1
|
Zou H, Pu W, Zhou J, Li J, Ma L, Wang S, Liu C, Mou J, Liu X, Yu T, Wei Y, Xie H, Cao S. Noradrenergic Locus Coeruleus-CA3 Activation Alleviates Neuropathic Pain and Anxiety- and Depression-Like Behaviors by Suppressing Microglial Neuroinflammation in SNI Mice. CNS Neurosci Ther 2025; 31:e70360. [PMID: 40130433 PMCID: PMC11933858 DOI: 10.1111/cns.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE Neuropathic pain (NP) arises from neuroimmune interactions following nerve injury and is often accompanied by anxiety and depression. The aim of the study is to evaluate the effects of the noradrenergic locus coeruleus (LC), a key regulator of pain and emotional states, projects extensively to the hippocampus. METHOD We investigated the effects of chronic NP on LC integrity and its projections to the hippocampal CA3 region in spared nerve injury (SNI) mice with behavioral tests, immunohistochemistry, neurochemical analyses, and Gq-DREADD. RESULTS Chronic NP induced LC neuronal loss, reduced hippocampal norepinephrine (NE) release, and triggered microglial activation and neuroinflammation in CA3. Selective activation of LC-CA3 noradrenergic neurons using Gq-DREADD chemogenetics alleviated NP and comorbid anxiety- and depression-like behaviors. This intervention suppressed microglial activation, decreased proinflammatory cytokines (TNF-α and IL-1β), and restored NE levels in CA3. CONCLUSION Our findings highlighted the therapeutic potential of targeting LC-CA3 projections to mitigate chronic NP and its neuropsychiatric comorbidities via modulation of hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Helin Zou
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
- Department of AnesthesiologyMianyang Hospital of Traditional Chinese MedicineMianyangSichuanChina
| | - Weiyu Pu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Junli Zhou
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Juan Li
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Lulin Ma
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Shuxian Wang
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Chengxi Liu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Mou
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Department of Pain Medicine, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| | - Xingfeng Liu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Yiyong Wei
- Affiliated Shenzhen Women and Children's Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City)ShenzhenGuangdongChina
| | - Haihui Xie
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
| | - Song Cao
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain Medicine, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| |
Collapse
|
2
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
3
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Webler RD, Berg H, Fhong K, Tuominen L, Holt DJ, Morey RA, Lange I, Burton PC, Fullana MA, Radua J, Lissek S. The neurobiology of human fear generalization: meta-analysis and working neural model. Neurosci Biobehav Rev 2021; 128:421-436. [PMID: 34242718 DOI: 10.1016/j.neubiorev.2021.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Fear generalization to stimuli resembling a conditioned danger-cue (CS+) is a fundamental dynamic of classical fear-conditioning. Despite the ubiquity of fear generalization in human experience and its known pathogenic contribution to clinical anxiety, neural investigations of human generalization have only recently begun. The present work provides the first meta-analysis of this growing literature to delineate brain substrates of conditioned fear-generalization and formulate a working neural model. Included studies (K = 6, N = 176) reported whole-brain fMRI results and applied generalization-gradient methodology to identify brain activations that gradually strengthen (positive generalization) or weaken (negative generalization) as presented stimuli increase in CS+ resemblance. Positive generalization was instantiated in cingulo-opercular, frontoparietal, striatal-thalamic, and midbrain regions (locus coeruleus, periaqueductal grey, ventral tegmental area), while negative generalization was implemented in default-mode network nodes (ventromedial prefrontal cortex, hippocampus, middle temporal gyrus, angular gyrus) and amygdala. Findings are integrated within an updated neural account of generalization centering on the hippocampus, its modulation by locus coeruleus and basolateral amygdala, and the excitation of threat- or safety-related loci by the hippocampus.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Kimberly Fhong
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Ontario, K1Z 7K4, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, Duke University Medical Center, Durham, NC, 27710, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, 508 Fulton Street, Durham VAMC, Durham, VA Medical Center, Durham, NC, 27705, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Durham, NC, USA
| | - Iris Lange
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, Duboisdomein 30, 6229 GT, Maastricht, the Netherlands
| | - Philip C Burton
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Miquel Angel Fullana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Campus Casanova, Casanova, 143, 08036, Barcelona, Spain; Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain
| | - Joaquim Radua
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS. Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1-3) stress reactive expression. Sci Rep 2021; 11:8092. [PMID: 33854153 PMCID: PMC8046778 DOI: 10.1038/s41598-021-87652-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem—region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor’s expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn’t decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.
