1
|
Barnet M, Descheemaeker A, Favier L, Moisset X, Schopp J, Dallel R, Artola A, Monconduit L, Antri M. Estrous cycle regulates cephalic mechanical sensitivity and sensitization of the trigemino-cervical complex in a female rat model of chronic migraine. Pain 2024:00006396-990000000-00761. [PMID: 39480245 DOI: 10.1097/j.pain.0000000000003459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024]
Abstract
ABSTRACT The higher incidence of migraines in women compared with men has led to the inclusion of female animals in pain research models. However, the critical role of the hormonal cycle is frequently overlooked, despite its clear correlation with migraine occurrences. In this study, we show in a rat model of migraine induced by repeated dural infusions of an inflammatory soup (IS) that a second IS (IS2) injection performed in proestrus/estrus (PE, high estrogen) female rats evokes higher cephalic mechanical hypersensitivities than when performed in metestrus/diestrus (MD, low estrogen) or ovariectomized (OV) rats. This hypersensitivity induced by IS2 correlates with increased c-Fos expression in outer lamina II (IIo) neurons located in the periorbital projection area of the trigemino-cervical complex (TCC), in PE only. Four IS (IS4) repetition induced an enlargement of c-Fos expression in adjacent territories areas in PE, but not MD or OV animals. Unexpectedly, c-Fos expression in locus coeruleus neurons does not potentiate after IS2 or IS4 injections. To examine the impacts of the hormonal cycle on the physiology of lamina IIo TCC neurons, we performed whole-cell patch-clamp recordings. Second inflammatory soup depolarizes neurons in PE and MD but not in OV rats and enhances excitatory synaptic inputs in PE animals to a greater extent compared with MD and OV rats. These findings show that central TCC sensitization triggered by meningeal nociceptor activation and the resulting cephalic hypersensitivity are modulated by the estrous cycle. This highlights the crucial need to account for not just sex, but also the female estrous cycle in pain research.
Collapse
Affiliation(s)
- Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Forouzanfar F, Mirdoosti M, Akaberi M, Rezaee R, Esmaeili S, Saburi E, Mahaki H. Diospyros kaki fruit extract produces antiarthritic and antinociceptive effects in rats with complete Freund's adjuvant-induced arthritis. Food Sci Nutr 2024; 12:8084-8092. [PMID: 39479654 PMCID: PMC11521739 DOI: 10.1002/fsn3.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 11/02/2024] Open
Abstract
Current treatments for rheumatoid arthritis produce untoward effects; thus, considerable effort has been made to recognize effective herbal medicines against the condition. In the present study, the therapeutic effect of Diospyros kaki fruit hydroalcoholic extract (DFHE) on complete Freund's adjuvant (CFA)-induced arthritis in rats was investigated. The extract was characterized using liquid chromatography-electrospray mass spectrometry (LC-ESIMS). Male Wistar rats were grouped as follows (eight rats in each): control, CFA, CFA + indomethacin (5 mg/kg), CFA + DFHE (50 mg/kg), and CFA + DFHE (100 mg/kg). Paw volume, mechanical allodynia, thermal hyperalgesia, and arthritis score were evaluated. Serum levels of malondialdehyde (MDA), thiol groups, tumor necrosis factor-alpha (TNF-α), as well as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were evaluated. Carotenoids were found to be the major components of DFHE. Administration of DFHE (100 mg/kg) significantly decreased arthritis score, paw volume, and thermal hyperalgesia, and improved mechanical allodynia. MDA and TNF-α levels were decreased while thiol levels and SOD and GPx activities were increased in DFHE-treated groups compared to the CFA group. These results suggest that D. kaki extract caused an improvement in clinical signs of rheumatoid arthritis symptoms possibly through suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Motahareh Mirdoosti
- Medical Toxicology Research Center, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ramin Rezaee
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Nogrady B. How pain is misunderstood and ignored in women. Nature 2024; 633:S31-S33. [PMID: 39322727 DOI: 10.1038/d41586-024-03005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
4
|
Moraes TR, Veras FP, Barchuk AR, Nogueira ESC, Kanashiro A, Galdino G. Spinal HMGB1 participates in the early stages of paclitaxel-induced neuropathic pain via microglial TLR4 and RAGE activation. Front Immunol 2024; 15:1303937. [PMID: 38384464 PMCID: PMC10879568 DOI: 10.3389/fimmu.2024.1303937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1β, and TNF-α spinal levels. Results The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Thamyris Reis Moraes
- Pain Neuroimmunobiology Laboratory, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Flavio Protasio Veras
- Pain Neuroimmunobiology Laboratory, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Angel Roberto Barchuk
- Integrative Animal Biology Laboratory, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, United States
| | - Giovane Galdino
- Pain Neuroimmunobiology Laboratory, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
5
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
6
|
Lopez-Echeverria G, Alamaw E, Gorman G, Jampachaisri K, Huss MK, Pacharinsak C. Comparing Three Formulations of Buprenorphine in an Incisional Pain Model in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:531-537. [PMID: 38030144 PMCID: PMC10772916 DOI: 10.30802/aalas-jaalas-23-000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 12/01/2023]
Abstract
This study compared the therapeutic effects in mice of 3 different formulations of buprenorphine. These formulations were standard buprenorphine hydrochloride (Bup-HCL) and 2 different extended-release buprenorphine formulations (Bup-ER and Ethiqa-XR [Bup-XR]). Drugs were evaluated based on their ability to attenuate thermal hypersensitivity in a mouse plantar incisional pain model. We hypothesized that Bup-HCL would attenuate postoperative thermal hypersensitivity at 20 min after administration, and that Bup-ER and Bup-XR would attenuate thermal hypersensitivity at 40 min after administration. Male C57BL6/J mice were randomly assigned to 1 of 4 treatment groups: 1) saline, 5 mL/kg SC, once; 2) Bup-HCL, 0.1 mg/kg SC, once; 3) Bup-ER, 1 mg/kg, SC, once; and 4) Bup-XR, 3.25 mg/kg, SC, once. Thermal hypersensitivity was assessed on the day before surgery and again on the day of surgery at 20, 40, 60, 90, and 120 min after drug administration. Thermal hypersensitivity after surgery was not different among the Bup-HCL, Bup-ER and Bup-XR groups at any timepoint. In addition, all buprenorphine treatment groups showed significantly less thermal hypersensitivity after surgery than did the saline group. Subjective observations suggested that mice that received Bup-ER or Bup-XR became hyperactive after drug administration (83 and 75% of mice tested, respectively). Our results indicate that Bup-HCL, Bup-ER, or Bup-XR attenuate thermal hyper- sensitivity related to foot incision by 20 min after administration.
