1
|
Oliveira A, Azevedo M, Seixas R, Silva S, Martinho R, Serrão P, Silva E, Moreira-Rodrigues M. Hippocampus muscarinic M4 receptor mRNA expression may influence central cholinergic activity, causing fear memory strengthening by peripheral adrenaline. Neuropharmacology 2025; 271:110382. [PMID: 39988278 DOI: 10.1016/j.neuropharm.2025.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Adrenaline (Ad) strengthens contextual fear memory by increasing blood glucose, possibly enhancing hippocampus acetylcholine synthesis. Nevertheless, it is unclear if peripheral Ad influences the cholinergic system, contributing to contextual fear memory strengthening. We aimed to evaluate whether peripheral Ad alters muscarinic receptor expression and if the cholinergic system is involved in peripheral Ad contextual fear memory strengthening effect. Wild-type (WT) and Ad-deficient male mice (129 × 1/SvJ) underwent a fear conditioning procedure followed by intraperitoneal pre-training and pre-context administration of Ad (0.1 mg/kg), atropine (10 mg/kg), methylatropine (0.5 mg/kg), Ad (0.1 mg/kg) plus atropine (10 mg/kg) or vehicle (NaCl, 0.9%). Shock responsiveness and freezing behaviour were accessed. Hippocampal M1, M2, and M4 mRNA expression were evaluated. Ad-deficient mice presented decreased hippocampal muscarinic M4 subtype receptor mRNA expression compared to WT mice. In Ad-administered Ad-deficient mice, hippocampal muscarinic M4 subtype receptor mRNA expression increased compared with vehicle-administered Ad-deficient mice. On the context day, atropine-administered WT mice presented decreased freezing behaviour compared to vehicle or methylatropine-administered WT mice. Moreover, Ad plus atropine-administered Ad-deficient mice led to decreased freezing behaviour compared to Ad-administered Ad-deficient mice. In conclusion, Ad-deficient mice's contextual fear memory impairment was associated with hippocampal muscarinic M4 subtype receptor down expression, which was reversed by Ad. This may be related to contextual fear memory consolidation or retrieval induced by peripheral Ad. Furthermore, the effect of Ad contextual fear memory might be due to increased hippocampus muscarinic subtype M4 expression, which may contribute to increased cholinergic activity in the central nervous system.
Collapse
Affiliation(s)
- Ana Oliveira
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Márcia Azevedo
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Rafaela Seixas
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Soraia Silva
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Martinho
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Elisabete Silva
- Ageing and Stress Group, i3S- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Mónica Moreira-Rodrigues
- Center for Drug Discovery and Innovative Medicines (MedInUP) and RISE-Health, Department of Immuno-physiology and Pharmacology, Laboratory of Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal.
| |
Collapse
|
2
|
Alvarez-Dieppa AC, Griffin K, Cavalier S, Souza RR, Engineer CT, McIntyre CK. Vagus nerve stimulation rescues impaired fear extinction and social interaction in a rat model of autism spectrum disorder. J Affect Disord 2025; 374:505-512. [PMID: 39837463 PMCID: PMC11830517 DOI: 10.1016/j.jad.2025.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Clinical diagnosis of anxiety disorders is highly prevalent in autism spectrum disorders (ASD). Available treatments for anxiety offer limited efficacy in the ASD population. Vagus nerve stimulation (VNS) has an anxiolytic effect in rats and, when coupled with fear extinction training, VNS enhances extinction of fear in healthy rats. The valproic acid (VPA)-induced rat model of autism shows impaired extinction of fear and deficits in social interaction. This study was designed to test the potential of VNS to rescue extinction learning and influence social behaviors in VPA-exposed rats. After VNS or sham surgery, VPA-exposed rats or controls were subjected to auditory fear conditioning followed by extinction training paired with VNS or sham stimulation. Another cohort was exposed to a social interaction task paired with VNS or sham stimulation. Time spent freezing was not significantly reduced during retention testing 24 h after extinction training in VPA-exposed rats given sham stimulation (p = .26), but freezing levels were significantly lower during the retention test in saline control and in VPA-VNS rats (p < .05), indicating that VNS reverses extinction deficits in VPA-exposed rats. In addition, social interaction scores were significantly lower in VPA-sham rats (p < .0005), but VPA-VNS rats were not significantly different from saline controls (p = .19), suggesting that VNS also alleviates social interaction deficits in VPA-exposed rats. VNS is approved for use in humans for treatment of epilepsy, depression, and stroke. These findings suggest that VNS may be a useful tool for overcoming treatment resistant anxiety in ASD.
Collapse
Affiliation(s)
- Amanda C Alvarez-Dieppa
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Kimberly Griffin
- Molecular and Cell Biology Program, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sheridan Cavalier
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Rimenez R Souza
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Crystal T Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Christa K McIntyre
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA; Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
3
|
Butler AG, Bassi JK, Connelly AA, Melo MR, Allen AM, McDougall SJ. Vagal nerve stimulation dynamically alters anxiety-like behavior in rats. Brain Stimul 2025; 18:158-170. [PMID: 39892503 DOI: 10.1016/j.brs.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Electrical vagal nerve stimulation (VNS), at currents designed to target sensory, interoceptive neurons, decreases anxiety-like behavior. OBJECTIVE/HYPOTHESIS We hypothesized that different VNS current intensities would differentially alter anxiety-like behavior through the activation of distinct brainstem circuits. METHODS Electrodes were implanted to stimulate the left vagus nerve and to record diaphragm muscle and electrocardiogram activity. The VNS current required to elicit the A-fiber-mediated Hering-Breuer Reflex (HBR) was determined for each animal. Based on this threshold, animals received either sham stimulation or VNS at 1.5 (mid-intensity VNS) or 3 (higher-intensity VNS) times the threshold for HBR activation. Anxiety-like behavior was assessed using the elevated plus maze, open field test, and novelty-suppressed feeding test. Additionally, a place preference assay determined whether VNS is rewarding or aversive. Finally, a c-Fos assay was performed to evaluate VNS-driven neuronal activation within the brainstem. RESULTS Mid-intensity VNS reduced anxiety-like behavior in the elevated plus maze and open field test. Higher-intensity VNS was aversive during the place preference assay, confounding anxiety measures. Both intensities increased overall c-Fos expression in neurons within the nucleus of the solitary tract, but mid-intensity VNS specifically increased c-Fos expression in noradrenergic neurons within the nucleus of the solitary tract while decreasing it in the locus coeruleus. In contrast, higher-intensity VNS had no effect on c-Fos expression in noradrenergic neurons of either the nucleus of the solitary tract or locus coeruleus. CONCLUSION Delivery of VNS induced reproducible, current intensity-dependent, effects on anxiety-like and aversive behavior in rats.