Collapse
Affiliation(s)
- D A Lanshakov
- Laboratory of Postgenomics Neurobiology, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.
| | - E V Sukhareva
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - V V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090
| | - E V Shaburova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation, 630090.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
6
|
Bacon TJ, Pickering AE, Mellor JR. Noradrenaline Release from Locus Coeruleus Terminals in the Hippocampus Enhances Excitation-Spike Coupling in CA1 Pyramidal Neurons Via β-Adrenoceptors. Cereb Cortex 2020; 30:6135-6151. [PMID: 32607551 PMCID: PMC7609922 DOI: 10.1093/cercor/bhaa159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons. We show that endogenous noradrenaline release enhances the probability of CA1 pyramidal neuron spiking without altering feedforward excitatory or inhibitory synaptic inputs in the Schaffer collateral pathway. β-adrenoceptors mediate this enhancement of excitation-spike coupling by reducing the charge required to initiate action potentials, consistent with noradrenergic modulation of voltage-gated potassium channels. Furthermore, we find the likely effective concentration of endogenously released noradrenaline is sub-micromolar. Surprisingly, although comparable concentrations of exogenous noradrenaline cause robust depression of slow afterhyperpolarization currents, endogenous release of noradrenaline does not, indicating that endogenous noradrenaline release is targeted to specific cellular locations. These findings provide a mechanism by which targeted endogenous release of noradrenaline can enhance information transfer in the hippocampus in response to salient events.
Collapse
Affiliation(s)
- Travis J Bacon
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
- Bristol Anaesthesia, Pain & Critical Care Sciences, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
7
|
Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020; 225:1719-1742. [PMID: 32514634 PMCID: PMC7321906 DOI: 10.1007/s00429-020-02087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Reductions of glutamate acid decarboxylase (GAD67) and subsequent GABA levels have been consistently observed in neuropsychiatric disorders like schizophrenia and depression, but it has remained unclear how GABAergic dysfunction contributes to different symptoms of the diseases. To address this issue, we investigated male mice haplodeficient for GAD67 (GAD67+/GFP mice), which showed a reduced social interaction, social dominance and increased immobility in the forced swim test. No differences were found in rotarod performance and sensorimotor gating. We also addressed potential effects of social deprivation, which is known, during early life, to affect GABAergic function and induces behavioral abnormalities similar to the symptoms found in psychiatric disorders. Indeed, social isolation of GAD67+/GFP mice provoked increased rearing activity in the social interaction test and hyperlocomotion on elevated plus maze. Since GABA closely interacts with the dopaminergic, serotonergic and cholinergic neurotransmitter systems, we investigated GAD67+/GFP and GAD67+/+ mice for morphological markers of the latter systems and found increased tyrosine hydroxylase (TH)-IR fiber densities in CA1 of dorsal hippocampus. By contrast, no differences in numbers and densities of TH-positive neurons of the midbrain dopamine regions, serotonin (5-HT) neurons of the raphe nuclei, or choline acetyltransferase (ChAT)-expressing neurons of basal forebrain and their respective terminal fields were observed. Our results indicate that GAD67 haplodeficiency impairs sociability and increases vulnerability to social stress, provokes depressive-like behavior and alters the catecholaminergic innervation in brain areas associated with schizophrenia. GAD67+/GFP mice may provide a useful model for studying the impact of GABAergic dysfunction as related to neuropsychiatric disorders.
Collapse
|
8
|
Bernstein HL, Lu YL, Botterill JJ, Scharfman HE. Novelty and Novel Objects Increase c-Fos Immunoreactivity in Mossy Cells in the Mouse Dentate Gyrus. Neural Plast 2019; 2019:1815371. [PMID: 31534449 PMCID: PMC6732597 DOI: 10.1155/2019/1815371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The dentate gyrus (DG) and its primary cell type, the granule cell (GC), are thought to be critical to many cognitive functions. A major neuronal subtype of the DG is the hilar mossy cell (MC). MCs have been considered to play an important role in cognition, but in vivo studies to understand the activity of MCs during cognitive tasks are challenging because the experiments usually involve trauma to the overlying hippocampus or DG, which kills hilar neurons. In addition, restraint typically occurs, and MC activity is reduced by brief restraint stress. Social isolation often occurs and is potentially confounding. Therefore, we used c-fos protein expression to understand when MCs are active in vivo in socially housed adult C57BL/6 mice in their home cage. We focused on c-fos protein expression after animals explored novel objects, based on previous work which showed that MCs express c-fos protein readily in response to a novel housing location. Also, MCs are required for the training component of the novel object location task and novelty-encoding during a food-related task. GluR2/3 was used as a marker of MCs. The results showed that MC c-fos protein is greatly increased after exposure to novel objects, especially in ventral DG. We also found that novel objects produced higher c-fos levels than familiar objects. Interestingly, a small subset of neurons that did not express GluR2/3 also increased c-fos protein after novel object exposure. In contrast, GCs appeared relatively insensitive. The results support a growing appreciation of the role of the DG in novelty detection and novel object recognition, where hilar neurons and especially MCs are very sensitive.