Collapse
Affiliation(s)
| | - Eden Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Gregory Gorman
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama
| | | | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
7
|
Zhang XY, Diaz-delCastillo M, Kong L, Daniels N, MacIntosh-Smith W, Abdallah A, Domanski D, Sofrenovic D, Yeung TP(S, Valiente D, Vollert J, Sena E, Rice AS, Soliman N. A systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain. PLoS One 2023; 18:e0290382. [PMID: 37682863 PMCID: PMC10490990 DOI: 10.1371/journal.pone.0290382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed a systematic review and meta-analysis of studies that assessed thigmotaxis in the open field test. Systematic searches were conducted of 3 databases in October 2020, March and August 2022. Study design characteristics and experimental data were extracted and analysed using a random-effects meta-analysis. We also assessed the correlation between thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of 165 studies We report thigmotaxis was increased in injury and disease models associated with persistent pain and this increase was attenuated by analgesic drug treatments in both rat and mouse experiments. Its usefulness, however, may be limited in certain injury and disease models because our analysis suggested that thigmotaxis may be associated with the locomotor function. We also conducted subgroup analyses and meta-regression, but our findings on sources of heterogeneity are inconclusive because analyses were limited by insufficient available data. It was difficult to assess internal validity because reporting of methodological quality measures was poor, therefore, the studies have an unclear risk of bias. The correlation between time in the centre (type of a thigmotactic metric) and types of stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and ethologically relevant behavioural paradigms should be viewed as two separate entities as they are conceptually and methodologically different from each other.
Collapse
Affiliation(s)
- Xue Ying Zhang
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Natasha Daniels
- Bart’s Health NHS Trust Whipps Cross Hospital, London, United Kingdom
| | - William MacIntosh-Smith
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Aya Abdallah
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominik Domanski
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Denis Sofrenovic
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Diego Valiente
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S. Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
8
|
Schaffer J, Fogelman N, Seo D, Sinha R. Chronic pain, chronic stress and substance use: overlapping mechanisms and implications. FRONTIERS IN PAIN RESEARCH 2023; 4:1145934. [PMID: 37415830 PMCID: PMC10320206 DOI: 10.3389/fpain.2023.1145934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic pain is among the most common reasons adults in the U.S. seek medical care. Despite chronic pain's substantial impact on individuals' physical, emotional, and financial wellness, the biologic underpinnings of chronic pain remain incompletely understood. Such deleterious impact on an individuals' wellness is also manifested in the substantial co-occurrence of chronic stress with chronic pain. However, whether chronic stress and adversity and related alcohol and substance misuse increases risk of developing chronic pain, and, if so, what the overlapping psychobiological processes are, is not well understood. Individuals suffering with chronic pain find alleviation through prescription opioids as well as non-prescribed cannabis, alcohol, and other drugs to control pain, and use of these substances have grown significantly. Substance misuse also increases experience of chronic stress. Thus, given the evidence showing a strong correlation between chronic stress and chronic pain, we aim to review and identify overlapping factors and processes. We first explore the predisposing factors and psychologic features common to both conditions. This is followed by examining the overlapping neural circuitry of pain and stress in order to trace a common pathophysiologic processes for the development of chronic pain and its link to substance use. Based on the previous literature and our own findings, we propose a critical role for ventromedial prefrontal cortex dysfunction, an overlapping brain area associated with the regulation of both pain and stress that is also affected by substance use, as key in the risk of developing chronic pain. Finally, we identify the need for future research in exploring the role of medial prefrontal circuits in chronic pain pathology. Critically, in order to alleviate the enormous burden of chronic pain without exacerbating the co-occurring substance misuse crisis, we emphasize the need to find better approaches to treat and prevent chronic pain.
Collapse
Affiliation(s)
| | | | | | - R. Sinha
- Department of Psychiatry and the Yale Stress Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Li YK, Zhang YY, Lin J, Liu YJ, Li YL, Feng YH, Zhao JS, Zhou C, Liu F, Shen JF. Metabotropic glutamate receptor 5-mediated inhibition of inward-rectifying K + channel 4.1 contributes to orofacial ectopic mechanical allodynia following inferior alveolar nerve transection in male mice. J Neurosci Res 2023; 101:1170-1187. [PMID: 36807930 DOI: 10.1002/jnr.25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/20/2023]
Abstract
Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.
Collapse
Affiliation(s)
- Yi-Ke Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
11
|
Strath LJ, Sims AM, Overstreet DS, Penn TM, Bakshi RJ, Stansel BK, Quinn TL, Sorge RE, Long DL, Goodin BR. Dietary Inflammatory Index (DII) is Associated with Movement-Evoked Pain Severity in Adults with Chronic Low Back Pain: Sociodemographic Differences. THE JOURNAL OF PAIN 2022; 23:1437-1447. [PMID: 35417792 PMCID: PMC9356984 DOI: 10.1016/j.jpain.2022.03.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Chronic low back pain (CLBP) is one of the leading causes of pain and disability in adults in the United States and disproportionately burdens non-Hispanic Black (NHB) individuals and females. Approximately 90% of CLBP cases are of unknown cause, and it is imperative that potential causes be explored. It has been reported that diet quality can influence pain state via diet-induced inflammation. The present study assessed the relationship between Dietary Inflammatory Index (DII) and movement evoked-pain severity in people with CLBP and investigated whether race/sex moderated the relationship between DII and movement-evoked pain. Results revealed no significant differences in DII scores between males and females, or between NHB and non-Hispanic White (NHW) participants. Participant sex significantly modified the relationship between DII and movement-evoked pain severity (P = .0155), such that movement-evoked pain severity was significantly impacted by DII scores in females, but not males. Participant race did not significantly moderate the DII - movement-evoked pain severity relationship. These results suggest that diet-induced inflammation may impact the CLBP experiences of females to a greater degree than males. Further research is needed to determine whether dietary interventions that reduce inflammation improve CLBP outcomes and whether these interventions may be differentially-beneficial based on sex. PERSPECTIVE: This article highlights the impact of diet-induced inflammation in a community-based sample as a whole, as well as stratified in various sociodemographic groups. This work expands our understanding of the influence of diet on pain experience and suggests that modifications to diet may be efficacious treatments for reducing chronic pain.
