature oligodendrocytes against the toxic effects of CPZ, likely via its antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Lin Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Shuqin Xu
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China
- Department of Anatomy, Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Zhang Q, Li Z, Wu S, Li X, Sang Y, Li J, Niu Y, Ding H. Myricetin alleviates cuprizone-induced behavioral dysfunction and demyelination in mice by Nrf2 pathway. Food Funct 2018; 7:4332-4342. [PMID: 27713953 DOI: 10.1039/c6fo00825a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease occurring in the central nervous system. In the present study, we evaluated the function of myricetin on the alleviation of behavioral dysfunction and myelin protection in the cuprizone-induced demyelination model. Mice were daily fed with fodder including 0.2% cuprizone and were administrated myricetin (100 mg kg-1) by gavage administration for 5 weeks. The treatment of myricetin ameliorated hyper-locomotion and behavior impairment induced by cuprizone toxicity. With the administration of myricetin, the demyelinating lesion was lessened via increasing the LFB staining area and myelin phosphatide protein (MBP) expression. In addition, myricetin evidently promoted Nrf2 translocation in the nuclear fraction and enhanced the HO-1 and NQO1 expression levels. Our data revealed that myricetin may be a potential candidate for mitigating motor defects and demyelination in a cuprizone-induced mouse model via activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Qianying Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Shuangchan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Ying Sang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
17
|
Biochemical abnormalities in basal ganglia and executive dysfunction in acute- and euthymic-episode patients with bipolar disorder: A proton magnetic resonance spectroscopy study. J Affect Disord 2018; 225:108-116. [PMID: 28818755 DOI: 10.1016/j.jad.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies found abnormal biochemical metabolism and executive cognitive deficits in acute bipolar disorder (BD). However, the evidence concerning in euthymic BD is limited. Thus, a comparison between acute and euthymic BD is conductive to better understanding the association between cognition and the outcome of neuroimaging. This study sought to investigate the relationship between the executive function and the biochemical metabolism in acute- and euthymic-episode BD patients and delineate the prominent endophenotype of BD. METHODS Three groups of participants were recruited in this study: 30 BD patients with an acute depressive episode, 22 euthymic BD patients, and 31 healthy controls. All participants were interviewed using the Structured Clinical Interview for DSM-IV, and underwent two-dimensional multivoxel proton magnetic resonance spectroscopy (1H-MRS) to obtain the bilateral metabolite levels in the lenticular nucleus of basal ganglia(BG). The ratios of N-acetylaspartate (NAA)/creatine (Cr) and Choline-containing compounds (Cho) /Cr ratios were calculated. Executive function was assessed by using the Wisconsin Card Sorting Test (WCST) and Trail Making Test, Part-B(TMT-B). RESULTS The comparison of biochemical changes showed that the NAA/Cr ratios in bilateral lenticular nucleus in both acute and euthymic BD patients was significantly lower than that in healthy controls at a confidence level of p<0.05. In the comparison of executive function, both acute and euthymic BD patients showed significantly decreased numbers of categories completed, and increased numbers of total errors, perseverative and noperseverative errors, and TMT-B uptake compared to the healthy controls at a confidence level of p<0.05. There were no significant differences between the acute BD and euthymic BD groups in the biochemical metabolite ratios and executive function. We found that the NAA/Cr ratio in the left in BG in the acute -episode BD patients was positively correlated with the number of categories completed, whereas it was negatively correlated with the total errors and TMT-B uptake. There was no correlation between the NAA/Cr and Cho/Cr ratios in the bilateral BG and the scores of SWCT and TMT-B in euthymic-episode BD patients. LIMITATION The sample size was relatively small and not all the euthymic-episode patients are the ones with an acute episode. CONCLUSIONS Our findings suggest that biochemical abnormalities in the lenticular nucleus and the executive dysfunction may occur early in the course of BD, and persist during remission, and are the most likely markers of endophenotypes of BD. The dysfunction of the neuronal function in the lenticular nucleus may be correlated with the cold dysfunction in patients with acute BD.