Collapse
Affiliation(s)
- Hannah L. Bernstein
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Yi-Ling Lu
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Justin J. Botterill
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| | - Helen E. Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 100 First Ave., New York, NY 10016, USA
| |
Collapse
|
9
|
Haga T, Fukai T. Recurrent network model for learning goal-directed sequences through reverse replay. eLife 2018; 7:34171. [PMID: 29969098 PMCID: PMC6059768 DOI: 10.7554/elife.34171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/02/2018] [Indexed: 01/17/2023] Open
Abstract
Reverse replay of hippocampal place cells occurs frequently at rewarded locations, suggesting its contribution to goal-directed path learning. Symmetric spike-timing dependent plasticity (STDP) in CA3 likely potentiates recurrent synapses for both forward (start to goal) and reverse (goal to start) replays during sequential activation of place cells. However, how reverse replay selectively strengthens forward synaptic pathway is unclear. Here, we show computationally that firing sequences bias synaptic transmissions to the opposite direction of propagation under symmetric STDP in the co-presence of short-term synaptic depression or afterdepolarization. We demonstrate that significant biases are created in biologically realistic simulation settings, and this bias enables reverse replay to enhance goal-directed spatial memory on a W-maze. Further, we show that essentially the same mechanism works in a two-dimensional open field. Our model for the first time provides the mechanistic account for the way reverse replay contributes to hippocampal sequence learning for reward-seeking spatial navigation.
Collapse
|
10
|
Abstract
This review is devoted to the analytical application of carbohydrate-binding proteins called lectins. The nature of lectins and the regularities of their specificity with respect to simple sugars and complex carbohydrate-containing biomolecules are discussed. The main areas of the modern analytical application of lectins are described. Lectin-affinity chromatography, histo- and cytochemical approaches, lectin blotting, microarray, and biosensor technologies as well as microplate analysis are considered in detail. Data on the use of lectins for the detection of cells and microorganisms as well as the study of protein glycosylation are summarized. The large potential of lectins as components of analytical systems used for the identification of glycans and the characteristics of their structure are substantiated.
Collapse
Affiliation(s)
- O D Hendrickson
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| | - A V Zherdev
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| |
Collapse
|
11
|
Moretto JN, Duffy ÁM, Scharfman HE. Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus. Brain Struct Funct 2017; 222:2405-2419. [PMID: 28190104 DOI: 10.1007/s00429-016-1349-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Abstract
Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649-655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs.
Collapse
Affiliation(s)
- Jillian N Moretto
- The Nathan Kline Institute of Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Áine M Duffy
- The Nathan Kline Institute of Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Helen E Scharfman
- The Nathan Kline Institute of Psychiatric Research, Orangeburg, NY, 10962, USA. .,Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Prince LY, Bacon TJ, Tigaret CM, Mellor JR. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit. Front Synaptic Neurosci 2016; 8:32. [PMID: 27799909 PMCID: PMC5065980 DOI: 10.3389/fnsyn.2016.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.