Collapse
Affiliation(s)
- Larissa J Strath
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Andrew M Sims
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham Alabama
| | - Demario S Overstreet
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Terence M Penn
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Rahm J Bakshi
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Brooke K Stansel
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Tammie L Quinn
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| | - Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama.
| | - D Leann Long
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham Alabama
| | - Burel R Goodin
- Department of Psychology, The University of Alabama at Birmingham, Birmingham Alabama
| |
Collapse
|
12
|
Liss A, Hellman A, Patel VJ, Maietta T, Byraju K, Trowbridge R, Acheta J, Panse D, Srikanthan A, Neubauer P, Burdette C, Ghoshal G, Williams E, Qian J, Pilitsis JG. Low Intensity Focused Ultrasound Increases Duration of Anti-Nociceptive Responses in Female Common Peroneal Nerve Injury Rats. Neuromodulation 2022; 25:504-510. [PMID: 35667768 DOI: 10.1111/ner.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chronic pain affects 7%-10% of Americans, occurs more frequently and severely in females, and available treatments have been shown to have less efficacy in female patients. Preclinical models addressing sex-specific treatment differences in the treatment of chronic pain have been limited. Here we examine the sex-specific effects of low intensity focused ultrasound (liFUS) in a modified sciatic nerve injury (SNI) model. MATERIALS AND METHODS A modified SNI performed by ligating the common peroneal nerve (CPN) was used to measure sensory, behavioral pain responses, and nerve conduction studies in female and male rats, following liFUS of the L5 dorsal root ganglion. RESULTS Using the same dose of liFUS in females and males of the same weight, CPN latency immediately after treatment was increased for 50 min in females compared to 25 min in males (p < 0.001). Improvements in mechanical pain thresholds after liFUS lasted significantly longer in females (seven days; p < 0.05) compared to males (three days; p < 0.05). In females, there was a significant improvement in depression-like behavior as a result of liFUS (N = 5; p < 0.01); however, because males never developed depression-like behavior there was no change after liFUS treatment. CONCLUSIONS Neuromodulation with liFUS has a greater effect in female rats on CPN latency, mechanical allodynia duration, and depression-like behavior. In order to customize neuromodulatory techniques for different patient phenotypes, it is essential to understand how they may alter sex-specific pathophysiologies.
Collapse
Affiliation(s)
- Andrea Liss
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Vraj J Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Teresa Maietta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kanakaharini Byraju
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Drishti Panse
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Adithya Srikanthan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | | | | - Jiang Qian
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA; Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.
| |
Collapse
|
13
|
Zhao X, Erickson M, Mohammed R, Kentner AC. Maternal immune activation accelerates puberty initiation and alters mechanical allodynia in male and female C57BL6/J mice. Dev Psychobiol 2022; 64:e22278. [DOI: 10.1002/dev.22278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Mary Erickson
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Ruqayah Mohammed
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| |
Collapse
|
14
|
Dietz V, Knox K, Moore S, Roberts N, Corona KK, Dulin JN. Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice. Exp Neurol 2022; 352:114048. [PMID: 35304102 DOI: 10.1016/j.expneurol.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Spinal cord injury (SCI) frequently results in immediate and sustained neurological dysfunction, including intractable neuropathic pain in approximately 60-80% of individuals. SCI induces immediate mechanical damage to spinal cord tissue followed by a period of secondary injury in which tissue damage is further propagated, contributing to the development of anatomically unique lesions. Variability in lesion size and location influences the degree of motor and sensory dysfunction incurred by an individual. We predicted that variability in lesion parameters may also explain why some, but not all, experimental animals develop mechanical sensitivity after SCI. To characterize the relationship of lesion anatomy to mechanical allodynia, we utilized a mouse cervical hemicontusion model of SCI that has been shown to lead to the development and persistence of mechanical allodynia in the ipsilateral forelimb after injury. At four weeks post-SCI, the numbers and locations of surviving neurons were quantified along with total lesion volume and nociceptive fiber sprouting. We found that the subset of animals exhibiting mechanical allodynia had significantly increased neuronal sparing in the ipsilateral dorsal horn around the lesion epicenter compared to animals that did not exhibit mechanical allodynia. Additionally, we failed to observe significant differences between groups in nociceptive fiber density in the dorsal horn around the lesion epicenter. Notably, we found that impactor probe displacement upon administration of the SCI surgery was significantly lower in sensitive animals compared with not-sensitive animals. Together, our data indicate that lesion severity negatively correlates with the manifestation of at-level mechanical hypersensitivity and suggests that sparing of dorsal horn neurons may be required for the development of neuropathic pain.
Collapse
Affiliation(s)
- Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Katelyn Knox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sherilynne Moore
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Nolan Roberts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Gosnell ME, Staikopoulos V, Anwer AG, Mahbub SB, Hutchinson MR, Mustafa S, Goldys EM. Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiol Dis 2021; 160:105528. [PMID: 34626794 DOI: 10.1016/j.nbd.2021.105528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Our understanding of chronic pain and the underlying molecular mechanisms remains limited due to a lack of tools to identify the complex phenomena responsible for exaggerated pain behaviours. Furthermore, currently there is no objective measure of pain with current assessment relying on patient self-scoring. Here, we applied a fully biologically unsupervised technique of hyperspectral autofluorescence imaging to identify a complex signature associated with chronic constriction nerve injury known to cause allodynia. The analysis was carried out using deep learning/artificial intelligence methods. The central element was a deep learning autoencoder we developed to condense the hyperspectral channel images into a four- colour image, such that spinal cord tissue based on nerve injury status could be differentiated from control tissue. This study provides the first validation of hyperspectral imaging as a tool to differentiate tissues from nerve injured vs non-injured mice. The auto-fluorescent signals associated with nerve injury were not diffuse throughout the tissue but formed specific microscopic size regions. Furthermore, we identified a unique fluorescent signal that could differentiate spinal cord tissue isolated from nerve injured male and female animals. The identification of a specific global autofluorescence fingerprint associated with nerve injury and resultant neuropathic pain opens up the exciting opportunity to develop a diagnostic tool for identifying novel contributors to pain in individuals.