Collapse
|
18
|
Palaniyappan L, Das T, Dempster K. The neurobiology of transition to psychosis: clearing the cache. J Psychiatry Neurosci 2017; 42:294-299. [PMID: 28834527 PMCID: PMC5573571 DOI: 10.1503/jpn.170137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The prepsychotic phase of schizophrenia is not only important for indicated prevention strategies, but also crucial for developing mechanistic models of the emergence of frank psychosis (transition). This commentary highlights the work of Dukart and colleagues, published in this issue of the Journal of Psychiatry and Neurosicence, who sought to identify MRI-based anatomic endophenotypes of psychosis in a well-characterized sample of patients with at-risk mental state (ARMS) and first-episode psychosis (FEP). Conceptual and translational challenges in clarifying the neurobiology of transitional prepsychotic states are discussed. A role of intracortical myelin in the neurobiology of transition is proposed. Transition may not be an outcome of "progressive structural deficits"; it may occur due to inadequate compensatory responses in the predisposed. The need to revise our current "deficit-oriented" models of neurobiology of psychosis in the wake of burgeoning evidence indicating a dynamic process of cortical reorganization is emphasized.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Correspondence to: L. Palaniyappan, Prevention & Early Intervention Program for Psychoses (PEPP), A2-636, LHSC-VH, 800 Commissioners Road, London, Ont., Canada N6A 5W9;
| | | | | |
Collapse
|
19
|
Farrelly L, Rosato-Siri MV, Föcking M, Codagnone M, Reines A, Dicker P, Wynne K, Farrell M, Cannon M, Cagney G, Pasquini JM, Cotter DR. The Effects of Prenatal Iron Deficiency and Risperidone Treatment on the Rat Frontal Cortex: A Proteomic Analysis. Proteomics 2017; 17. [PMID: 28762254 DOI: 10.1002/pmic.201600407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/12/2017] [Indexed: 11/11/2022]
Abstract
Prenatal iron deficiency (pID) has been described to increase the risk for neurodevelopmental disorders such as autism and schizophrenia; however, the precise molecular mechanisms are still unknown. Here, we utilized high-throughput MS to examine the proteomic effects of pID in adulthood on the rat frontal cortex area (FCA). In addition, the FCA proteome was examined in adulthood following risperidone treatment in adolescence to see if these effects could be prevented. We identified 1501 proteins of which 100 were significantly differentially expressed in the FCA at postnatal day 90. Pathway analysis of proteins affected by pID revealed changes in metabolic processes, including the tricyclic acid cycle, mitochondrial dysfunction, and P13K/Akt signaling. Interestingly, most of these protein changes were not present in the adult pID offspring who received risperidone in adolescence. Considering the link between pID and several neurodevelopmental disorders such as autism and schizophrenia these presented results bring new perspectives to understand the role of iron in metabolic pathways and provide novel biomarkers for future studies of pID.
Collapse
Affiliation(s)
- Lorna Farrelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Maria Victoria Rosato-Siri
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Martin Codagnone
- De Robertis Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Analia Reines
- De Robertis Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Patrick Dicker
- Departments of Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Juana Maria Pasquini
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Chang H, Liu J, Zhang Y, Wang F, Wu Y, Zhang L, Ai H, Chen G, Yin L. Increased central dopaminergic activity might be involved in the behavioral abnormality of cuprizone exposure mice. Behav Brain Res 2017; 331:143-150. [DOI: 10.1016/j.bbr.2017.05.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
|
21
|
Li Y, Su R, Xu S, Huang Q, Xu H. Artesunate prevents rats from the clozapine-induced hepatic steatosis and elevation in plasma triglycerides. Neuropsychiatr Dis Treat 2017; 13:2477-2487. [PMID: 29026311 PMCID: PMC5627760 DOI: 10.2147/ndt.s145069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clozapine is an atypical antipsychotic with therapeutic efficacy in treatment-resistant schizophrenia patients and low incidence of extrapyramidal side effects. However, the use of clozapine has been limited by its adverse effects on metabolism. Artesunate is a semisynthetic derivative of artemisinin and was shown to decrease the plasma cholesterol and triglyceride in rabbits and rats in recent studies. The aim of this study was to examine possible effects of artesunate on the clozapine-induced metabolic alterations in rats given saline, clozapine, artesunate, or clozapine plus artesunate for 6 weeks. The clozapine group showed significantly high plasma levels of triglyceride, hepatic steatosis, and fibrosis along with high levels of C-reactive protein, alanine aminotransferase, and aspartate aminotransferase compared to the saline group. But the treatment had no effect on weight gain and caused no hyperglycemia, hyperinsulinemia, and behavioral changes in the rats. More significantly, these clozapine-induced changes were not seen in rats coadministered with clozapine plus artesunate. These results added evidence supporting psychiatrists to try add-on treatment of artesunate in schizophrenia patients to ameliorate clozapine-induced adverse metabolic effects.