Collapse
Affiliation(s)
- A G Butler
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - J K Bassi
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A A Connelly
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - M R Melo
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A M Allen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | - S J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Zheng J, Luo W, Kong C, Xie W, Chen X, Qiu J, Wang K, Wei H, Zhou Y. Impact of aerobic exercise on brain metabolism: Insights from spatial metabolomic analysis. Behav Brain Res 2025; 478:115339. [PMID: 39549874 DOI: 10.1016/j.bbr.2024.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Exercise is acknowledged for its beneficial effects on brain health; however, the intricate underlying molecular mechanisms remain poorly understood. AIMS This study aimed to explore aerobic exercise-induced metabolic alterations in the brain. METHODS We conducted an eight-week treadmill running exercise program in two-month-old male C57/BL6J mice. Body weight, serum lipid, glucose levels, and spatial cognition were measured. Spatial metabolomic analysis was performed to compare the metabolomic profiles across different brain regions. Immunohistochemical methods were used to compare the expression of carnitine palmitoyltransferase 1c (CPT1c). RESULTS Exercise induced significant changes in the analysed metabolomic profiles. There were 904 differentially expressed metabolites (DEMs) detected in the whole brain section. Notable alterations in lipid profiles were observed, and among the 292 lipids detected, there were 74 (25.34 %), 85 (29.11 %), and 78 (26.71 %) lipids differentially expressed in the hippocampus, thalamus, and hypothalamus of the Exe group, respectively. Lipid metabolism related pathways and enzymes were also altered, with L-carnitine and CPT1c upregulated in the three regions (p<0.05), and epinephrine levels decreased in the hippocampus (p<0.05). Furthermore, the vitamin B6 metabolism pathway was altered in the hypothalamus. CONCLUSIONS This study highlighted the significant changes in lipid metabolism induced by involuntary exercise in the brains of young male mice. Exercise also altered epinephrine levels and the vitamin B12 metabolic pathway in specific brain regions, which indicated the multifaceted effects of exercise on the brain.
Collapse
Affiliation(s)
- Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiuyun Chen
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Jiaxian Qiu
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Kexin Wang
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Cadre Healthcare Office, Fujian Provincial Hospital, Fuzhou, China.
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Calderon-Williams DR, de Souza RR, Tseng CT, Abdi H, Sandoval-Flores A, Ploski JE, Thorn CA, McIntyre CK. Optogenetic inhibition of the locus coeruleus blocks vagus nerve stimulation-induced enhancement of extinction of conditioned fear in rats. Learn Mem 2024; 31:a053958. [PMID: 39681462 DOI: 10.1101/lm.053958.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/15/2024] [Indexed: 12/18/2024]
Abstract
Vagus nerve stimulation (VNS) is a therapeutic intervention previously shown to enhance fear extinction in rats. VNS is approved for use in humans for the treatment of epilepsy, depression, and stroke, and it is currently under investigation as an adjuvant to exposure therapy in the treatment of PTSD. However, the mechanisms by which VNS enhances extinction of conditioned fear remain unresolved. VNS increases norepinephrine levels in extinction-related pathways, but recent studies indicate that norepinephrine release from the locus coeruleus interferes with extinction learning. The purpose of this study is to elucidate the role of the locus coeruleus (LC) in VNS-enhanced fear extinction. Adult male and female tyrosine hydroxylase (Th)-Cre rats were implanted with a stimulating cuff electrode around the left cervical vagus nerve, and a Cre-dependent viral vector expressing the inhibitory opsin ArchT3.0 was infused bilaterally into the LC. Rats then underwent auditory fear conditioning followed by extinction training. During extinction training, rats were divided into four treatment groups: Sham stimulation, Sham with LC inhibition, VNS, and VNS with LC inhibition. Consistent with previous findings, VNS treatment during extinction training significantly reduced freezing 24 h and 2 weeks later. This effect was blocked by optogenetic LC inhibition, suggesting that VNS enhances extinction by engaging the LC.
Collapse
Affiliation(s)
| | | | - Ching T Tseng
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Hervé Abdi
- Texas Biomedical Device Center, Richardson, Texas 75080, USA
| | | | - Jonathan E Ploski
- Department of Psychology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Christa K McIntyre
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
7
|
Blume GR, Royes LFF. Peripheral to brain and hippocampus crosstalk induced by exercise mediates cognitive and structural hippocampal adaptations. Life Sci 2024; 352:122799. [PMID: 38852798 DOI: 10.1016/j.lfs.2024.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Endurance exercise leads to robust increases in memory and learning. Several exercise adaptations occur to mediate these improvements, including in both the hippocampus and in peripheral organs. Organ crosstalk has been becoming increasingly more present in exercise biology, and studies have shown that peripheral organs can communicate to the hippocampus and mediate hippocampal changes. Both learning and memory as well as other hippocampal functional-related changes such as neurogenesis, cell proliferation, dendrite morphology and synaptic plasticity are controlled by these exercise responsive peripheral proteins. These peripheral factors, also called exerkines, are produced by several organs including skeletal muscle, liver, adipose tissue, kidneys, adrenal glands and circulatory cells. Previous reviews have explored some of these exerkines including muscle-derived irisin and cathepsin B (CTSB), but a full picture of peripheral to hippocampus crosstalk with novel exerkines such as selenoprotein 1 (SEPP1) and platelet factor 4 (PF4), or old overlooked ones such as lactate and insulin-like growth factor 1 (IGF-1) is still missing. We provide 29 different studies of 14 different exerkines that crosstalk with the hippocampus. Thus, the purpose of this review is to explore peripheral exerkines that have shown to exert hippocampal function following exercise, demonstrating their particular effects and molecular mechanisms in which they could be inducing adaptations.
Collapse
Affiliation(s)
| | - Luiz Fernando Freire Royes
- Center in Natural and Exact Sciences, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Physical Education and Sports Center, Department of Sports Methods and Techniques, Exercise Biochemistry Laboratory (BIOEX), Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Cocco R, Sechi S, Rizzo M, Arrigo F, Giannetto C, Piccione G, Arfuso F. Assessing the Peripheral Levels of the Neurotransmitters Noradrenaline, Dopamine and Serotonin and the Oxidant/Antioxidant Equilibrium in Circus Horses. Animals (Basel) 2024; 14:2354. [PMID: 39199887 PMCID: PMC11350772 DOI: 10.3390/ani14162354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Due to the paucity of information on circus management effects on the welfare of horses, this study investigated the plasma concentrations of noradrenaline, dopamine and serotonin, known to be indices of mental status, as well as the reactive oxygen metabolites (d-Roms) and the biological antioxidant potential (BAP), likely to denote the oxidant/antioxidant equilibrium of organisms, in horses managed in different Italian circuses. For the study, 56 circus horses of different breeds and ages were enrolled and divided into six groups according to the horses' management (circus management, groups G1-G5; classic riding management representing the control group, CG). From each horse, blood samples were collected in order to assess the concentration of selected parameters. One-way ANOVA showed no differences (p > 0.05) in serotonin, dopamine, noradrenaline, d-Roms and BAP values between circus and control horses. No differences related to the breed of the horses enrolled in the study were found in the values of all investigated parameters (p > 0.05). Furthermore, neurotransmitters showed overlapping levels between the different age classes of investigated horses (p > 0.05); contrariwise, the age of the horse displayed a significant effect on BAP values, with the oldest horses (16-21 age class) exhibiting lower BAP values compared to 4-5, 6-10 and 11-15 age classes (p < 0.05), whereas the d-Roms showed similar values in horses of different age classes (p > 0.05). The results gathered in the present study suggest that the mental status of horses under circus management was not compromised; however, better attention and care in the management of older horses is advocated, as they showed a lower biological antioxidant potential than younger horses; thus, they could be more susceptible to oxidative stress.