Collapse
Affiliation(s)
- Martin E Gosnell
- Quantitative Pty Ltd, 118 Great Western Highway, Mount Victoria, NSW 2786, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Sanam Mustafa
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, UNSW Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Sherman K, Woyach V, Eisenach JC, Hopp FA, Cao F, Hogan QH, Dean C. Heterogeneity in patterns of pain development after nerve injury in rats and the influence of sex. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100069. [PMID: 34381929 PMCID: PMC8339380 DOI: 10.1016/j.ynpai.2021.100069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The genesis of neuropathic pain is complex, as sensory abnormalities may differ between patients with different or similar etiologies, suggesting mechanistic heterogeneity, a concept that is largely unexplored. Yet, data are usually grouped for analysis based on the assumption that they share the same underlying pathogenesis. Sex is a factor that may contribute to differences in pain responses. Neuropathic pain is more prevalent in female patients, but pre-clinical studies that can examine pain development in a controlled environment have typically failed to include female subjects. This study explored patterns of development of hyperalgesia-like behavior (HLB) induced by noxious mechanical stimulation in a neuropathic pain model (spared nerve injury, SNI) in both male and female rats, and autonomic dysfunction that is associated with chronic pain. HLB was analyzed across time, using both discrete mixture modeling and rules-based longitudinal clustering. Both methods identified similar groupings of hyperalgesia trajectories after SNI that were not evident when data were combined into groups by sex only. Within the same hyperalgesia development group, mixed models showed that development of HLB in females was delayed relative to males and reached a magnitude similar to or higher than males. The data also indicate that sympathetic tone (as indicated by heart rate variability) drops below pre-SNI level before or at the onset of development of HLB. This study classifies heterogeneity in individual development of HLB and identifies sexual dimorphism in the time course of development of neuropathic pain after nerve injury. Future studies addressing mechanisms underlying these differences could facilitate appropriate pain treatments.
Collapse
Affiliation(s)
- Katherine Sherman
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, United States
| | - Victoria Woyach
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, United States
- Department of Anesthesiology, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, United States
| | - James C. Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Francis A. Hopp
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, United States
| | - Freddy Cao
- College of Nursing, University of Wisconsin – Milwaukee, Milwaukee, WI 53222, United States
| | - Quinn H. Hogan
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, United States
- Department of Anesthesiology, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, United States
| | - Caron Dean
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, United States
- Department of Anesthesiology, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, United States
| |
Collapse
|
17
|
Abstract
Chronic widespread pain conditions are more prevalent in women than men, suggesting a role for gonadal hormones in the observed differences. Previously, we showed that female mice, compared to male, develop widespread, more severe, and longer-duration hyperalgesia in a model of activity-induced muscle pain. We hypothesized testosterone protects males from developing the female pain phenotype. We tested whether orchiectomy of males before induction of an activity-induced pain model produced a female phenotype and whether testosterone administration produced a male phenotype in females. Orchiectomy produced longer-lasting, more widespread hyperalgesia, similar to females. Administration of testosterone to females or orchiectomized males produced unilateral, shorter-lasting hyperalgesia. Prior studies show that the serotonin transporter (SERT) is increased in the nucleus raphe magnus (NRM) in models of chronic pain, and that blockade of SERT in the NRM reduces hyperalgesia. We examined potential sex differences in the distribution of SERT across brain sites involved in nociceptive processing using immunohistochemistry. A sex difference in SERT was found in the NRM in the activity-induced pain model; females had greater SERT immunoreactivity than males. This suggests that testosterone protects against development of widespread, long-lasting muscle pain and that alterations in SERT may underlie the sex differences.
Collapse
|
18
|
Bonet IJM, Green PG, Levine JD. Sexual dimorphism in the nociceptive effects of hyaluronan. Pain 2021; 162:1116-1125. [PMID: 33065736 PMCID: PMC7969372 DOI: 10.1097/j.pain.0000000000002116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT Intradermal administration of low-molecular-weight hyaluronan (LMWH) in the hind paw induced dose-dependent (0.1, 1, or 10 µg) mechanical hyperalgesia of similar magnitude in male and female rats. However, the duration of LMWH hyperalgesia was greater in females. This sexual dimorphism was eliminated by bilateral ovariectomy and by intrathecal administration of an oligodeoxynucleotide (ODN) antisense to the G-protein-coupled estrogen receptor (GPR30) mRNA in females, indicating estrogen dependence. To assess the receptors at which LMWH acts to induce hyperalgesia, LMWH was administered to groups of male and female rats that had been pretreated with ODN antisense (or mismatch) to the mRNA for 1 of 3 hyaluronan receptors, cluster of differentiation 44 (CD44), toll-like receptor 4, or receptor for hyaluronan-mediated motility (RHAMM). Although LMWH-induced hyperalgesia was attenuated in both male and female rats pretreated with ODN antisense for CD44 and toll-like receptor 4 mRNA, RHAMM antisense pretreatment only attenuated LMWH-induced hyperalgesia in males. Oligodeoxynucleotide antisense for RHAMM, however, attenuated LMWH-induced hyperalgesia in female rats treated with ODN antisense to GPR30, as well as in ovariectomized females. Low-molecular-weight hyaluronan-induced hyperalgesia was significantly attenuated by pretreatment with high-molecular-weight hyaluronan (HMWH) in male, but not in female rats. After gonadectomy or treatment with ODN antisense to GPR30 expression in females, HMWH produced similar attenuation of LMWH-induced hyperalgesia to that seen in males. These experiments identify nociceptors at which LMWH acts to produce mechanical hyperalgesia, establishes estrogen dependence in the role of RHAMM in female rats, and establishes estrogen dependence in the inhibition of LMWH-induced hyperalgesia by HMWH.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
20
|
Garrone B, di Matteo A, Amato A, Pistillo L, Durando L, Milanese C, Di Giorgio FP, Tongiani S. Synergistic interaction between trazodone and gabapentin in rodent models of neuropathic pain. PLoS One 2021; 16:e0244649. [PMID: 33395416 PMCID: PMC7781482 DOI: 10.1371/journal.pone.0244649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023] Open
Abstract
Neuropathic pain is a chronic debilitating condition caused by injury or disease of the nerves of the somatosensory system. Although several therapeutic approaches are recommended, none has emerged as an optimal treatment leaving a need for developing more effective therapies. Given the small number of approved drugs and their limited clinical efficacy, combining drugs with different mechanisms of action is frequently used to yield greater efficacy. We demonstrate that the combination of trazodone, a multifunctional drug for the treatment of major depressive disorders, and gabapentin, a GABA analogue approved for neuropathic pain relief, results in a synergistic antinociceptive effect in the mice writhing test. To explore the potential relevance of this finding in chronic neuropathic pain, pharmacodynamic interactions between low doses of trazodone (0.3 mg/kg) and gabapentin (3 mg/kg) were evaluated in the chronic constriction injury (CCI) rat model, measuring the effects of the two drugs both on evoked and spontaneous nociception and on general well being components. Two innate behaviors, burrowing and nest building, were used to assess these aspects. Besides exerting a significant antinociceptive effect on hyperalgesia and on spontaneous pain, combined inactive doses of trazodone and gabapentin restored in CCI rats innate behaviors that are strongly reduced or even abolished during persistent nociception, suggesting that the combination may have an impact also on pain components different from somatosensory perception. Our results support the development of a trazodone and gabapentin low doses combination product for optimal multimodal analgesia treatment.