Collapse
Affiliation(s)
- Yanmei Li
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Ruibing Su
- Department of Forensics and Pathology, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Shuqin Xu
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Haiyun Xu, The Mental Health Center, Shantou University Medical College, 515041 Shantou, Guangdong Province, People’s Republic of China, Email
| |
Collapse
|
22
|
Mi G, Gao Y, Liu S, Ye E, Li Y, Jin X, Yang H, Yang Z. Cyclin-dependent kinase inhibitor flavopiridol promotes remyelination in a cuprizone induced demyelination model. Cell Cycle 2016; 15:2780-91. [PMID: 27580304 DOI: 10.1080/15384101.2016.1220458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cuprizone (CPZ) model has been widely used for the studies of de-and remyelination. The CPZ-exposed mice show oligodendrocyte precursor cells (OPCs) increase and mature oligodendrocytes decrease, suggesting an imbalance between proliferation and differentiation of OPCs. In the first experiment of this study, we examined the expression of cell cycle related genes in brains of mice following CPZ administration for 5 weeks by means of microarray assay. In addition, we performed a double labeling of BrdU and Ki-67 to calculate cell cycle exit index in the mice. Our results showed that CPZ administration up-regulated the expression of 16 cell cycle related genes, but down-regulated the expression of only one in the prefrontal cortex (PFC) of mice compared to control group. The treatment inhibited potential precursor cells exit from cell cycle. In the second experiment, we evaluated effects of a CDK inhibitor flavopiridol (FLA) on CPZ-induced neuropathological changes and spatial working memory impairment in mice.FLA treatment for one week effectively attenuated the CPZ-induced increases in NG2 positive cells, microglia and astrocytes, alleviated the concurrent mature oligodendrocyte loss and myelin breakdown, and improved spatial working memory deficit in the CPZ-exposed mice. These results suggest that CPZ-induced neuropathological changes involve in dysregulation of cell cycle related genes. The therapeutic effects of FLA on CPZ-exposed mice may be related to its ability of cell cycle inhibition.
Collapse
Affiliation(s)
- Guiyun Mi
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yunyun Gao
- b The 89 Hospital of PLA , WeiFang City Shandong Province , China
| | - Shuai Liu
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Enmao Ye
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Yanyan Li
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Xiao Jin
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Hongju Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| | - Zheng Yang
- a Beijing Institute of Basic Medical Sciences , Haidian District, Beijing , China
| |
Collapse
|
23
|
Kondo MA, Fukudome D, Smith DR, Gallagher M, Kamiya A, Sawa A. Dimensional assessment of behavioral changes in the cuprizone short-term exposure model for psychosis. Neurosci Res 2016; 107:70-74. [PMID: 26869217 DOI: 10.1016/j.neures.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Abstract
Recent clinical studies have suggested a role for immune/inflammatory responses in the pathophysiology of psychosis. However, a mechanistic understanding of this process and its application for drug discovery is underdeveloped. Here we assessed our recently developed cuprizone short-term exposure (CSE) mouse model across behavioral domains targeting neurocognitive and neuroaffective systems. We propose that the CSE model may be useful for understanding the mechanism associating inflammation and psychosis, with applications for drug discovery in that context.
