1
|
Hrickova M, Ruda-Kucerova J. Do AMPA/kainate antagonists possess potential in the treatment of addiction? Evidence from animal behavioural studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111355. [PMID: 40187601 DOI: 10.1016/j.pnpbp.2025.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Substance addiction is a complex mental disorder with significant unmet treatment needs, especially in terms of effective medications. Craving in addiction is closely linked to the interaction between dopamine and glutamate in the brain's reward pathway. Therefore, drugs targeting glutamatergic signaling may have potential for treatment. This review examines the potential of AMPA/kainate glutamatergic receptor antagonists in reducing addictive-like behaviours in experimental rodents. To this end, the text summarizes the behavioural results of preclinical studies on stimulant substances (cocaine, amphetamine, methamphetamine, MDMA), nicotine, opioids (morphine and heroin), and alcohol. These experiments employ various protocols and routes of administration, using different strains of mice and rats. The main behavioural methods used in the research include behavioural sensitization protocols, drug-induced locomotor activity assessments, conditioned behaviours, and operant self-administration models. The reviewed literature demonstrates the benefit of AMPA/kainate antagonists, mainly in the most studied cocaine dependence, and particularly in attenuating cocaine-seeking behaviour via microinjection into the nucleus accumbens core. Regarding other addictive substances, despite some conflicting results, there is a substantial body of literature showing promising outcomes following systemic or intracerebral administration of AMPA/kainate antagonists. The main issue is the variability of the research protocols used across laboratories, including differences in animal species, strains, sex and environmental conditions. Moreover, each addictive substance exhibits distinct mechanisms of action and addiction development, rendering the pursuit of a universal drug for addiction treatment unrealistic. Nevertheless, AMPA/kainate antagonists seem to have potential as a supportive treatment in addiction to cocaine as well as other substances.
Collapse
Affiliation(s)
- Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Giri A, Heaton CN, Batson SA, Macias AY, Reyes NF, Salcido AA, Davila LD, Rakocevic LI, Beck DW, Ibañez Alcalá RJ, Hossain SB, Vara P, Drammis SM, Negishi K, O'Dell LE, Rosales AE, Moschak TM, Goosens KA, Friedman A. Effect of acute alcohol consumption in a novel rodent model of decision-making. Alcohol Alcohol 2025; 60:agaf017. [PMID: 40229991 DOI: 10.1093/alcalc/agaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
AIMS We sought to explore how acute alcohol exposure alters decision-making in rats performing an approach-avoid decision-making task. Increasing concentrations of alcohol were mixed with decreasing concentrations of sucrose to mimic mixed/sweetened alcoholic beverages. METHODS Rats were trained on an apparatus in which different concentrations of sucrose were available in four different corners of the arena. During daily sessions, a tone signaled each trial start, followed by illumination (15 lux, blue LEDs) of a single corner port, indicating the potential availability of sucrose at that location. The rat (one rat per arena, both females and males) then chose to approach the lit corner to have the solution dispensed or avoid it, with no solution being dispensed. We examined how the decisions to pursue sucrose rewards shifted with the addition and subsequent removal of ethanol from the sucrose ports. RESULTS Males were greatly affected by the introduction of alcohol into the task environment, shifting their approach preference to solutions containing higher alcohol concentrations rather than maintaining the prior preference for high-sucrose-concentration solutions. In contrast, females' choice patterns and task performance remained largely unchanged. We also explore a method for identifying changes in decision-making tendencies during and after alcohol consumption within individual subjects. CONCLUSIONS This research explores the introduction of alcohol in varying concentrations with sucrose solutions during an approach-avoid task, with male decision-making and behavioral patterns significantly impacted. We also explore a novel approach for identifying individual adaptations of decision-making behavior when alcohol becomes available, which could be expanded upon in future research.