Collapse
|
21
|
Staikopoulos V, Qiao S, Liu J, Song X, Yang X, Luo Q, Hutchinson MR, Zhang Z. Graded peripheral nerve injury creates mechanical allodynia proportional to the progression and severity of microglial activity within the spinal cord of male mice. Brain Behav Immun 2021; 91:568-577. [PMID: 33197546 DOI: 10.1016/j.bbi.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The reactivity of microglia within the spinal cord in response to nerve injury, has been associated with the development and maintenance of neuropathic pain. However, the temporal changes in microglial reactivity following nerve injury remains to be defined. Importantly, the magnitude of behavioural allodynia displayed and the relationship to the phenotypic microglial changes is also unexplored. Using a heterozygous CX3CR1gfp+ transgenic mouse strain, we monitored microglial activity as measured by cell density, morphology, process movement and process length over 14 days following chronic constriction of the sciatic nerve via in vivo confocal microscopy. Uniquely this relationship was explored in groups of male mice which had graded nerve injury and associated graded behavioural mechanical nociceptive sensitivity. Significant mechanical allodynia was quantified from the ipsilateral hind paw and this interacted with the extent of nerve injury from day 5 to day 14 (p < 0.009). The extent of this ipsilateral allodynia was proportional to the nerve injury from day 5 to 14 (Spearman rho = -0.58 to -0.77; p < 0.002). This approach allowed for the assessment of the association of spinal microglial changes with the magnitude of the mechanical sensitivity quantified behaviourally. Additionally, the haemodynamic response in the somatosensory cortex was quantified as a surrogate measure of neuronal activity. We found that spinal dorsal horn microglia underwent changes unilateral to the injury in density (Spearman rho = 0.47; p = 0.01), velocity (Spearman rho = -0.68; p = 0.00009), and circularity (Spearman rho = 0.55; p = 0.01) proportional to the degree of the neuronal injury. Importantly, these data demonstrate for the first time that the mechanical allodynia behaviour is not a binary all or nothing state, and that microglial reactivity change proportional to this behavioural measurement. Increased total haemoglobin levels in the somatosensory cortex of higher-grade injured animals was observed when compared to sham controls suggesting increased neuronal activity in this brain region. The degree of phenotypic microglial changes quantified here, may explain how microglia can induce both rapid onset and sustained functional changes in the spinal cord dorsal horn, following peripheral injury.
Collapse
Affiliation(s)
- Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Sha Qiao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Jiajun Liu
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Xianlin Song
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China; School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China; School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
22
|
Sex Difference in Trigeminal Neuropathic Pain Response to Exercise: Role of Oxidative Stress. Pain Res Manag 2020; 2020:3939757. [PMID: 32676135 PMCID: PMC7341438 DOI: 10.1155/2020/3939757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Aim Orofacial chronic neuropathic pain commonly occurs following trigeminal nerve injuries. We investigated whether swimming exercise can reduce trigeminal neuropathic pain through improving antioxidant capacity. Materials and Methods Twenty-eight Wistar rats of either sex and 180–220 grams were divided into 4 groups as sham, neuropathy, neuropathy + single bout exercise, and neuropathy + 2 weeks of exercise. Trigeminal neuropathy was carried out through chronic constriction injury (CCI) of infraorbital nerve. Protocols of exercise were included a single bout session (45 minutes) and a 2-week (45 minutes/day/6 days a week) swimming exercise. Mechanical allodynia was detected using Von Frey filaments. The activity of the serum antioxidant enzymes glutathione peroxidase and superoxides dismutase was assayed using ELISA kits. Results We found that CCI significantly reduced facial pain threshold in both sexes (P < 0.05). Both swimming exercise protocols significantly reduced mechanical allodynia in female rats compared to the sham group; however, only 2 weeks of exercise were significantly effective in male rats. The activity of antioxidant enzyme glutathione peroxidase significantly (P < 0.05) decreased following CCI in female rats against that in the sham group and 2-week exercise significantly (P < 0.05) increased it toward the control level. The levels of glutathione peroxidase in male rats and superoxidase dismutase in both sexes were not significantly different compared to their sham groups. Conclusion Swimming exercise alleviates trigeminal neuropathic pain in both sexes. Oxidative stress as a possible mechanism was involved in the effect of exercise on female rat trigeminal neuropathy.
Collapse
|
23
|
Evans SF, Kwok YH, Solterbeck A, Liu J, Hutchinson MR, Hull ML, Rolan PE. Toll-Like Receptor Responsiveness of Peripheral Blood Mononuclear Cells in Young Women with Dysmenorrhea. J Pain Res 2020; 13:503-516. [PMID: 32210607 PMCID: PMC7071941 DOI: 10.2147/jpr.s219684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Dysmenorrhea is a common disorder that substantially disrupts the lives of young women. To determine whether there is evidence of activation of the innate immune system in dysmenorrhea and whether the degree of activation may be used as a biomarker for pain, we compared the responsiveness of peripheral blood mononuclear cells (PBMCs) to toll-like receptor (TLR) 2 or 4 stimulation. We also investigated whether this effect is modulated by the use of the oral contraceptive pill (OC). PATIENTS AND METHODS Fifty-six women aged 16-35 years, with either severe or minimal dysmenorrhea, and use or non-use of the OC, were enrolled. PBMCs were collected on two occasions in a single menstrual cycle: the menstrual phase and the mid-follicular phase. PBMCs were exposed to lipopolysaccharide (LPS), a TLR4 agonist, and PAM3CSK4 (PAM), a TLR2 agonist, and the resulting interleukin-1beta (IL-1β) output was determined. Statistical analysis compared the EC50 between groups as a measure of TLR responsiveness of PBMCs. RESULTS The key finding following LPS stimulation was a pain effect of dysmenorrhea (p=0.042) that was independent of use or non-use of OC, and independent of day of testing. Women with dysmenorrhea showed a large 2.15-fold (95% CI -4.69, -0.09) increase in IL-1β release when compared with pain-free participants across both days. CONCLUSION This is the first study to demonstrate an ex vivo immune relationship in women with dysmenorrhea-related pelvic pain. It provides evidence for the potential of immune modulation as a novel pharmacological target for future drug development in the management of dysmenorrhea.