Collapse
Affiliation(s)
- Mari A Kondo
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Daisuke Fukudome
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Dani R Smith
- Neurogenetics and Behavior Center, Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michela Gallagher
- Neurogenetics and Behavior Center, Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: Effects of quetiapine. Neurochem Int 2015; 90:185-92. [PMID: 26340869 DOI: 10.1016/j.neuint.2015.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 02/05/2023]
Abstract
Cuprizone is a copper-chelating agent and able to induce oligodendrocyte loss and demyelination in C57BL/6 mouse brain. Recent studies have used the cuprizone-fed mouse as an animal model of schizophrenia to examine putative roles of altered oligodendrocytes in this mental disorder. The present study reported the effects of cuprizone on the brain metabolites and oxidative parameters with the aim of providing neurochemical evidence for the application of the cuprizone mouse as an animal model of schizophrenia. In addition, we examined effects of quetiapine on the cuprizone-induced changes in brain metabolites and oxidative parameters; this atypical antipsychotic was shown to ameliorate the cuprizone-induced demyelination and behavioral changes in previous studies. C57BL/6 mice were fed a standard rodent chow without or with cuprizone (0.2% w/w) for four weeks during which period they were given sterilized saline or quetiapine in saline. The results of the proton magnetic resonance spectroscopy (1H-MRS) showed that cuprizone-feeding decreased (1)H-MRS signals of N-acetyl-l-aspartate (NAA), total NAA (NAA + NAAG), and choline-containing compounds (phosphorylcholine and glycerophosphorylcholine), suggestive of mitochondrial dysfunction in brain neurons. Biochemical analyses showed lower activities of catalase and glutathione peroxidase, but higher levels of malondialdehyde and H2O2 in the brain tissue of cuprizone-fed mice, indicative of an oxidative stress. These cuprizone-induced changes were effectively relieved in the mice co-administered with cuprizone and quetiapine, although the antipsychotic alone showed no effect. These findings suggest the toxic effects of cuprizone on mitochondria and an antioxidant capacity of quetiapine, by which this antipsychotic relieves the cuprizone-induced mitochondrial dysfunction in brain cells.
Collapse
Affiliation(s)
- Yinghua Xuan
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China
| | - Gen Yan
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Xinmin Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
25
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
26
|
Gokhale A, Vrailas-Mortimer A, Larimore J, Comstra HS, Zlatic SA, Werner E, Manvich DF, Iuvone PM, Weinshenker D, Faundez V. Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor. Hum Mol Genet 2015. [PMID: 26199316 DOI: 10.1093/hmg/ddv282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency.
Collapse
Affiliation(s)
- Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | - Heather S Comstra
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Daniel F Manvich
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA, Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA,
| |
Collapse
|
27
|
The Protective Effects of Areca catechu Extract on Cognition and Social Interaction Deficits in a Cuprizone-Induced Demyelination Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:426092. [PMID: 25815032 PMCID: PMC4357051 DOI: 10.1155/2015/426092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/05/2023]
Abstract
Schizophrenia is a serious psychiatric illness with an unclear cause. One theory is that demyelination of white matter is one of the main pathological factors involved in the development of schizophrenia. The current study evaluated the protective effects of Areca catechu nut extract (ANE) on a cuprizone-induced demyelination mouse model. Two doses of ANE (1% and 2%) were administered orally in the diet for 8 weeks. Animals subjected to demyelination showed impaired spatial memory and less social activity. In addition, mice subjected to demyelination displayed significant myelin damage in cortex and demonstrated a higher expression of NG2 and PDGFRα and AMPK activation. ANE treatment not only significantly enhanced cognitive ability and social activity, but also protected myelin against cuprizone toxicity by promoting oligodendrocyte precursor cell (OPC) differentiation. In addition, ANE treatment demonstrated significant dephosphorylation of AMPKα, indicating a regulatory role for ANE in schizophrenia. This study showed that ANE treatment may enhance cognitive ability and social activity by facilitating OPC differentiation and protecting against myelin damage in cortex. Results also suggest the AMPK signaling pathway may be involved in this process.
Collapse
|
28
|
Wang H, Liu S, Tian Y, Wu X, He Y, Li C, Namaka M, Kong J, Li H, Xiao L. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination. Front Cell Neurosci 2015; 9:492. [PMID: 26732345 PMCID: PMC4685920 DOI: 10.3389/fncel.2015.00492] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca(2+)) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca(2+) entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis.