Collapse
Affiliation(s)
- Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (R.C.); (S.S.)
| | - Sara Sechi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (R.C.); (S.S.)
| | - Maria Rizzo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (C.G.); (G.P.); (F.A.)
| |
Collapse
|
9
|
Azevedo M, Martinho R, Oliveira A, Correia-de-Sá P, Moreira-Rodrigues M. Molecular pathways underlying sympathetic autonomic overshooting leading to fear and traumatic memories: looking for alternative therapeutic options for post-traumatic stress disorder. Front Mol Neurosci 2024; 16:1332348. [PMID: 38260808 PMCID: PMC10800988 DOI: 10.3389/fnmol.2023.1332348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The sympathoadrenal medullary system and the hypothalamic-pituitary-adrenal axis are both activated upon stressful events. The release of catecholamines, such as dopamine, norepinephrine (NE), and epinephrine (EPI), from sympathetic autonomic nerves participate in the adaptive responses to acute stress. Most theories suggest that activation of peripheral β-adrenoceptors (β-ARs) mediates catecholamines-induced memory enhancement. These include direct activation of β-ARs in the vagus nerve, as well as indirect responses to catecholamine-induced glucose changes in the brain. Excessive sympathetic activity is deeply associated with memories experienced during strong emotional stressful conditions, with catecholamines playing relevant roles in fear and traumatic memories consolidation. Recent findings suggest that EPI is implicated in fear and traumatic contextual memories associated with post-traumatic stress disorder (PTSD) by increasing hippocampal gene transcription (e.g., Nr4a) downstream to cAMP response-element protein activation (CREB). Herein, we reviewed the literature focusing on the molecular mechanisms underlying the pathophysiology of memories associated with fear and traumatic experiences to pave new avenues for the treatment of stress and anxiety conditions, such as PTSD.
Collapse
Affiliation(s)
- Márcia Azevedo
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Martinho
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Ana Oliveira
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratory of Pharmacology and Neurobiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| |
Collapse
|
10
|
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C. Auricular Transcutaneous Vagus Nerve Stimulation Specifically Enhances Working Memory Gate Closing Mechanism: A System Neurophysiological Study. J Neurosci 2023; 43:4709-4724. [PMID: 37221097 PMCID: PMC10286950 DOI: 10.1523/jneurosci.2004-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
Everyday tasks and goal-directed behavior involve the maintenance and continuous updating of information in working memory (WM). WM gating reflects switches between these two core states. Neurobiological considerations suggest that the catecholaminergic and the GABAergic are likely involved in these dynamics. Both of these neurotransmitter systems likely underlie the effects to auricular transcutaneous vagus nerve stimulation (atVNS). We examine the effects of atVNS on WM gating dynamics and their underlying neurophysiological and neurobiological processes in a randomized crossover study design in healthy humans of both sexes. We show that atVNS specifically modulates WM gate closing and thus specifically modulates neural mechanisms enabling the maintenance of information in WM. WM gate opening processes were not affected. atVNS modulates WM gate closing processes through the modulation of EEG alpha band activity. This was the case for clusters of activity in the EEG signal referring to stimulus information, motor response information, and fractions of information carrying stimulus-response mapping rules during WM gate closing. EEG-beamforming shows that modulations of activity in fronto-polar, orbital, and inferior parietal regions are associated with these effects. The data suggest that these effects are not because of modulations of the catecholaminergic (noradrenaline) system as indicated by lack of modulatory effects in pupil diameter dynamics, in the inter-relation of EEG and pupil diameter dynamics and saliva markers of noradrenaline activity. Considering other findings, it appears that a central effect of atVNS during cognitive processing refers to the stabilization of information in neural circuits, putatively mediated via the GABAergic system.SIGNIFICANCE STATEMENT Goal-directed behavior depends on how well information in short-term memory can be flexibly updated but also on how well it can be shielded from distraction. These two functions were guarded by a working memory gate. We show how an increasingly popular brain stimulation techniques specifically enhances the ability to close the working memory gate to shield information from distraction. We show what physiological and anatomic aspects underlie these effects.
Collapse
Affiliation(s)
- Anyla Konjusha
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Lorenza Colzato
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01307, Germany
- Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Tarasenko A, Guazzotti S, Minot T, Oganesyan M, Vysokov N. Determination of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the Heart Rate Variability Using a Machine Learning Pipeline. Bioelectricity 2022; 4:168-177. [PMID: 36168512 PMCID: PMC9508455 DOI: 10.1089/bioe.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background We are all aware of day-to-day healthy stress, but, when sustained for long periods, stress is believed to lead to serious physical and mental health issues. Materials and Methods In this study, we investigated the potential effects of transcutaneous auricular vagus nerve stimulation (taVNS) on stress processing as reflected in the electrocardiogram (ECG)-derived biomarkers of stress adaptability. Stress reflecting biomarkers included a range of heart rate variability metrics: standard deviation of N-N intervals (SDNN), root mean squared of successive differences in heartbeat intervals (RMSSD), low-frequency component, high-frequency component and their ratio (LF, HF, and LF/HF).In addition, we created a machine learning model capable of distinguishing between the stimulated and nonstimulated conditions from the ECG-derive data from various subjects and states. The model consisted of a deep convolutional neural network, which was trained on R-R interval (RRI) data extracted from ECG and time traces of LF, HF, LF/HF, SDNN, and RMSSD. Results Only LF/HF ratio demonstrated a statistically significant change in response to stimulation. Although the LF/HF ratio is expected to increase during exposure to stress, we have observed that stimulation during exposure to stress counteracts this increase or even reduces the LF/HF ratio. This could be an indication that the vagus nerve stimulation decreases the sympathetic activation during stress inducement.Our Machine Learning model achieved an accuracy of 70% with no significant variations across the three states (baseline, stress, and recovery). However, training an analogous neural network to identify the states (baseline, stress, and recovery) proved to be unsuccessful. Conclusion Overall, in this study, we showed further evidence of the beneficial effect of taVNS on stress processing. Importantly we have also demonstrated the promising potential of ECG metrics as a biomarker for the development of closed-loop stimulation systems.