Collapse
Affiliation(s)
- Susan F Evans
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuen H Kwok
- Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Jiajun Liu
- Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark R Hutchinson
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute, School or Pediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul E Rolan
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Review: What innovations in pain measurement and control might be possible if we could quantify the neuroimmune synapse? Animal 2019; 13:3000-3008. [PMID: 31405403 DOI: 10.1017/s1751731119001885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has taken more than 40 years for the fields of immunology and neuroscience to capture the potential impact of the mechanistic understanding of how an active immune signalling brain might function. These developments have grown an appreciation for the immunocompetent cells of the central nervous system and their key role in the health and disease of the brain and spinal cord. Moreover, the understanding of the bidirectional communication between the brain and the peripheral immune system has evolved to capture an understanding of how mood can alter immune function and vice versa. These concepts are rapidly evolving the field of psychiatry and medicine as a whole. However, the advances in human medicine have not been capitalised upon yet in animal husbandry practice. Of specific attention are the implications that these biological systems have for creating and maintaining heightened pain states. This review will outline the key concepts of brain-immune communication and the immediate opportunities targeting this biology can have for husbandry practices, with a specific focus on pain.
Collapse
|
25
|
Junior AJ, Leitão MM, Bernal LPT, Dos Santos E, Kuraoka-Oliveira ÂM, Justi P, Argandoña EJS, Kassuya CAL. Analgesic and Anti-inflammatory Effects of Caryocar brasiliense. Antiinflamm Antiallergy Agents Med Chem 2019; 19:313-322. [PMID: 30961515 DOI: 10.2174/1871523018666190408144320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Caryocar brasiliense, popularly known as pequi, is widely distributed in the Amazon rainforest and Brazilian savannah. The fruit obtained from pequi is used in cooking and has folk use as an anti-inflammatory and for the treatment of respiratory disease. Until now, these two properties had not been scientifically demonstrated for Pequi oil in a carrageenan model. OBJECTIVE Our group determined the composition and safe use of Pequi oil from the Savannah of Campo Grande, and the anti-inflammatory and anti-nociceptive activities of this pequi oil were investigated in vivo models. MATERIALS AND METHODS Doses of 300, 700, and 1000 mg/kg of Pequi oil were administered orally (p.o.) to Swiss male mice, and three parameters of inflammation (mechanical hyperalgesia, cold, hyperalgesia, and oedema) were analyzed in a carrageenan model to induce an inflammatory paw state. RESULTS AND DISCUSSION The effects of Pequi oil were also carrageenan in pleurisy model, formalin, and acetic acid induced nociception. Oral administration of 1,000 mg/kg orally Pequi oil (p.o.) inhibited (*P<0.05), the migration of total leukocytes, but not alter plasma extravasation, in the pleurisy model when compared to control groups. The paw edema was inhibited with doses of 700 (P <0.05) and 1,000 mg (P<0.001) of pequi oil after 1, 2, and 4 hours after carrageenan. Pequi oil (1,000 mg/kg) also blocked the mechanical hyperalgesy and reduced cold allodynia induced by carrageenan in paw (P <0.05). Pequi oil treatment (1,000 mg/kg) almost blocked (P < 0.001) all parameters of nociception observed in formalin and acid acetic test. CONCLUSION This is the first time that the analgesic and anti-inflammatory effects of Pequi oil have been shown.
Collapse
Affiliation(s)
- Armando Jorge Junior
- Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Maicon Matos Leitão
- Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | | | - Elisângela Dos Santos
- University Hospital (HU-UFGD), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | | | - Priscila Justi
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | | |
Collapse
|
26
|
Parker LM, Sayyadi N, Staikopoulos V, Shrestha A, Hutchinson MR, Packer NH. Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization. J Neuroinflammation 2019; 16:65. [PMID: 30898121 PMCID: PMC6427895 DOI: 10.1186/s12974-019-1451-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurokine signaling via the release of neurally active cytokines arises from glial reactivity and is mechanistically implicated in central nervous system (CNS) pathologies such as chronic pain, trauma, neurodegenerative diseases, and complex psychiatric illnesses. Despite significant advancements in the methodologies used to conjugate, incorporate, and visualize fluorescent molecules, imaging of rare yet high potency events within the CNS is restricted by the low signal to noise ratio experienced within the CNS. The brain and spinal cord have high cellular autofluorescence, making the imaging of critical neurokine signaling and permissive transcriptional cellular events unreliable and difficult in many cases. METHODS In this manuscript, we developed a method for background-free imaging of the transcriptional events that precede neurokine signaling using targeted mRNA transcripts labeled with luminescent lanthanide chelates and imaged via time-gated microscopy. To provide examples of the usefulness this method can offer to the field, the mRNA expression of toll-like receptor 4 (TLR4) was visualized with traditional fluorescent in situ hybridization (FISH) or luminescent lanthanide chelate-based in situ hybridization (LISH) in mouse BV2 microglia or J774 macrophage phenotype cells following lipopolysaccharide stimulation. TLR4 mRNA staining using LISH- and FISH-based methods was also visualized in fixed spinal cord tissues from BALB/c mice with a chronic constriction model of neuropathic pain or a surgical sham model in order to demonstrate the application of this new methodology in CNS tissue samples. RESULTS Significant increases in TLR4 mRNA expression and autofluorescence were visualized over time in mouse BV2 microglia or mouse J774 macrophage phenotype cells following lipopolysaccharide (LPS) stimulation. When imaged in a background-free environment with LISH-based detection and time-gated microscopy, increased TLR4 mRNA was observed in BV2 microglia cells 4 h following LPS stimulation, which returned to near baseline levels by 24 h. Background-free imaging of mouse spinal cord tissues with LISH-based detection and time-gated microscopy demonstrated a high degree of regional TLR4 mRNA expression in BALB/c mice with a chronic constriction model of neuropathic pain compared to the surgical sham model. CONCLUSIONS Advantages offered by adopting this novel methodology for visualizing neurokine signaling with time-gated microscopy compared to traditional fluorescent microscopy are provided.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nima Sayyadi
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish Shrestha
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
27
|
|
28
|
Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine 2018; 110:420-427. [PMID: 29784508 PMCID: PMC6103803 DOI: 10.1016/j.cyto.2018.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS.