Collapse
Affiliation(s)
- Hanzhi Wang
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Shubao Liu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Xiyan Wu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yangtao He
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Chengren Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Michael Namaka
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- *Correspondence: Hongli Li, ; Lan Xiao,
| | - Lan Xiao
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- *Correspondence: Hongli Li, ; Lan Xiao,
| |
Collapse
|
29
|
Zhu F, Zheng Y, Liu Y, Zhang X, Zhao J. Minocycline alleviates behavioral deficits and inhibits microglial activation in the offspring of pregnant mice after administration of polyriboinosinic-polyribocytidilic acid. Psychiatry Res 2014; 219:680-6. [PMID: 25042426 DOI: 10.1016/j.psychres.2014.06.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/20/2014] [Accepted: 06/23/2014] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have indicated that maternal infection during pregnancy may lead to a higher incidence of schizophrenia in the offspring. Activation of microglia is a key event in the reaction of the cerebral immune system to pathological changes. It can be hypothesized that microglia contribute to the neuropathology of schizophrenia. In this study, at embryonic day (ED) 9 pregnant mice were treated with intraperitoneal injection of polyriboinosinic-polyribocytidilic acid (Poly I:C) at a single dose of 20 mg/kg. At postnatal day 42, descendants were treated with minocycline (40 mg/kg) or saline for consecutive 14 days. Behavioral changes (locomotor activity, social interaction, and prepulse inhibition) were examined and the number of microglia was assessed after the treatment. The adult offspring exposed to Poly I:C at ED 9 showed behavioral changes (hyperlocomotion, deficits in social interaction and prepulse inhibition) and significant microglial activation in these brain areas (hippocampus, thalamus, and cerebral cortex) compared to those in saline-injected group. Moreover, minocycline attenuated the behavioral deficits and inhibited the activated microglia. These findings suggest that maternal infection may contribute to microglial activation in the offspring. In addition, the effect of minocycline in this immune model may be related to the inhibition of microglial activation.
Collapse
Affiliation(s)
- Furong Zhu
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Yingjun Zheng
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China; Department of General Psychiatry, Brain Hospital of Guangzhou, Affiliated Hospital of Guangzhou Medical College, Guangdong, Guangzhou 510370, China
| | - Yong Liu
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Xianghui Zhang
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China
| | - Jingping Zhao
- Mental Health Institute of The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Hunan, Changsha 410011, China.
| |
Collapse
|
30
|
Xuan Y, Yan G, Peng H, Wu R, Xu H. Concurrent changes in ¹H MRS metabolites and antioxidant enzymes in the brain of C57BL/6 mouse short-termly exposed to cuprizone: possible implications for schizophrenia. Neurochem Int 2014; 69:20-7. [PMID: 24613425 DOI: 10.1016/j.neuint.2014.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/13/2014] [Accepted: 02/20/2014] [Indexed: 02/05/2023]
Abstract
Cuprizone (CPZ) is a copper chelating agent able to selectively insult mature oligodendrocytes (OLs) in brains of rodents. The CPZ-exposed mice show behavioral changes and have been employed to examine a putative role of altered OLs in the pathophysiology of schizophrenia. The aims of this study were to examine the brain metabolites in the CPZ-exposed mice during the early stage and to measure some antioxidant enzymes, lipid peroxidation and hydrogen peroxide (H2O2) in brain tissue. C57BL/6 mice were fed normal or CPZ-containing diet for 7 days. On days 7 and 8, mice were subjected to behavioral tests. On days 9 and 10, mice were subjected to (1)H MRS procedure. On day 10 mice were sacrificed and their brain tissue was processed for biochemical analyses. CPZ-exposure for 7 days caused an anxiety-like behavior, but had no effect on the social interaction and spatial working memory in C57BL/6 mice. The treatment significantly decreased levels of GPC+PCh, ml, NAA, NAA+NAAG, and PCr in the thalamus and hippocampus. It impaired the activities of some antioxidant enzymes, but did not increase levels of MDA and H2O2. This first (1)H MRS study with CPZ-exposed mice provided neurochemical evidence for mitochondrial dysfunction in brain cells of living mice during the early stage of CPZ-exposure. The results are of relevance to the pathophysiology of schizophrenia in which mitochondrial dysfunction of neural cells and altered OLs are two important players.