Collapse
Affiliation(s)
- Atanu Giri
- Computational Science Program, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Cory N Heaton
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Serina A Batson
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Andrea Y Macias
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Neftali F Reyes
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Alexis A Salcido
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Luis D Davila
- Computational Science Program, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Lara I Rakocevic
- Computational Science Program, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Dirk W Beck
- Computational Science Program, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Raquel J Ibañez Alcalá
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Safa B Hossain
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Paulina Vara
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Sabrina M Drammis
- Artificial Intelligence Laboratory, Department of Computer Science, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, United States
| | - Kenichiro Negishi
- National Institute on Drug Abuse, 251 Bayview Blvd, Baltimore, MD 21224, United States
| | - Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Adrianna E Rosales
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| | - Ki A Goosens
- Departments of Psychiatry, Pharmacological Sciences, and Medicine, Center for Translational Medicine and Pharmacology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States
| | - Alexander Friedman
- Computational Science Program, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, United States
| |
Collapse
|
3
|
Cheng Y, Magnard R, Langdon AJ, Lee D, Janak PH. Chronic Ethanol Exposure Produces Persistent Impairment in Cognitive Flexibility and Decision Signals in the Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.10.584332. [PMID: 38585868 PMCID: PMC10996555 DOI: 10.1101/2024.03.10.584332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lack of cognitive flexibility is a hallmark of substance use disorders and has been associated with drug-induced synaptic plasticity in the dorsomedial striatum (DMS). Yet the possible impact of altered plasticity on real-time striatal neural dynamics during decision-making is unclear. Here, we identified persistent impairments induced by chronic ethanol (EtOH) exposure on cognitive flexibility and striatal decision signals. After a substantial withdrawal period from prior EtOH vapor exposure, male, but not female, rats exhibited reduced adaptability and exploratory behavior during a dynamic decision-making task. Reinforcement learning models showed that prior EtOH exposure enhanced learning from rewards over omissions. Notably, neural signals in the DMS related to the decision outcome were enhanced, while those related to choice and choice-outcome conjunction were reduced, in EtOH-treated rats compared to the controls. These findings highlight the profound impact of chronic EtOH exposure on adaptive decision-making, pinpointing specific changes in striatal representations of actions and outcomes as underlying mechanisms for cognitive deficits.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Robin Magnard
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Angela J Langdon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daeyeol Lee
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Zanvyl Krieger Mind/Brain Institute, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Patricia H Janak
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
4
|
Guldner S, Prignitz M, Nees F. Mindfulness facets are differentially related with reward processing stages in striatum and alcohol use in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111113. [PMID: 39094927 DOI: 10.1016/j.pnpbp.2024.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Attenuated functional processing of non-drug rewards in striatal regions is an important mechanism in the transition from normal to hazardous alcohol use. Recent interventions seek to enhance nondrug reward processing through mindfulness, a mechanism that targets attention regulation and self-regulatory processes. It is yet unclear which specific aspects of mindfulness and which stages of reward processing are relevant preventive targets, particularly in adolescence, where alcohol use is often initiated and reward relating processing streams undergo continuous maturation. Fifty-four 14- and 16-year-old adolescents (54% female) completed the monetary incentive delay task (MID) during event-related functional magnetic resonance imaging. Alcohol use and dispositional mindfulness facets were measured using self-report instruments. Mindful Attention Regulation was positively associated with anticipatory reward processing in ventral striatum, whereas feedback-related processing in dorsal striatum was associated with the mindfulness facet Body-Listening. Only Attention Regulation was additionally associated with frequency of alcohol consumption and mediated the relationship between functional activation in ventral striatum during reward anticipation and alcohol use. Attention Regulation, beyond other mindfulness facets, might contribute to potentially triggering neural mechanisms of anticipatory, but not feedback-related reward processing and alcohol use, presenting a potential target for preventive efforts in combating transitions to substance-related disorders in adolescents.