Collapse
Affiliation(s)
| | - Stefano Guazzotti
- BrainPatch Ltd., London, United Kingdom.,School of Physics and CRANN Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Nickolai Vysokov
- BrainPatch Ltd., London, United Kingdom.,Address correspondence to: Nickolai Vysokov, PhD, BrainPatch Ltd., Unit 324, Edinburgh House, 170 Kennington Lane, London SE11 5DP, United Kingdom
| |
Collapse
|
12
|
Aranberri-Ruiz A, Aritzeta A, Olarza A, Soroa G, Mindeguia R. Reducing Anxiety and Social Stress in Primary Education: A Breath-Focused Heart Rate Variability Biofeedback Intervention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10181. [PMID: 36011817 PMCID: PMC9407856 DOI: 10.3390/ijerph191610181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Primary school students suffer from high levels of anxiety and stress. Having emotional regulation abilities can help them to manage challenging emotional situations. Conscious and slow breathing is a physiological, emotional regulation strategy that is feasible for primary school students to learn. Following Polyvagal Theory and PMER Theory, this research presents the results of a breath-focused heart rate variability biofeedback intervention. The intervention aimed to reduce anxiety and physiological and social stress in primary school children. A total of 585 students (46.4% girls and 53.6% boys) from the same public school, aged between 7 and 12 years (M = 8.51; SD = 1.26), participated in this study. To assess the impact of training, a mixed design was used with two groups (Treatment and Control groups), two evaluation phases (Pretest and Post-test), and three educational cycles (first, second and third cycles). To examine heart rate variability, emWave software was used and anxiety and social stress were measured by the BASC II test. The results showed that after the intervention, the students learned to breathe consciously. Moreover, they reduced their levels of anxiety (M(SD)pretest = 12.81(2.22) vs. M(SD)posttest = 13.70(1.98)) and stress (M(SD)pretest = 12.20(1.68) vs. M(SD)posttest = 12.90(1.44)). The work also discusses the limitations and benefits of this type of intervention in primary schools.
Collapse
Affiliation(s)
- Ainara Aranberri-Ruiz
- Department of Basic Psychological Process and Development, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Gipuzkoa, Spain
| | - Aitor Aritzeta
- Department of Basic Psychological Process and Development, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Gipuzkoa, Spain
| | - Amaiur Olarza
- Department of Basic Psychological Process and Development, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Gipuzkoa, Spain
| | - Goretti Soroa
- Department of Clinical and Health Psychology and Research Methodology, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Gipuzkoa, Spain
| | - Rosa Mindeguia
- Department of Basic Psychological Process and Development, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Gipuzkoa, Spain
| |
Collapse
|
13
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022; 43:3086-3112. [PMID: 35305272 PMCID: PMC9188976 DOI: 10.1002/hbm.25836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high‐spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area‐parabrachial pigmented, microcellular tegmental–parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus‐alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.
Collapse
Affiliation(s)
- Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Escuela Nacional de Estudios Superiores, Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Life Sciences Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Jeffrey P Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Sleep Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Martinho R, Seixas R, Azevedo M, Oliveira A, Serrão P, Moreira-Rodrigues M. Sotalol Treatment may Interfere With Retrieval, Expression, and/or Reconsolidation Processes Thus Disrupting Traumatic Memories in a Post-Traumatic Stress Disorder Mice Model. Front Pharmacol 2022; 12:809271. [PMID: 35173611 PMCID: PMC8842001 DOI: 10.3389/fphar.2021.809271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The processes by which fear memory is encoded, consolidated, and re-consolidated are extremely complex and appear to require the release of stress hormones, especially adrenaline (AD). AD improves contextual fear memory, acting specifically on peripheral β2-adrenoceptors. Propranolol (peripheral and central β-adrenoceptor antagonist) treatment was shown to prevent post-traumatic stress disorder (PTSD) development and reduce its symptoms. However, propranolol has several side effects. Thus, we aimed to evaluate if sotalol (a peripheral β-adrenoceptor antagonist) treatment interferes with retrieval, expression, and/or reconsolidation of traumatic memories in a validated mice model that mimics the signs/symptoms of PTSD, thus intending to decrease them. Female mice were induced with PTSD following an established protocol. Sotalol (2.0 mg/kg) or vehicle were administered on days 2, 7, and 14. The percentage of freezing was calculated, and behavioral tests were carried out. Catecholamines in plasma were quantified by HPLC with electrochemical detection. Quantitative real-time polymerase chain reaction (qPCR) was used to evaluate mRNA expression of NR4A family genes in hippocampus. Following the submission of the animals to the same aversive context on days 2, 7, and 14, sotalol-treated mice exhibited significant less freezing behavior. In the elevated plus-maze test, the time spent and number of entries in the open arms, and total arm entries were increased in sotalol-treated mice. Also, the light-dark transition test revealed higher time spent, number of transitions to the light, and total number of transitions in sotalol-treated mice. Moreover, plasma AD was significantly decreased in sotalol-treated mice. On day 14, sotalol-treated mice exhibited a decrease in mRNA expression of Nr4a1 in the hippocampus. In conclusion, in PTSD mice model, sotalol appears to decrease traumatic memories and anxiety-like behavior, probably due to a decrease in peripheral adrenergic activity, which influences traumatic memories. The effects of sotalol upon re-exposure to the traumatic context may be consistent with interference in the retrieval, expression, and/or reconsolidation processes of contextual traumatic memory, resulting in a long-term reduction of PTSD symptoms and signs. The decreased Nr4a1 mRNA expression in the hippocampal formation may be crucial for these mice to develop diminished traumatic contextual memories after sotalol therapy in PTSD.
Collapse
Affiliation(s)
- Raquel Martinho
- Laboratory of Physiology, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal
| | - Rafaela Seixas
- Laboratory of Physiology, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal
| | - Márcia Azevedo
- Laboratory of Physiology, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal
| | - Ana Oliveira
- Laboratory of Physiology, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal.,Department of Biomedicine, FMUP - Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Laboratory of Physiology, ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, ICBAS, University of Porto (MedInUP), Porto, Portugal
| |
Collapse
|
16
|
The effect of stress and exercise on the learning performance of horses. Sci Rep 2022; 12:1918. [PMID: 35121736 PMCID: PMC8816904 DOI: 10.1038/s41598-021-03582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Domestic horses are widely used for physically demanding activities but the effect of exercise on their learning abilities has not been explored. Horses are also frequently exposed to stressors that may affect their learning. Stress and exercise result in the release of glucocorticoids, noradrenaline and other neurotransmitters that can influence learning. It is not currently possible to directly measure concentrations of neurotransmitters in the brains of behaving horses, however the inference of neurobiological processes from peripheral markers have been widely used in studies of human cognition. We assigned 41 horses to either ridden exercise, uncontrollable stress or inactivity and evaluated their acquisition of an industry-style aversive instrumental learning task. Exercised horses achieved the learning criterion in the fewest number of trials compared to the stressed and inactive horses whose performance did not differ. The exercised horses’ salivary cortisol concentrations decreased during learning whereas the concentrations of the other groups increased. Spearman’s correlations revealed that horses with the highest cortisol concentrations required the most trials to reach the criterion. We present novel data that exercise prior to learning may enhance the acquisition of learning in horses. Conversely, activities that expose horses to uncontrollable stressors causing strong cortisol release may impair learning. It is proposed that these effects may be due to the influence of neurotransmitters such as cortisol and noradrenaline on brain regions responsible for learning.