Collapse
Affiliation(s)
- Yinghua Xuan
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Peng
- Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China; Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
31
|
Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination. Neurobiol Dis 2014; 62:441-55. [DOI: 10.1016/j.nbd.2013.10.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 11/23/2022] Open
|
32
|
Zhang H, Zhang Y, Xu H, Wang L, Zhao J, Wang J, Zhang Z, Tan Q, Kong J, Huang Q, Li XM. Locomotor activity and anxiety status, but not spatial working memory, are affected in mice after brief exposure to cuprizone. Neurosci Bull 2013; 29:633-41. [PMID: 23990221 DOI: 10.1007/s12264-013-1369-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/09/2012] [Indexed: 02/02/2023] Open
Abstract
Chronic long-term exposure to cuprizone causes severe brain demyelination in mice, which leads to changes in locomotion, working memory and anxiety. These findings suggest the importance of intact myelin for these behaviors. This study aimed to investigate the possible behavioral changes in mice with mild oligodendrocyte/myelin damage that parallels the white matter changes seen in the brains of patients with psychiatric disporders. We used the cuprizone-treated mouse model to test both tissue changes and behavioral functions (locomotor activity, anxiety status, and spatial working memory). The results showed that mice given cuprizone in their diet for 7 days had no significant myelin breakdown as evaluated by immunohistochemical staining for myelin basic protein, while the number of mature oligodendrocytes was reduced. The number and length of Caspr protein clusters, a structural marker of the node of Ranvier, did not change. The locomotor activity of the cuprizone-treated mice increased whereas their anxiety levels were lower than in normal controls; spatial working memory, however, did not change. These results, for the first time, link emotion-related behavior with mild white matter damage in cuprizone-treated mice.
Collapse
Affiliation(s)
- Handi Zhang
- Mental Health Center, Shantou University, Shantou, 515065, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis 2013; 59:63-8. [PMID: 23867234 DOI: 10.1016/j.nbd.2013.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/20/2022] Open
Abstract
A growing body of evidence suggests the involvement of inflammatory processes in the pathophysiology of schizophrenia. Four- to 8-week exposure to cuprizone, a copper chelator, causes robust demyelination and has been used to build a model for multiple sclerosis. In contrast, we report here the effects of 1-week cuprizone exposure in mice. This short-term cuprizone exposure elicits behavioral changes that include augmented responsiveness to methamphetamine and phencyclidine, as well as impaired working memory. The cellular effects of 1-week cuprizone exposure differ substantially from the longer-term exposure; perturbation of astrocytes and microglia is induced without any sign of demyelination. Furthermore, the proinflammatory cytokine interleukin-6 was significantly up-regulated in glial fibrillary acidic protein (GFAP)-positive cells. We propose that this cuprizone short-term exposure may offer a model to study some aspects of biology relevant to schizophrenia and related conditions.
Collapse
|
34
|
Improving myelin/oligodendrocyte-related dysfunction: a new mechanism of antipsychotics in the treatment of schizophrenia? Int J Neuropsychopharmacol 2013; 16:691-700. [PMID: 23164411 DOI: 10.1017/s1461145712001095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with complex clinical manifestations and its aetiological factors remain unclear. During the past decade, the oligodendrocyte-related myelin dysfunction was proposed as a hypothesis for schizophrenia, supported initially by a series of neuroimaging studies and genetic evidence. Recently, the effects of antipsychotics on myelination and oligodendroglial lineage development and their underlying molecular mechanisms were evaluated. Data from those studies suggest that the antipsychotics-resulting improvement in myelin/oligodendrocyte-related dysfunction may contribute, at least in part, to their therapeutic effect on schizophrenia. Importantly, these findings may provide the basis for a new insight into the therapeutic strategy by targeting the oligodendroglia lineage cells against schizophrenia.