Collapse
Affiliation(s)
- Stella Guldner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Maren Prignitz
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Bauer MR, McVey MM, Zhang Y, Boehm SL. Dorsomedial striatal AMPA receptor antagonism increases alcohol binge drinking in selectively bred crossed high alcohol preferring mice. Eur J Neurosci 2024; 60:6300-6311. [PMID: 39358829 PMCID: PMC11534507 DOI: 10.1111/ejn.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Crossed high alcohol preferring (cHAP) mice have been selectively bred to consume considerable amounts of alcohol resulting in binge drinking. The dorsomedial striatum (DMS) is a brain region involved in goal-directed action selection, and dorsolateral striatum (DLS) is a brain region involved in habitual action selection. Alcohol use disorder (AUD) may involve a disruption in the balance between the DMS and DLS. While the DLS is involved in binge drinking, the reliance on the DMS and DLS in binge drinking has not been investigated in cHAP mice. We have previously demonstrated that glutamatergic activity in the DLS is necessary for binge-like alcohol drinking in C57BL/6J mice, another high drinking mouse. Because of this, we hypothesised that DLS glutamatergic activity would gate binge-like alcohol drinking in cHAP mice. cHAP mice underwent bilateral cannulation into the DMS or DLS and were allowed free-access to 20% alcohol for 2 h each day for 11 days. Mice were microinjected with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist, NBQX, into the DMS or DLS immediately prior to alcohol access. AMPAR protein expression was also assessed in a separate group of animals in the DMS and DLS following an 11-day drinking history. We found that intra-DMS (but not intra-DLS) NBQX alters binge alcohol drinking, with intra-DMS NBQX increasing alcohol consumption. We also found that the ratio of GluA1 to GluA2 differs across dorsal striatal subregions. Together, these findings suggest that glutamatergic activity in the DMS may serve to limit binge drinking in cHAP mice.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Yanping Zhang
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Pierce-Messick ZJ, Corbit LH. Manipulations of the context-response relationship reduce the expression of response habits. Neurobiol Learn Mem 2024; 214:107962. [PMID: 39067807 DOI: 10.1016/j.nlm.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Habitual instrumental behaviour is believed to rely on stimulus-response (S-R) associations. However, the method most commonly used to identify habitual behaviour, outcome devaluation, provides only indirect evidence of S-R control. Therefore, it is important to have a better understanding of the S-R association believed to underlie habitual responding. Under free-operant conditions, the context itself likely serves as at least part of the relevant stimuli in the association, and so modifications to the predictive power of the context should alter the expression of habits. The following experiments investigated how changes to the relationship between the training context and performance of the response, either by changing the context during testing or by exposing animals to the context alone, without the response lever present, impacted behavioural control during a devaluation test. We found evidence that the training context is important for the expression of habits; testing animals in a different context than where they were trained resulted in increased goal-directed control (Experiment 1). Furthermore, context alone exposure also increased goal-directed control with animals that received context alone exposure showing stronger devaluation effects, whether the context alone exposure happened on the last day of training (Experiment 2) or throughout training (Experiment 3). These findings are consistent with prior reports that the training context is important for the expression of habits and extends these findings by using sensory-specific satiety as a means for devaluation and by using context alone exposure to alter behavioural control.