Collapse
Affiliation(s)
- Luke Y Prince
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Travis J Bacon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|
13
|
Yang K, Broussard JI, Levine AT, Jenson D, Arenkiel BR, Dani JA. Dopamine receptor activity participates in hippocampal synaptic plasticity associated with novel object recognition. Eur J Neurosci 2016; 45:138-146. [PMID: 27646422 DOI: 10.1111/ejn.13406] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
Physiological and behavioral evidence supports that dopamine (DA) receptor signaling influences hippocampal function. While several recent studies examined how DA influences CA1 plasticity and learning, there are fewer studies investigating the influence of DA signaling to the dentate gyrus. The dentate gyrus receives convergent cortical input through the perforant path fiber tracts and has been conceptualized to detect novelty in spatial memory tasks. To test whether DA-receptor activity influences novelty-detection, we used a novel object recognition (NOR) task where mice remember previously presented objects as an indication of learning. Although DA innervation arises from other sources and the main DA signaling may be from those sources, our molecular approaches verified that midbrain dopaminergic fibers also sparsely innervate the dentate gyrus. During the NOR task, wild-type mice spent significantly more time investigating novel objects rather than previously observed objects. Dentate granule cells in slices cut from those mice showed an increased AMPA/NMDA-receptor current ratio indicative of potentiated synaptic transmission. Post-training injection of a D1-like receptor antagonist not only effectively blocked the preference for the novel objects, but also prevented the increased AMPA/NMDA ratio. Consistent with that finding, neither NOR learning nor the increase in the AMPA/NMDA ratio were observed in DA-receptor KO mice under the same experimental conditions. The results indicate that DA-receptor signaling contributes to the successful completion of the NOR task and to the associated synaptic plasticity of the dentate gyrus that likely contributes to the learning.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John I Broussard
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Amber T Levine
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Jenson
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Puighermanal E, Cutando L, Boubaker-Vitre J, Honoré E, Longueville S, Hervé D, Valjent E. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct 2016; 222:1897-1911. [PMID: 27678395 PMCID: PMC5406422 DOI: 10.1007/s00429-016-1314-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
In the hippocampus, a functional role of dopamine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuron populations. Using BAC transgenic mice expressing enhanced green fluorescent protein under the control of D1R promoter, we examined the molecular identity of D1R-containing neurons within the CA1 subfield of the dorsal hippocampus. In agreement with previous findings, our analysis revealed that these neurons are essentially GABAergic interneurons, which express several neurochemical markers, including calcium-binding proteins, neuropeptides, and receptors among others. Finally, by using different tools comprising cell type-specific isolation of mRNAs bound to tagged-ribosomes, we provide solid data indicating that D1R is present in a large proportion of interneurons expressing dopamine D2 receptors. Altogether, our study indicates that D1Rs are expressed by different classes of interneurons in all layers examined and not by pyramidal cells, suggesting that CA1 D1R mostly acts via modulation of GABAergic interneurons.
Collapse
Affiliation(s)
- Emma Puighermanal
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Laura Cutando
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Jihane Boubaker-Vitre
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Eve Honoré
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Sophie Longueville
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Denis Hervé
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Emmanuel Valjent
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France. .,INSERM, U1191, Montpellier, 34094, France. .,Université de Montpellier, UMR 5203, Montpellier, 34094, France.
| |
Collapse
|
15
|
Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel BR, Zhou FM, De Biasi M, Dani JA. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus. Cell Rep 2016; 14:1930-9. [PMID: 26904943 PMCID: PMC4772154 DOI: 10.1016/j.celrep.2016.01.070] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 11/21/2022] Open
Abstract
Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA) training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP) underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Benzazepines/pharmacology
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/physiology
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/physiology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Dopamine/metabolism
- Electrodes
- Learning/physiology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mesencephalon/cytology
- Mesencephalon/drug effects
- Mesencephalon/physiology
- Mice
- Mice, Inbred C57BL
- Microtomy
- Pyramidal Cells/cytology
- Pyramidal Cells/drug effects
- Pyramidal Cells/physiology
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/physiology
- Synapses/drug effects
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- John I Broussard
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kechun Yang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - Amber T Levine
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - Daniel Jenson
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Fei Cao
- Department of Neuroscience, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Isabella Garcia
- Program in Developmental Biology , Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology , Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee, Memphis, TN 38163 USA
| | - Mariella De Biasi
- Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Villette V, Guigue P, Picardo MA, Sousa VH, Leprince E, Lachamp P, Malvache A, Tressard T, Cossart R, Baude A. Development of early-born γ-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol 2016; 524:2440-61. [PMID: 26779909 PMCID: PMC4949683 DOI: 10.1002/cne.23961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/04/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023]
Abstract