Collapse
|
35
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
36
|
Chronic haloperidol-induced spatial memory deficits accompany the upregulation of D(1) and D(2) receptors in the caudate putamen of C57BL/6 mouse. Life Sci 2012; 91:322-8. [PMID: 22884478 DOI: 10.1016/j.lfs.2012.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 07/03/2012] [Accepted: 07/13/2012] [Indexed: 11/23/2022]
Abstract
AIMS Haloperidol (HAL) is an antipsychotic drug that has high affinities to the dopamine D(2), but low affinities to D(1) receptors in the brain. Of brain regions, caudate putamen (CP) has the highest levels of the D(1) and D(2) receptors. In this study we evaluated the spatial memory of C57BL/6 mice following chronic administration of HAL and measured levels of D(1) and D(2) receptors in specific brain regions, with the hypothesis that the D(1) and D(2) receptors in CP are important players in spatial memory function of the brain. MAIN METHODS C57BL/6 mice received daily intraperitoneal injections of saline or HAL at 1.0 or 2.0mg/kg/day for 3 or 6 weeks. Two days after the last injection, spontaneous alternation of mice in a Y-maze was evaluated to measure their exploratory behavior and spatial working memory. The Morris water maze test was performed to measure their spatial learning and memory. D(1) and D(2) receptors in specific brain regions were measured by Western-blot analysis. KEY FINDINGS HAL treatment for 6 weeks decreased the spontaneous alternation of mice in Y-maze, altered the acquisition process and impaired spatial memory in Morris water maze. The same treatment increased levels of D(1) and D(2) receptors in CP and up-regulated D(2) receptors in the hippocampus, but did not change the receptors in the prefrontal cortex. SIGNIFICANCE These results suggest that the D(1) and D(2) receptors in CP are among the main targets of HAL and the receptors in CP play an important role in spatial learning and memory.
Collapse
|
37
|
Zhang Y, Zhang H, Wang L, Jiang W, Xu H, Xiao L, Bi X, Wang J, Zhu S, Zhang R, He J, Tan Q, Zhang D, Kong J, Li XM. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophr Res 2012; 138:8-17. [PMID: 22555017 DOI: 10.1016/j.schres.2012.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Myelin and oligodendrocyte dysfunctions have been consistently found in patients with schizophrenia. The effect of antipsychotics on myelin disturbances is unknown. The present study examined the effects of quetiapine on oligodendrocyte regeneration and myelin repair in a demyelination animal model. C57BL/6 mice were fed with cuprizone (0.2% w/w) for 12 weeks to induce chronic demyelination and oligodendrocyte degeneration, after which cuprizone was withdrawn to allow recovery. Quetiapine (10mg/kg/day) or vehicle (water) was administrated orally to mice for 0, 2, 3, or 4 weeks after cuprizone withdrawal. Locomotor activity and Y-maze tests were used to evaluate behavioral changes in the mice. Immunohistochemical staining was used to detect morphological and biological changes in the brains. Cuprizone administration for 12 weeks resulted in severe demyelination, locomotor hyperactivity, and working memory impairment in mice. Remyelination occurred when cuprizone was withdrawn. Quetiapine treatment during the recovery period significantly improved the spatial working memory and increased myelin restoration. Quetiapine treatment also enhanced the repopulation of mature oligodendrocytes in the demyelinated lesions, which was associated with down-regulation of transcription factor olig2 in the process of cell maturation. The results of this study demonstrated that quetiapine treatment during the recovery period improves spatial working memory and promotes oligodendrocyte development and remyelination. This study supports the role of oligodendrocyte dysfunction in memory deficits in a schizophrenia mouse model and suggests that quetiapine may target oligodendrocytes and improve cognitive function.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Development of disease-modifying therapies requires an innovative approach to drug development where novel drugs are designed to target mechanisms of interest rather than to produce preclinical effects similar to those of currently used antipsychotics. Application of such novel strategy will undoubtedly require a very deep understanding of the disease biology that is just starting to emerge. Alternatively, one may let environmental experiences of the diseased individual guide the repair process and use drugs only to facilitate the effects of experience. Such an approach would bring together functional experience that is age-, environment- and disease-dependent with the plasticity resources that may otherwise not be available. There are currently no preclinical drug-environment interaction models that can be claimed to have significant degrees of validity. Therefore, from a drug development perspective, principles that combine acute symptomatic and disease-modifying properties are clearly preferred. The question arises then how such treatments can be differentiated from those that have only symptomatic effects (i.e., most currently used antipsychotic medications). One expectation is that the former will show superior and broader efficacy (especially with longer treatment duration). Another possibility is that disease-modifying drugs will be particularly useful at the very earliest stages of the disease. Society and medical communities may not be ready yet to initiate the treatment as early as during the prodromal phase, but the situation may change by the time the science advances enough to bring a convincing case of a drug with disease-modification potential.
Collapse
|
39
|
Xu H, Li XM. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:826976. [PMID: 22937274 PMCID: PMC3420616 DOI: 10.1155/2011/826976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|