Collapse
|
17
|
Goldstein DS. Stress and the "extended" autonomic system. Auton Neurosci 2021; 236:102889. [PMID: 34656967 PMCID: PMC10699409 DOI: 10.1016/j.autneu.2021.102889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
This review updates three key concepts of autonomic neuroscience-stress, the autonomic nervous system (ANS), and homeostasis. Hans Selye popularized stress as a scientific idea. He defined stress variously as a stereotyped response pattern, a state that evokes this pattern, or a stimulus that evokes the state. According to the "homeostat" theory stress is a condition where a comparator senses a discrepancy between sensed afferent input and a response algorithm, the integrated error signal eliciting specific patterns of altered effector outflows. Scientific advances since Langley's definition of the ANS have incited the proposal here of the "extended autonomic system," or EAS, for three reasons. (1) Several neuroendocrine systems are bound inextricably to Langley's ANS. The first to be described, by Cannon in the early 1900s, involves the hormone adrenaline, the main effector chemical of the sympathetic adrenergic system. Other neuroendocrine systems are the hypothalamic-pituitary-adrenocortical system, the arginine vasopressin system, and the renin-angiotensin-aldosterone system. (2) An evolving body of research links the ANS complexly with inflammatory/immune systems, including vagal anti-inflammatory and catecholamine-related inflammasomal components. (3) A hierarchical network of brain centers (the central autonomic network, CAN) regulates ANS outflows. Embedded within the CAN is the central stress system conceptualized by Chrousos and Gold. According to the allostasis concept, homeostatic input-output curves can be altered in an anticipatory, feed-forward manner; and prolonged or inappropriate allostatic adjustments increase wear-and-tear (allostatic load), resulting in chronic, stress-related, multi-system disorders. This review concludes with sections on clinical and therapeutic implications of the updated concepts offered here.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Autonomic Medicine Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD 20892-1620, USA..
| |
Collapse
|
18
|
D'Agostini M, Burger AM, Franssen M, Claes N, Weymar M, von Leupoldt A, Van Diest I. Effects of transcutaneous auricular vagus nerve stimulation on reversal learning, tonic pupil size, salivary alpha-amylase, and cortisol. Psychophysiology 2021; 58:e13885. [PMID: 34245461 DOI: 10.1111/psyp.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
This study investigated whether transcutaneous auricular vagus nerve stimulation (taVNS) enhances reversal learning and augments noradrenergic biomarkers (i.e., pupil size, cortisol, and salivary alpha-amylase [sAA]). We also explored the effect of taVNS on respiratory rate and cardiac vagal activity (CVA). Seventy-one participants received stimulation of either the cymba concha (taVNS) or the earlobe (sham) of the left ear. After learning a series of cue-outcome associations, the stimulation was applied before and throughout a reversal phase in which cue-outcome associations were changed for some (reversal), but not for other (distractor) cues. Tonic pupil size, salivary cortisol, sAA, respiratory rate, and CVA were assessed at different time points. Contrary to our hypothesis, taVNS was not associated with an overall improvement in performance on the reversal task. Compared to sham, the taVNS group performed worse for distractor than reversal cues. taVNS did not increase tonic pupil size and sAA. Only post hoc analyses indicated that the cortisol decline was steeper in the sham compared to the taVNS group. Exploratory analyses showed that taVNS decreased respiratory rate but did not affect CVA. The weak and unexpected effects found in this study might relate to the lack of parameters optimization for taVNS and invite to further investigate the effect of taVNS on cortisol and respiratory rate.
Collapse
Affiliation(s)
| | - Andreas M Burger
- Research Group Health Psychology, KU Leuven, Leuven, Belgium.,Laboratory for Biological Psychology, KU Leuven, Leuven, Belgium
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.,Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | | | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Capone F, Motolese F, Di Zazzo A, Antonini M, Magliozzi A, Rossi M, Marano M, Pilato F, Musumeci G, Coassin M, Di Lazzaro V. The effects of transcutaneous auricular vagal nerve stimulation on pupil size. Clin Neurophysiol 2021; 132:1859-1865. [PMID: 34147923 DOI: 10.1016/j.clinph.2021.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Mechanisms of action and optimal stimulation parameters of transcutaneous auricular vagus nerve stimulation (taVNS) are currently unknown. Pupil size has gained attention as a promising biomarker of vagal activation in different studies on animal models. The aim of this study is to investigate the effects of taVNS on pupil diameter in healthy subjects. METHODS All subjects received taVNS at the left external acoustic meatus and control stimulation at the left earlobe during the same experimental session. Different intensities (0.5 mA; 1.0 mA; 2.0 mA; 3.0 mA) for both conditions were tested. Tonic pupil size was recorded in both eyes at baseline and during each stimulation using an infrared-automated pupillometer in three different illuminance conditions (scotopic, mesopic, photopic). RESULTS In scotopic illuminance condition, a significant interaction between intensity and condition (real vs control) was found for the left eye. Post-Hoc analysis showed that during real taVNS at 2 mA, pupil size was significantly larger in comparison to baseline and 2 mA control stimulation. CONCLUSIONS Our study demonstrates that taVNS induces pupil dilation under specific illuminance conditions and at specific stimulation intensity. SIGNIFICANCE The effects of taVNS are strictly dependent on technical aspects, such as stimulation parameters and experimental set-up.
Collapse
Affiliation(s)
- Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy.
| | - Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco Antonini
- Ophthalmology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Magliozzi
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mariagrazia Rossi
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Massimo Marano
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gabriella Musumeci
- NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Marco Coassin
- Ophthalmology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
20
|
Souza RR, Oleksiak CR, Tabet MN, Rennaker RL, Hays SA, Kilgard MP, McIntyre CK. Vagus nerve stimulation promotes extinction generalization across sensory modalities. Neurobiol Learn Mem 2021; 181:107425. [PMID: 33771710 PMCID: PMC12060723 DOI: 10.1016/j.nlm.2021.107425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues. Here we tested whether VNS can enhance extinction of olfactory fear and promote extinction generalization across auditory and olfactory sensory modalities. Male Sprague Dawley rats were implanted with a stimulating cuff on the cervical vagus nerve. Rats then received two days of fear conditioning where olfactory (amyl acetate odor) and auditory (9 kHz tones) stimuli were concomitantly paired with footshock. Twenty-four hours later, rats were given three days of sham or VNS-paired extinction (5 stimulations, 30-sec trains at 0.4 mA) overlapping with presentation of either the olfactory or the auditory stimulus. Two days later, rats were given an extinction retention test where avoidance of the olfactory stimulus or freezing to the auditory stimulus were measured. VNS-paired with exposure to the olfactory stimulus during extinction reduced avoidance of the odor in the retention test. VNS-paired with exposure to the auditory stimulus during extinction also decreased avoidance of the olfactory cue, and VNS paired with exposure to the olfactory stimulus during extinction reduced freezing when the auditory stimulus was presented in the retention test. These results indicate that VNS enhances extinction of olfactory fear and promotes extinction generalization across different sensory modalities. Extinction generalization induced by VNS may therefore improve outcomes of exposure-based therapies.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Cecily R Oleksiak
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michel N Tabet
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
21
|
von Dawans B, Strojny J, Domes G. The effects of acute stress and stress hormones on social cognition and behavior: Current state of research and future directions. Neurosci Biobehav Rev 2020; 121:75-88. [PMID: 33301780 DOI: 10.1016/j.neubiorev.2020.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023]
Abstract
Stress encompasses profound psychological and physiological changes that are observable on all levels, from cellular mechanisms, humoral changes, and brain activation to subjective experience and behavior. While the impact of stress on health has already been studied for decades, a more recent field of research has revealed effects of stress on human social cognition and behavior. Initial studies have attempted to elucidate the underlying biological mechanisms of these stress-induced effects by measuring physiological responses or by using pharmacological approaches. We provide an overview of the current state of research on the effects of acute stress induction or pharmacological manipulations of stress-related neuro circuitry on social cognition and behavior. Additionally, we discuss the methodological challenges that need to be addressed in order to gain further insight into this important research topic and facilitate replicability of results. Future directions may help to disentangle the complex interplay of psychological and biological stress variables and their effects on social cognition and behavior on health and in disorders with social deficits.
Collapse
Affiliation(s)
| | - Julia Strojny
- Department of Biological and Clinical Psychology, University of Trier, Germany
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of Trier, Germany.
| |
Collapse
|
22
|
Burger A, Van der Does W, Brosschot J, Verkuil B. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: A report of three studies. Biol Psychol 2020; 152:107863. [DOI: 10.1016/j.biopsycho.2020.107863] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/09/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
23
|
Colzato L, Beste C. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 2020; 123:1739-1755. [PMID: 32208895 DOI: 10.1152/jn.00057.2020] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain stimulation approaches are important to gain causal mechanistic insights into the relevance of functional brain regions and/or neurophysiological systems for human cognitive functions. In recent years, transcutaneous vagus nerve stimulation (tVNS) has attracted considerable popularity. It is a noninvasive brain stimulation technique based on the stimulation of the vagus nerve. The stimulation of this nerve activates subcortical nuclei, such as the locus coeruleus and the nucleus of the solitary tract, and from there, the activation propagates to the cortex. Since tVNS is a novel stimulation technique, this literature review outlines a brief historical background of tVNS, before detailing underlying neurophysiological mechanisms of action, stimulation parameters, cognitive effects of tVNS on healthy humans, and, lastly, current challenges and future directions of tVNS research in cognitive functions. Although more research is needed, we conclude that tVNS, by increasing norepineprine (NE) and gamma-aminobutyric acid (GABA) levels, affects NE- and GABA-related cognitive performance. The review provides detailed background information how to use tVNS as a neuromodulatory tool in cognitive neuroscience and outlines important future leads of research on tVNS.
Collapse
Affiliation(s)
- Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Noble LJ, Chuah A, Callahan KK, Souza RR, McIntyre CK. Peripheral effects of vagus nerve stimulation on anxiety and extinction of conditioned fear in rats. ACTA ACUST UNITED AC 2019; 26:245-251. [PMID: 31209119 PMCID: PMC6581007 DOI: 10.1101/lm.048447.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Vagus nerve stimulation (VNS) enhances extinction of conditioned fear in rats. Previous findings support the hypothesis that VNS effects on extinction are due to enhanced consolidation of extinction memories through promotion of plasticity in extinction-related brain pathways however, alternative explanations are plausible. According to one hypothesis, VNS may produce a hedonic effect and enhance extinction through counter-conditioning. According to another hypothesis, VNS reduces anxiety during exposure and this weakens the association of conditioned stimuli with aversive conditioned responses. The present set of experiments (1) used conditioned place preference (CPP) to identify potential rewarding effects associated with VNS and (2) examined the peripheral effects of VNS on anxiety and extinction enhancement. Male Sprague–Dawley rats were surgically implanted with cuff electrodes around the vagus nerve and subjected to a CPP task in which VNS and sham stimulation were each paired with one of two distinct contexts over the course of 5 d. Following this procedure, rats did not show a place preference, suggesting that VNS is not rewarding or aversive. The role of the peripheral parasympathetic system in the anxiolytic effect of VNS on the elevated plus maze was examined by blocking peripheral muscarinic receptors with intraperitoneal administration of methyl scopolamine prior to VNS. Methyl scopolamine blocked the VNS-induced reduction in anxiety but did not interfere with VNS enhancement of extinction of conditioned fear, indicating that the anxiety-reducing effect of VNS is not necessary for the extinction enhancement.
Collapse
Affiliation(s)
- Lindsey J Noble
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Ashleigh Chuah
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Kathleen K Callahan
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Rimenez R Souza
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| |
Collapse
|
25
|
Noble LJ, Souza RR, McIntyre CK. Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies. Psychopharmacology (Berl) 2019; 236:355-367. [PMID: 30091004 PMCID: PMC6368475 DOI: 10.1007/s00213-018-4994-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 02/04/2023]
Abstract
RATIONALE Emotionally traumatic experiences can lead to maladaptive memories that are enduring and intrusive. The goal of exposure-based therapies is to extinguish conditioned fears through repeated, unreinforced exposures to reminders of traumatic events. The extinction of conditioned fear depends upon the consolidation of new memories made during exposure to reminders. An impairment in extinction recall, observed in certain patient populations, can interfere with progress in exposure-based therapies, and the drive to avoid thoughts and reminders of the trauma can undermine compliance and increase dropout rate. Effective adjuncts to exposure-based therapies should improve the consolidation and maintenance of the extinction memory or improve the tolerability of the therapy. Under stressful conditions, the vagus nerve responds to elevations in epinephrine and signals the brain to facilitate the storage of new memories while, as part of the parasympathetic nervous system, it slows the sympathetic response. OBJECTIVE Here, we review studies relevant to fear extinction, describing the anatomical and functional characteristics of the vagus nerve and mechanisms of vagus nerve stimulation (VNS)-induced memory enhancement and plasticity. RESULTS We propose that stimulation of the left cervical vagus nerve during exposure to conditioned cues signals the brain to store new memories just as epinephrine or emotional arousal would do, but bypasses the peripheral sympathetic "fight-or-flight" response. CONCLUSIONS In support of this hypothesis, we have found that VNS accelerates extinction and prevents reinstatement of conditioned fear in rats. Finally, we propose future studies targeting the optimization of stimulation parameters and the search for biomarkers of VNS effectiveness that may improve exposure therapy outcomes.