Collapse
Affiliation(s)
- Zachary J Pierce-Messick
- Department of Psychology, The University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Laura H Corbit
- Department of Psychology, The University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
7
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
8
|
Sitzia G, Bariselli S, Gracias A, Lovinger DM. Chronic alcohol induces subcircuit-specific striatonigral plasticity enhancing the sensorimotor basal ganglia role in action execution. SCIENCE ADVANCES 2024; 10:eadm6951. [PMID: 38941461 PMCID: PMC11212723 DOI: 10.1126/sciadv.adm6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Functional deficits in basal ganglia (BG) circuits contribute to cognitive and motor dysfunctions in alcohol use disorder. Chronic alcohol exposure alters synaptic function and neuronal excitability in the dorsal striatum, but it remains unclear how it affects BG output that is mediated by the substantia nigra pars reticulata (SNr). Here, we describe a neuronal subpopulation-specific synaptic organization of striatal and subthalamic (STN) inputs to the medial and lateral SNr. Chronic alcohol exposure (CIE) potentiated dorsolateral striatum (DLS) inputs but did not change dorsomedial striatum and STN inputs to the SNr. Chemogenetic inhibition of DLS direct pathway neurons revealed an enhanced role for DLS direct pathway neurons in execution of an instrumental lever-pressing task. Overall, we reveal a subregion-specific organization of striatal and subthalamic inputs onto the medial and lateral SNr and find that potentiated DLS-SNr inputs are accompanied by altered BG control of action execution following CIE.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastiano Bariselli
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alexa Gracias
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Cofresí RU, Upton S, Brown AA, Piasecki TM, Bartholow BD, Froeliger B. Mesocorticolimbic system reactivity to alcohol use-related visual cues as a function of alcohol sensitivity phenotype: A pilot fMRI study. ADDICTION NEUROSCIENCE 2024; 11:100156. [PMID: 38938269 PMCID: PMC11209874 DOI: 10.1016/j.addicn.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Low sensitivity (LS) to alcohol is a risk factor for alcohol use disorder (AUD). Compared to peers with high sensitivity (HS), LS individuals drink more, report more problems, and exhibit potentiated alcohol cue reactivity (ACR). Heightened ACR suggests LS confers AUD risk via incentive sensitization, which is thought to take place in the mesocorticolimbic system. This study examined neural ACR in LS and HS individuals. Young adults (N = 32, M age=20.3) were recruited based on the Alcohol Sensitivity Questionnaire (HS: n = 16; LS: n = 16; 9 females/group). Participants completed an event-related fMRI ACR task. Group LS had higher ACR in left ventrolateral prefrontal cortex than group HS. In group LS, ACR in left caudomedial orbitofrontal cortex or left putamen was low at low alcohol use levels and high at heavier or more problematic alcohol use levels, whereas the opposite was true in group HS. Alcohol use level also was associated with the level of ACR in left substantia nigra among males in group LS. Taken together, results suggest elevated mesocorticolimbic ACR among LS individuals, especially those using alcohol at hazardous levels. Future studies with larger samples are warranted to determine the neurobiological loci underlying LS-based amplified ACR and AUD risk.
Collapse
Affiliation(s)
- Roberto U. Cofresí
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Spencer Upton
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Alexander A. Brown
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Thomas M. Piasecki
- Center for Tobacco Research and Intervention and Department of Medicine, University of Wisconsin - Madison, USA
| | | | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri - Columbia, USA
- Department of Psychiatry, University of Missouri - Columbia, USA
| |
Collapse
|
10
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. ADDICTION NEUROSCIENCE 2024; 11:100148. [PMID: 38859977 PMCID: PMC11164474 DOI: 10.1016/j.addicn.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration. We then exposed them to four days of punishment testing in which footshock was delivered randomly on one-third of trials. Before and after punishment testing (four days pre-punishment and ≥ four days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance for cocaine was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment in males, although it was associated with habitual responding both pre- and post-punishment in females, indicating that punishment resistance was predicted by habitual responding in food-seeking females. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Hynes T, Fouyssac M, Puaud M, Joshi D, Chernoff C, Stiebahl S, Michaud L, Belin D. Pan-striatal reduction in the expression of the astrocytic dopamine transporter precedes the development of dorsolateral striatum dopamine-dependent incentive heroin seeking habits. Eur J Neurosci 2024; 59:2502-2521. [PMID: 38650303 DOI: 10.1111/ejn.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
The emergence of compulsive drug-seeking habits, a hallmark feature of substance use disorder, has been shown to be predicated on the engagement of dorsolateral striatal control over behaviour. This process involves the dopamine-dependent functional coupling of the anterior dorsolateral striatum (aDLS) with the nucleus accumbens core, but the mechanisms by which this coupling occurs have not been fully elucidated. The striatum is tiled by a syncytium of astrocytes that express the dopamine transporter (DAT), the level of which is altered in individuals with heroin use disorder. Astrocytes are therefore uniquely placed functionally to bridge dopamine-dependent mechanisms across the striatum. Here we tested the hypothesis that exposure to heroin influences the expression of DAT in striatal astrocytes across the striatum before the development of DLS-dependent incentive heroin seeking habits. Using Western-blot, qPCR, and RNAscope™, we measured DAT protein and mRNA levels in whole tissue, culture and in situ astrocytes from striatal territories of rats with a well-established cue-controlled heroin seeking habit and rats trained to respond for heroin or food under continuous reinforcement. Incentive heroin seeking habits were associated with a reduction in DAT protein levels in the anterior aDLS that was preceded by a heroin-induced reduction in DAT mRNA and protein in astrocytes across the striatum. Striatal astrocytes were also shown to be susceptible to direct dopamine- and opioid-induced downregulation of DAT expression. These results suggest that astrocytes may critically regulate the striatal dopaminergic adaptations that lead to the development of incentive heroin seeking habits.