Collapse
Affiliation(s)
- M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Wanjian Jia
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Austin J Schults
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Xiangyang Ye
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Siam Oottamasathien
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Surgery and Division of Pediatric Urology, Primary Children's Hospital, Salt Lake City, UT, 84113, USA; Department of Pediatric Surgery, Division of Pediatric Urology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Djouhri L, Smith T, Alotaibi M, Weng X. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Exp Physiol 2018; 103:1145-1156. [PMID: 29860719 DOI: 10.1113/ep087013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is spontaneous activity (SA) in L4 dorsal root ganglion (DRG) neurons induced by L5 spinal nerve axotomy associated with membrane potential oscillations in these neurons, and if so, are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons, which have been shown to be incapable of firing spontaneously without membrane potential oscillations, membrane potential oscillations are not essential for SA generation in conducting 'uninjured' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and 'uninjured' DRG neurons induced by spinal nerve injury are distinct. ABSTRACT The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models suggest that this debilitating condition is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5 spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4 neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7 days after SNA: (a) none of the control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs, respectively, in SNA rats with established neuropathic pain behaviors; (b) neither SMPOs nor SA in L4 Aβ-neurons was suppressed by blocking HCN channels with ZD7288 (10 mg kg-1 , i.v.); and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - M Alotaibi
- Department of Physiology, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
30
|
Hartlehnert M, Derksen A, Hagenacker T, Kindermann D, Schäfers M, Pawlak M, Kieseier BC, Meyer Zu Horste G. Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II. Sci Rep 2017; 7:12518. [PMID: 28970572 PMCID: PMC5624882 DOI: 10.1038/s41598-017-12744-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
The activation of T helper cells requires antigens to be exposed on the surface of antigen presenting cells (APCs) via MHC class II (MHC-II) molecules. Expression of MHC-II is generally limited to professional APCs, but other cell types can express MHC-II under inflammatory conditions. However, the importance of these conditional APCs is unknown. We and others have previously shown that Schwann cells are potentially conditional APCs, but the functional relevance of MHC-II expression by Schwann cells has not been studied in vivo. Here, we conditionally deleted the MHC-II β-chain from myelinating Schwann cells in mice and investigated how this influenced post-traumatic intraneural inflammation and neuropathic pain using the chronic constriction injury (CCI) model. We demonstrate that deletion of MHC-II in myelinating Schwann cells reduces thermal hyperalgesia and, to a lesser extent, also diminishes mechanical allodynia in CCI in female mice. This was accompanied by a reduction of intraneural CD4+ T cells and greater preservation of preferentially large-caliber axons. Activation of T helper cells by MHC-II on Schwann cells thus promotes post-traumatic axonal loss and neuropathic pain. Hence, we provide experimental evidence that Schwann cells gain antigen-presenting function in vivo and modulate local immune responses and diseases in the peripheral nerves.
Collapse
Affiliation(s)
- Maike Hartlehnert
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Angelika Derksen
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Tim Hagenacker
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - David Kindermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Maria Schäfers
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Gerd Meyer Zu Horste
- Department of Neurology, University Hospital Münster, Münster, Germany. .,Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany.
| |
Collapse
|
31
|
|
32
|
Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res 2016; 95:1271-1281. [PMID: 27452349 DOI: 10.1002/jnr.23841] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
Females greatly outnumber males as sufferers of chronic pain. Although social and psychological factors certainly play a role in the differences in prevalence and incidence, biological differences in the functioning of the immune system likely underlie these observed effects. This Review examines the current literature on biological sex differences in the functioning of the innate and adaptive immune systems as they relate to pain experience. With rodent models, we and others have observed that male mice utilize microglia in the spinal cord to mediate pain, whereas females preferentially use T cells in a similar manner. The difference can be traced to differences in cell populations, differences in suppression by hormones, and disparate cellular responses in males and females. These sex differences also translate into human cellular responses and may be the mechanism by which the disproportionate chronic pain experience is based. Recognition of the evidence underlying sex differences in pain will guide development of treatments and provide better options for patients that are tailored to their physiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stacie K Totsch
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
Wolfe AM, Kennedy LH, Na JJ, Nemzek-Hamlin JA. Efficacy of Tramadol as a Sole Analgesic for Postoperative Pain in Male and Female Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:411-9. [PMID: 26224442 PMCID: PMC4521576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/21/2014] [Accepted: 12/05/2014] [Indexed: 03/24/2024]
Abstract
Tramadol is a centrally acting weak μ opioid agonist that has few of the adverse side effects common to other opioids. Little work has been done to establish an effective analgesic dose of tramadol specific for surgical laparotomy and visceral manipulation in mice. We used general appearance parameters to score positive indicators of pain including posture, coat condition, activity, breathing, and interactions with other mice, activity events (that is, the number of times each mouse stretched up in a 3-min period) used as an indicator of decreased pain, von Frey fibers, and plasma levels of corticosterone to determine whether tramadol at 20, 40, or 80 mg/kg prevented postoperative pain in male and female C57BL/6 mice. A ventral midline laparotomy with typhlectomy was used as a model of postoperative pain. In male mice, none of the markers differed between groups that received tramadol (regardless of dose) and the saline-treated controls. However, general appearance scores and plasma corticosterone levels were lower in female mice that received 80 mg/kg tramadol compared with saline. In summary, for severe postoperative pain after laparotomy and aseptic typhlectomy, tramadol was ineffective in male C57BL/6 mice at all doses tested. Although 80 mg/kg ameliorated postoperative pain in female C57BL/6 mice, this dose is very close to the threshold reported to cause toxic side effects, such as tremors and seizures. Therefore, we do not recommend the use of tramadol as a sole analgesic in this mouse model of postoperative pain.