Collapse
Affiliation(s)
- Lindsey J Noble
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Rimenez R Souza
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Christa K McIntyre
- School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
26
|
London EB. Neuromodulation and a Reconceptualization of Autism Spectrum Disorders: Using the Locus Coeruleus Functioning as an Exemplar. Front Neurol 2018; 9:1120. [PMID: 30619071 PMCID: PMC6305710 DOI: 10.3389/fneur.2018.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
The Autism Spectrum Disorders (ASD) are a heterogeneous group of developmental disorders. Although, ASD can be reliably diagnosed, the etiology, pathophysiology, and treatment targets remain poorly characterized. While there are many atypical findings in anatomy, genetics, connectivity, and other biologic parameters, there remains no discreet hypothesis to explain the core signs as well as the very frequent comorbidities. Due to this, designing targets for treatments can only be done by assuming each symptom is a result of a discreet abnormality which is likely not the case. Neuronal circuity remains a major focus of research but rarely taking into account the functioning of the brain is highly dependent on various systems, including the neuromodulatory substances originating in the midbrain. A hypothesis is presented which explores the possibility of explaining many of the symptoms found in ASD in terms of inefficient neuromodulation using the functioning of the locus coeruleus and norepinephrine (LC/NE) as exemplars. The basic science of LC/NE is reviewed. Several functions found to be impaired in ASD including learning, attention, sensory processing, emotional regulation, autonomic functioning, adaptive and repetitive behaviors, sleep, language acquisition, initiation, and prompt dependency are examined in terms of the functioning of the LC/NE system. Suggestions about possible treatment directions are explored.
Collapse
Affiliation(s)
- Eric B. London
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
27
|
Souza-Braga P, Lorena FB, Nascimento BPP, Marcelino CP, Ravache TT, Ricci E, Bernardi MM, Ribeiro MO. Adrenergic receptor β3 is involved in the memory consolidation process in mice. ACTA ACUST UNITED AC 2018; 51:e7564. [PMID: 30088540 PMCID: PMC6086548 DOI: 10.1590/1414-431x20187564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 06/04/2018] [Indexed: 02/02/2023]
Abstract
Attention and emotion have a positive impact on memory formation, which is related to the activation of the noradrenergic system in the brain. The hippocampus and amygdala are fundamental structures in memory acquisition, which is modulated by noradrenaline through the noradrenergic receptors. Pharmacological studies suggest that memory acquisition depends on the action of both the β3 (β3-AR) and β2 (β2-AR) receptor subtypes. However, the use of animal models with specific knockout for the β3-AR receptor only (β3-ARKO) allows researchers to more accurately assess its role in memory formation processes. In the present study, we evaluated short- and long-term memory acquisition capacity in β3-ARKO mice and wild-type mice at approximately 60 days of age. The animals were submitted to the open field test, the elevated plus maze, object recognition, and social preference. The results showed that the absence of the β3-AR receptor caused no impairment in locomotion and did not cause anxious behavior, but it caused significant impairment of short- and long-term memory compared to wild-type animals. We also evaluated the expression of genes involved in memory consolidation. The mRNA levels for GLUT3, a glucose transporter expressed in the central nervous system, were significantly reduced in the amygdala, but not in the hippocampus of the β3-ARKO animals. Our results showed that β3-AR was involved in the process of acquisition of declarative memory, and its action may be due to the facilitation of glucose absorption in the amygdala.
Collapse
Affiliation(s)
- P Souza-Braga
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - F B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - B P P Nascimento
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - C P Marcelino
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - T T Ravache
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - E Ricci
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - M M Bernardi
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, SP, Brasil
| | - M O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| |
Collapse
|
28
|
Burger AM, Van Diest I, van der Does W, Hysaj M, Thayer JF, Brosschot JF, Verkuil B. Transcutaneous vagus nerve stimulation and extinction of prepared fear: A conceptual non-replication. Sci Rep 2018; 8:11471. [PMID: 30065275 PMCID: PMC6068181 DOI: 10.1038/s41598-018-29561-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) may accelerate fear extinction in healthy humans. Here, we aimed to investigate this hypothesis in healthy young participants in a prepared learning paradigm, using spider pictures as conditioned stimuli. After a fear conditioning phase, participants were randomly allocated to receive tVNS (final N = 42) or sham stimulation (final N = 43) during an extinction phase. Conditioned fear was assessed using US expectancy ratings, skin conductance and fear potentiated startle responses. After successful fear acquisition, participants in both groups showed a reduction of fear over the course of the extinction phase. There were no between-group differences in extinction rates for physiological indices of fear. Contrary to previous findings, participants in the tVNS condition also did not show accelerated declarative extinction learning. Participants in the tVNS condition did have lower initial US expectancy ratings for the CS− trials than those who received sham stimulation, which may indicate an enhanced processing of safety cues due to tVNS. In conclusion, the expected accelerated extinction due to tVNS was not observed. The results from this study call for more research on the optimal tVNS stimulation intensity settings.
Collapse
Affiliation(s)
- Andreas M Burger
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands. .,Faculty of Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, 3000, Leuven, Belgium.