Collapse
Affiliation(s)
- Tristan Hynes
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mickaël Puaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Dhaval Joshi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Chloe Chernoff
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sonja Stiebahl
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lola Michaud
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544242. [PMID: 37333299 PMCID: PMC10274925 DOI: 10.1101/2023.06.08.544242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration (2 h/day). We then exposed them to 4 days of punishment testing, in which footshock (0.4 mA, 0.3 s) was delivered randomly on one-third of trials, immediately following completion of seeking and prior to extension of the taking lever. Before and after punishment testing (4 days pre-punishment and ≥4 days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O. Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S. Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M. Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F. Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L. Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N. Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F. Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J. Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Sitzia G, Lovinger DM. Circuit dysfunctions of associative and sensorimotor basal ganglia loops in alcohol use disorder: insights from animal models. ADDICTION NEUROSCIENCE 2023; 5:100056. [PMID: 36567745 PMCID: PMC9788651 DOI: 10.1016/j.addicn.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persons that develop Alcohol Use Disorder (AUD) experience behavioral changes that include compulsion to seek and take alcohol despite its negative consequences on the person's psychosocial, health and economic spheres, inability to limit alcohol intake and a negative emotional/ motivational state that emerges during withdrawal. During all the stages of AUD executive functions, i.e. the person's ability to direct their behavior towards a goal, working memory and cognitive flexibility are eroded. Animal models of AUD recapitulate aspects of action selection impairment and offer the opportunity to benchmark the underlying circuit mechanisms. Here we propose a circuit-based approach to AUD research focusing on recent advances in behavioral analysis, neuroanatomy, genetics, and physiology to guide future research in the field.
Collapse
Affiliation(s)
- Giacomo Sitzia
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - David M. Lovinger
- Current Address: Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, USA
| |
Collapse
|
14
|
Emtage JA, Shipman ML, Corbit LH. The role of dorsomedial striatum adenosine 2A receptors in the loss of goal-directed behaviour. Psychopharmacology (Berl) 2023; 240:547-559. [PMID: 36129491 DOI: 10.1007/s00213-022-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Adenosine A2A receptors (A2AR) in the dorsal striatum have been implicated in goal-directed behaviour. While activation of these receptors with several methods has resulted in an insensitivity to outcome devaluation, particular explanations for how they disrupt behaviour have not been explored. We both confirm a role for A2A receptors in goal-directed responding and evaluate additional behavioural aspects of goal-directed control to more fully understand the role of A2A receptors in instrumental behaviour. OBJECTIVES To examine the effects of the adenosine A2A agonist CGS-21680 in the DMS on response-outcome encoding, updating representations of outcome value and on the ability to inhibit behaviour when reward is not available. METHODS Male rats were trained to lever press for food reward. The A2AR agonist CGS-21680 was infused into the dorsomedial striatum either before an outcome devaluation test, prior to training with two distinct response-outcome associations or prior to a test of discriminative stimulus control over instrumental performance. RESULTS Intra-DMS administration of CGS-21680 impaired sensitivity to outcome devaluation. CGS-21680 treatment did not impair acquisition of specific response-outcome associations, selective control of responding based on the presence of stimuli that signaled when reward was or was not available, discrimination between stimuli or lever choices nor did it influence the effect of devaluation on the amounts of food eaten in a consumption test. CONCLUSIONS CGS-21680 impairs the ability to modulate responding based on recent changes to outcome value, an effect that is not accounted for by impairments in behavioural inhibition, discrimination, encoding the specific outcome of a response or the effectiveness of specific satiety.