Early‐born γ‐aminobutyric acid (GABA) neurons (EBGNs) are major components of the hippocampal circuit because at early postnatal stages they form a subpopulation of “hub cells” transiently supporting CA3 network synchronization (Picardo et al. [2011] Neuron 71:695–709). It is therefore essential to determine when these cells acquire the remarkable morphofunctional attributes supporting their network function and whether they develop into a specific subtype of interneuron into adulthood. Inducible genetic fate mapping conveniently allows for the labeling of EBGNs throughout their life. EBGNs were first analyzed during the perinatal week. We observed that EBGNs acquired mature characteristics at the time when the first synapse‐driven synchronous activities appeared in the form of giant depolarizing potentials. The fate of EBGNs was next analyzed in the adult hippocampus by using anatomical characterization. Adult EBGNs included a significant proportion of cells projecting selectively to the septum; in turn, EBGNs were targeted by septal and entorhinal inputs. In addition, most EBGNs were strongly targeted by cholinergic and monoaminergic terminals, suggesting significant subcortical innervation. Finally, we found that some EBGNs located in the septum or the entorhinal cortex also displayed a long‐range projection that we traced to the hippocampus. Therefore, this study shows that the maturation of the morphophysiological properties of EBGNs mirrors the evolution of early network dynamics, suggesting that both phenomena may be causally linked. We propose that a subpopulation of EBGNs forms into adulthood a scaffold of GABAergic projection neurons linking the hippocampus to distant structures. J. Comp. Neurol. 524:2440–2461, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Villette
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Guigue
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Michel Aimé Picardo
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Vitor Hugo Sousa
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Erwan Leprince
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Philippe Lachamp
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Arnaud Malvache
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Thomas Tressard
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Rosa Cossart
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| | - Agnès Baude
- INSERM U901, Marseille, 13009, France.,Aix-Marseille University, UMR 901, Marseille, 13009, France.,INMED, Marseille, 13009, France
| |
Collapse
|
17
|
The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats. Neurobiol Learn Mem 2016; 128:92-102. [PMID: 26774023 DOI: 10.1016/j.nlm.2015.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/16/2015] [Accepted: 12/30/2015] [Indexed: 11/23/2022]
Abstract
Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this impairment was largely reversed at 24-h. Animals in the high-dose NTP (20mg/kg/day) group were impaired at both short- and long-term intervals. Activity levels, used as an index of location memory during the ORT, demonstrated that rats receiving DMI were again impaired at retaining memory for location. DMI dose-dependently disrupts LTP in the dentate gyrus of anesthetized rats and also disrupts memory for tests of spatial memory when administered for long periods.
Collapse
|
18
|
Dan X, Liu W, Ng TB. Development and Applications of Lectins as Biological Tools in Biomedical Research. Med Res Rev 2015; 36:221-47. [PMID: 26290041 DOI: 10.1002/med.21363] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
As a new and burgeoning area following genomics and proteomics, glycomics has become a hot issue due to its pivotal roles in many physiological and pathological processes. Glycans are much more complicated than genes or proteins since glycans are highly branched and dynamic. Antibodies and lectins are the two major molecular tools applied for glycan profiling. Though the study of antibodies and lectins started at almost the same time in 1880s, lectins gained much less attention than the antibodies until recent decades when the importance and difficulties of glycomics were realized. The present review summarizes the discovery history of lectins and their biological functions with a special emphasis on their various applications as biological tools. Both older techniques that had been developed in the last century and new technologies developed in recent years, especially lectin microarrays and lectin-based biosensors, are included in this account.
Collapse
Affiliation(s)
- Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenlong Liu
- Department of Orthopaedics & Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
19
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
20
|
Etter G, Krezel W. Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 2014; 24:725-32. [PMID: 24753432 DOI: 10.1002/hipo.22280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal control of memory formation is regulated by dopaminergic signaling. Whereas the role of dopamine D1 receptors is well documented in such regulations, functions of dopamine D2 receptors (DRD2) are not fully understood. Using fluorescence in situ hybridization we demonstrate that Drd2 expression in the hippocampus of wild-type mice is limited to glutamatergic hilar mossy cells. Using whole cell electrophysiological recordings in hippocampal slice preparations, we provide evidence that unlike in basal ganglia, activation of DRD2 by the selective agonist, quinpirole, induces a long-lasting increase in excitability of hilar mossy cells, which can be blocked by the DRD2 antagonist raclopride. Such activity is mediated by the Akt/GSK pathway, as application of specific inhibitors such as A1070722 or SB216763 prevented quinpirole activity. Long-term effects of acute DRD2 activation in vitro suggest that volume transmission of dopamine may modulate mossy cell activities in vivo. This is supported by the presence of dense tyrosine hydroxylase positive varicosities in the hilus, which are rarely seen in the vicinity of mossy cell dendrites. From these data we discuss how dopamine could control mossy cell activity and thus dentate gyrus functions.
Collapse
Affiliation(s)
- Guillaume Etter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS, U 964 INSERM, Université de Strasbourg, B.P. 10142, 67404 Illkirch, Cedex, France
| | | |
Collapse
|
21
|
Hansen N, Manahan-Vaughan D. Locus Coeruleus Stimulation Facilitates Long-Term Depression in the Dentate Gyrus That Requires Activation of β-Adrenergic Receptors. Cereb Cortex 2014; 25:1889-96. [PMID: 24464942 PMCID: PMC4459289 DOI: 10.1093/cercor/bht429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|