| | - Ilse Van Diest
- Faculty of Psychology, Katholieke Universiteit Leuven, Tiensestraat 102, 3000, Leuven, Belgium
| | - Willem van der Does
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Marsida Hysaj
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, 1835 Neil Avenue Mall, Columbus, OH, 43210, United States
| | - Jos F Brosschot
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| | - Bart Verkuil
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
| |
Collapse
|
29
|
Jiang J, Peng Y, Liang X, Li S, Chang X, Li L, Chang M. Centrally Administered Cortistation-14 Induces Antidepressant-Like Effects in Mice via Mediating Ghrelin and GABA A Receptor Signaling Pathway. Front Pharmacol 2018; 9:767. [PMID: 30072893 PMCID: PMC6060333 DOI: 10.3389/fphar.2018.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Cortistatin-14 (CST-14), a recently discovered cyclic neuropeptide, can bind to all five cloned somatostatin receptors (SSTRs) and ghrelin receptor to exert its biological activities and co-exists with GABA within the cortex and hippocampus. However, the role of CST-14 in the control of depression processes is not still clarified. Here, we tested the behavioral effects of CST-14 in the in a variety of classical rodent models of depression [forced swimming test (FST), tail suspension test (TST) and novelty-suppressed feeding test]. In the models of depression, CST-14 produced antidepressant-like effects, and does not altered locomotor activity levels. And, we found that CST-14 mRNA and BDNF mRNA were significantly decreased in the hippocampus and cortex after mice exposed to stress. Further data show that i.c.v. administration of CST-14 produce rapid antidepressant effects, and does not altered locomotor activity levels. Then these antidepressant-like effects were significantly reversed by [D-Lys3]GHRP-6 (ghrelin receptor antagonist), but not c-SOM (SSTRs antagonist). Meanwhile, the effects of some neurotransmitter blockers indicates that only GABAA system, but not CRF1 receptor, α/β-adrenergic receptor, is involved in the antidepressant effect of CST-14. The effects of the mTOR inhibitor (rapamycin), the PI3K inhibitor (LY294002) and the p-ERK1/2 inhibitor (U0126) suggesting that the ERK/mTOR or PI3K/Akt/mTOR signaling pathway is not involved in the antidepressant effects of CST-14. Interestingly, intranasal administration of CST-14 led to reducing depressive-like behavior, and near-infrared fluorescent experiments showed the real-time in vivo bio-distribution in brain after intranasal infusion of Cy7.5-CST-14. Taken all together, the results of present study point to a role for CST-14 in the modulation of depression processes via the ghrelin and GABAA receptor, and suggest cortistation may represent a novel strategy for the treatment of depression disorders. Highlights:CST-14 and BDNF mRNA are decreased in hippocampus and cortex once mice exposed to stress. i.c.v. or intranasal administration of CST-14 produce rapid antidepressant effects. NIR fluorescence imaging detected the brain uptake and distribution after intranasal CST-14. Antidepressant effects of CST-14 were only related to ghrelin and GABAA system. Co-injection of CST-14 and NPS produce antidepressant effect, and do not impair memory.
Collapse
Affiliation(s)
- JinHong Jiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - YaLi Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - XueYa Liang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Shu Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Xin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - LongFei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Min Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Poppa T, Bechara A. The somatic marker hypothesis: revisiting the role of the ‘body-loop’ in decision-making. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sun JJ, Ray R. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells. PLoS One 2016; 11:e0159474. [PMID: 27441631 PMCID: PMC4956144 DOI: 10.1371/journal.pone.0159474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES) cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH) gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD). Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.
Collapse
Affiliation(s)
- Jenny J. Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Russell Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
32
|
The learning of fear extinction. Neurosci Biobehav Rev 2015; 47:670-83. [PMID: 25452113 DOI: 10.1016/j.neubiorev.2014.10.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.
Collapse
|
33
|
Mravec B, Ondicova K, Tillinger A, Pecenak J. Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci 2015; 190:20-5. [DOI: 10.1016/j.autneu.2015.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
|
34
|
Luo Y, Zhou J, Li M, Wu P, Hu Z, Ni L, Jin Y, Chen J, Wang F. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 2015; 14:170-9. [PMID: 25564942 PMCID: PMC4364829 DOI: 10.1111/acel.12282] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/19/2022] Open
Abstract
Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit.
Collapse
Affiliation(s)
- Yi Luo
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Jun Zhou
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Ming‐Xing Li
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Peng‐Fei Wu
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Zhuang‐Li Hu
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Lan Ni
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - You Jin
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
| | - Jian‐Guo Chen
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
- The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| | - Fang Wang
- Department of Pharmacology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Key Laboratory of Neurological Diseases (HUST) Ministry of Education of China Wuhan 430030 China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province Wuhan 430030 China
- The Institute of Brain Research Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
35
|
Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles. Physiol Behav 2015; 142:79-84. [PMID: 25654993 DOI: 10.1016/j.physbeh.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/12/2015] [Accepted: 02/01/2015] [Indexed: 01/01/2023]
Abstract
Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state.
Collapse
|
36
|
Gold PE. Regulation of memory - from the adrenal medulla to liver to astrocytes to neurons. Brain Res Bull 2014; 105:25-35. [PMID: 24406469 PMCID: PMC4039576 DOI: 10.1016/j.brainresbull.2013.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022]
Abstract
Epinephrine, released into blood from the adrenal medulla in response to arousing experiences, is a potent enhancer of learning and memory processing. This review examines mechanisms by which epinephrine exerts its effects on these cognitive functions. Because epinephrine is largely blocked from moving from blood to brain, it is likely that the hormone's effects on memory are mediated by peripheral actions. A classic effect of epinephrine is to act at the liver to break down glycogen stores, resulting in increased blood glucose levels. The increase in blood glucose provides additional energy substrates to the brain to buttress the processes needed for an experience to be learned and remembered. In part, it appears that the increased glucose may act in the brain in a manner akin to that evident in the liver, engaging glycogenolysis in astrocytes to provide an energy substrate, in this case lactate, to augment neuronal functions. Together, the findings reveal a mechanism underlying modulation of memory that integrates the physiological functions of multiple organ systems to support brain processes. This article is part of a Special Issue entitled 'Memory enhancement'.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
37
|
Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry 2013; 73:1071-7. [PMID: 23245749 PMCID: PMC3604026 DOI: 10.1016/j.biopsych.2012.10.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. METHODS Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1 to 10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. RESULTS Vagus nerve stimulation paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared with that of sham control rats. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. CONCLUSIONS Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders.
Collapse
Affiliation(s)
| | | | - Christa K. McIntyre
- Corresponding Author information: Christa McIntyre, Ph.D. School of Behavioral and Brain Sciences GR 41 The University of Texas at Dallas 800 W Campbell Rd. Richardson, TX, 75080-3021
| |
Collapse
|
38
|
Ohira H, Matsunaga M, Murakami H, Osumi T, Fukuyama S, Shinoda J, Yamada J. Neural mechanisms mediating association of sympathetic activity and exploration in decision-making. Neuroscience 2013; 246:362-74. [PMID: 23643977 DOI: 10.1016/j.neuroscience.2013.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
The somatic marker hypothesis asserts that decision-making can be guided by feedback of bodily states to the brain. In line with this hypothesis, the present study tested whether sympathetic activity shows an association with a tonic dimension of decision-making, exploratory tendency represented by entropy in information theory, and further examined the neural mechanisms of the association. Twenty participants performed a stochastic reversal learning task that required decision-making in an unstable and uncertain situation. Regional cerebral blood flow was evaluated using (15)O-water positron emission tomography (PET), and cardiovascular indices and concentrations of catecholamine in peripheral blood were also measured, during the task. In reversal learning, increased epinephrine during the task positively correlated with larger entropy, indicating a greater tendency for exploration in decision-making. The increase of epinephrine also correlated with brain activity revealed by PET in the somatosensory cortices, anterior insula, dorsal anterior cingulate cortex, and the dorsal pons. This result is consistent with previously reported brain matrixes of representation of bodily states and interoception. In addition, activity of the anterior insula specifically correlated with entropy, suggesting possible mediation of this brain region between peripheral sympathetic arousal and exploration in decision-making. These findings shed a new light about a role of bodily states in decision-making and underlying neural mechanisms.
Collapse
Affiliation(s)
- H Ohira
- Department of Psychology, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|