Collapse
Affiliation(s)
- Jaec A Emtage
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Megan L Shipman
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura H Corbit
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada. .,Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
15
|
Lack of action monitoring as a prerequisite for habitual and chunked behavior: Behavioral and neural correlates. iScience 2022; 26:105818. [PMID: 36636348 PMCID: PMC9830217 DOI: 10.1016/j.isci.2022.105818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We previously reported the rapid development of habitual behavior in a discrete-trials instrumental task in which lever insertion and retraction act as reward-predictive cues delineating sequence execution. Here we asked whether lever cues or performance variables reflective of skill and automaticity might account for habitual behavior in male rats. Behavior in the discrete-trials habit-promoting task was compared with two task variants lacking the sequence-delineating cues of lever extension and retraction. We find that behavior is under goal-directed control in absence of sequence-delineating cues but not in their presence, and that skilled performance does not predict goal-directed vs. habitual behavior. Neural activity recordings revealed an engagement of dorsolateral striatum and a disengagement of dorsomedial striatum during the sequence execution of the habit-promoting task, specifically. Together, these results indicate that sequence delineation cues promote habit and differential engagement of striatal subregions during instrumental responding, a pattern that may reflect cue-elicited behavioral chunking.
Collapse
|
16
|
Jones BO, Cruz AM, Kim TH, Spencer HF, Smith RJ. Discriminating goal-directed and habitual cocaine seeking in rats using a novel outcome devaluation procedure. Learn Mem 2022; 29:447-457. [PMID: 36621907 PMCID: PMC9749853 DOI: 10.1101/lm.053621.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Habits are theorized to play a key role in compulsive cocaine seeking, yet there is limited methodology for assessing habitual responding for intravenous (IV) cocaine. We developed a novel outcome devaluation procedure to discriminate goal-directed from habitual responding in cocaine-seeking rats. This procedure elicits devaluation temporarily and requires no additional training, allowing repeated testing at different time points. After training male rats to self-administer IV cocaine, we devalued the drug outcome via experimenter-administered IV cocaine (a "satiety" procedure) prior to a 10-min extinction test. Many rats were sensitive to outcome devaluation, a hallmark of goal-directed responding. These animals reduced responding when given a dose of experimenter-administered cocaine that matched or exceeded satiety levels during self-administration. However, other rats were insensitive to experimenter-administered cocaine, suggesting their responding was habitual. Importantly, reinforcement schedules and neural manipulations that produce goal-directed responding (i.e., ratio schedules or dorsolateral striatum lesions) caused sensitivity to outcome devaluation, whereas reinforcement schedules and neural manipulations that produce habitual responding (i.e., interval schedules or dorsomedial striatum lesions) caused insensitivity. Satiety-based outcome devaluation is an innovative new tool to dissect the neural and behavioral mechanisms underlying IV cocaine-seeking behavior.