Collapse
Affiliation(s)
- A Marissa Wolfe
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Lucy H Kennedy
- Animal Resource Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jane J Na
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jean A Nemzek-Hamlin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Moloney RD, Dinan TG, Cryan JF. Strain-dependent variations in visceral sensitivity: relationship to stress, anxiety and spinal glutamate transporter expression. GENES BRAIN AND BEHAVIOR 2015; 14:319-29. [PMID: 25851919 DOI: 10.1111/gbb.12216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Responses to painful stimuli differ between populations, ethnic groups, sexes and even among individuals of a family. However, data regarding visceral pain are still lacking. Thus, we investigated differences in visceral nociception across inbred and outbred mouse strains using colorectal distension. Anxiety and depression-like behaviour were assessed using the open field and forced swim test as well as the corticosterone stress response. Possible mechanistic targets [excitatory amino acid transporter (EAAT-1), brain-derived neurotrophic factor (BDNF) and 5HT1A receptor] were also assessed using quantitative real-time polymerase chain reaction. Adult, male, inbred and outbred mouse strains were used in all assays (inbred strains; CBA/J Hsd, C3H/HeNHsd, BALB/c OlaHsd, C57 BL/6JOlaHsd, DBA/2J RccHsd, CAST/EiJ, SM/J, A/J OlaHsd, 129P2/OlaHsd, FVB/NHan Hsd and outbred strains: Swiss Webster, CD-1). mRNA expression levels of EAAT-1, BDNF and 5HT1A receptor (HTR1A) were quantified in the lumbosacral spinal cord, amygdala and hippocampus. A significant effect of strain was found in visceral sensitivity, anxiety and depressive-like behaviours. Strain differences were also seen in both baseline and stress-induced corticosterone levels. CBA/J mice consistently exhibited heightened visceral sensitivity, anxiety behaviour and depression-like behaviour which were associated with decreased spinal EAAT-1 and hippocampal BDNF and HTR1A. Our results show the CBA/J mouse strain as a novel mouse model to unravel the complex mechanisms of brain-gut axis disorders such as irritable bowel syndrome, in particular the underlying mechanisms of visceral hypersensitivity, for which there is great need. Furthermore, this study highlights the importance of genotype and the consequences for future development of transgenic strains in pain research.
Collapse
Affiliation(s)
- R D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, Ireland; Department of Psychiatry, Ireland
| | | | | |
Collapse
|
35
|
Pineda-Farias JB, Velázquez-Lagunas I, Barragán-Iglesias P, Cervantes-Durán C, Granados-Soto V. 5-HT 2B Receptor Antagonists Reduce Nerve Injury-Induced Tactile Allodynia and Expression of 5-HT 2B Receptors. Drug Dev Res 2015; 76:31-39. [PMID: 25620128 DOI: 10.1002/ddr.21238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023]
Abstract
Preclinical Research This work was performed to assess the effects of intrathecal serotonin 2B (5-HT2B ) receptor antagonists in rats with neuropathic pain. With RS-127445, its effect was also determined on 5-HT2B receptor expression. Neuropathic pain was induced by L5/L6 spinal nerve ligation. Western blotting was used to determine 5-HT2B receptor expression. Dose-response curves with the 5-HT2B receptor antagonists 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyridine (RS-127445, 1-100 nmol) and 1-[(2-chloro-3,4-dimethoxyphenyl)methyl]-2,3,4,9-tetrahydro-6-methyl-1H-pyrido[3,4-b]indole hydrochloride (LY-266097, 1-100 nmol) were performed in rats. Tactile allodynia of the left hind paw (ipsilateral) was assessed for 8 h after compound administration. Intrathecal injection of the 5-HT2B receptor antagonists RS-127445 and LY-266097 diminished spinal nerve ligation-induced allodynia. In contrast, intrathecal injection of the 5-HT2 receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 10 nmol) did not modify tactile allodynia induced by nerve ligation. L5/L6 nerve ligation increased expression of the 5-HT2B receptors in the ipsilateral, but not contralateral, dorsal root ganglia. Furthermore, nerve injury also enhanced 5-HT2B receptor expression in the ipsilateral dorsal part of the spinal cord. Intrathecal treatment with RS-127445 (100 nmol) diminished spinal nerve injury-induced increased expression of 5-HT2B receptors in dorsal root ganglia and spinal cord. Our results imply that spinal 5-HT2B receptors are present on sites related to nociception and participate in neuropathic pain. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., México
| | | | | | | | | |
Collapse
|
36
|
Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation. Transl Psychiatry 2014; 4:e482. [PMID: 25386959 PMCID: PMC4259992 DOI: 10.1038/tp.2014.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine therapy has been associated with paradoxically increased pain. Codeine is a widely used opioid, which is metabolized to morphine to elicit analgesia. Prolonged morphine exposure exacerbates pain by activating the innate immune toll-like receptor-4 (TLR4) in the central nervous system. In silico docking simulations indicate codeine also docks to MD2, an accessory protein for TLR4, suggesting potential to induce TLR4-dependent pain facilitation. We hypothesized codeine would cause TLR4-dependent hyperalgesia/allodynia that is disparate from its opioid receptor-dependent analgesic rank potency. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests at days 0, 3 and 5 in mice receiving intraperitoneal equimolar codeine (21 mg kg(-1)), morphine (20 mg kg(-1)) or saline, twice daily. This experiment was repeated in animals with prior partial nerve injury and in TLR4 null mutant mice. Interventions with interleukin-1 receptor antagonist (IL-1RA) and glial-attenuating drug ibudilast were assessed. Analyses of glial activation markers (glial fibrillary acid protein and CD11b) in neuronal tissue were conducted at the completion of behavioural testing. Despite providing less acute analgesia (P=0.006), codeine induced similar hotplate hyperalgesia to equimolar morphine vs saline (-9.5 s, P<0.01 and -7.3 s, P<0.01, respectively), suggesting codeine does not rely upon conversion to morphine to increase pain sensitivity. This highlights the potential non-opioid receptor-dependent nature of codeine-enhanced pain sensitivity-although the involvement of other codeine metabolites cannot be ruled out. IL-1RA reversed codeine-induced hyperalgesia (P<0.001) and allodynia (P<0.001), and TLR4 knock-out protected against codeine-induced changes in pain sensitivity. Glial attenuation with ibudilast reversed codeine-induced allodynia (P<0.001), and thus could be investigated further as potential treatment for codeine-induced pain enhancement.
Collapse
|