Collapse
Affiliation(s)
- Bradley O Jones
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77845, USA
| | - Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77845, USA
| | - Tabitha H Kim
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77845, USA
| | - Haley F Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77845, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77845, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77845, USA
| |
Collapse
|
17
|
Bauer MR, McVey MM, Boehm SL. Drinking history dependent functionality of the dorsolateral striatum on gating alcohol and quinine-adulterated alcohol front-loading and binge drinking. Alcohol 2022; 105:43-51. [PMID: 36240946 PMCID: PMC9835618 DOI: 10.1016/j.alcohol.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 01/26/2023]
Abstract
After an extended alcohol-drinking history, alcohol use can transition from controlled to compulsive, causing deleterious consequences. Alcohol use can be segregated into two distinct behaviors, alcohol seeking and alcohol taking. Expression of habitual and compulsive alcohol seeking depends on the dorsolateral striatum (DLS), a brain region thought to engage after extended alcohol access. However, it is unknown whether the DLS is also involved in compulsive-like alcohol taking. The purpose of this experiment was to identify whether the DLS gates compulsive-like binge alcohol drinking. To ask this question, we gave adult male and female C57BL/6J mice a binge-like alcohol-drinking history, which we have previously demonstrated to produce compulsive-like alcohol drinking (Bauer, McVey, & Boehm, 2021), or a water-drinking history. We then tested the involvement of the DLS on gating binge-like alcohol drinking and compulsive-like quinine-adulterated alcohol drinking via intra-DLS AMPA receptor antagonism. We hypothesized that pharmacological lesioning of the DLS would reduce compulsive-like quinine-adulterated alcohol (QuA) drinking, but not non-adulterated alcohol drinking, in male and female C57BL/6J mice. Three important findings were made. First, compulsive-like alcohol drinking is significantly blunted in cannulated mice. Because of this, we conclude that we were not able to adequately assess the effect of intra-DLS lesioning on compulsive-like alcohol drinking. Second, we found that the DLS gates binge-like alcohol drinking initially, which replicates findings in our previous work (Bauer, McVey, Germano, Zhang, & Boehm, 2022). However, following an extended alcohol history, the DLS no longer drives this behavior. Finally, alcohol and QuA front-loading is DLS-dependent in alcohol-history mice. Intra-DLS NBQX altered these drinking behaviors without altering ambulatory locomotor activity. These data demonstrate the necessity of the DLS in binge-like alcohol drinking before, but not following, an extended binge-like alcohol-drinking history and in alcohol front-loading in alcohol-history mice.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| |
Collapse
|
18
|
Haggerty DL, Munoz B, Pennington T, Viana Di Prisco G, Grecco GG, Atwood BK. The role of anterior insular cortex inputs to dorsolateral striatum in binge alcohol drinking. eLife 2022; 11:e77411. [PMID: 36098397 PMCID: PMC9470166 DOI: 10.7554/elife.77411] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
How does binge drinking alcohol change synaptic function, and do these changes maintain binge consumption? The anterior insular cortex (AIC) and dorsolateral striatum (DLS) are brain regions implicated in alcohol use disorder. In male, but not female mice, we found that binge drinking alcohol produced glutamatergic synaptic adaptations selective to AIC inputs within the DLS. Photoexciting AIC→DLS circuitry in male mice during binge drinking decreased alcohol, but not water consumption and altered alcohol drinking mechanics. Further, drinking mechanics alone from drinking session data predicted alcohol-related circuit changes. AIC→DLS manipulation did not alter operant, valence, or anxiety-related behaviors. These findings suggest that alcohol-mediated changes at AIC inputs govern behavioral sequences that maintain binge drinking and may serve as a circuit-based biomarker for the development of alcohol use disorder.
Collapse
Affiliation(s)
- David L Haggerty
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Braulio Munoz
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Taylor Pennington
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Gonzalo Viana Di Prisco
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Gregory G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Medical Scientist Training Program, Indiana University School of MedicineIndianapolisUnited States
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of MedicineIndianapolisUnited States
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
19
|
Chen G, Shi F, Yin W, Guo Y, Liu A, Shuai J, Sun J. Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Front Microbiol 2022; 13:916765. [PMID: 35966709 PMCID: PMC9372561 DOI: 10.3389/fmicb.2022.916765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) is a high-risk psychiatric disorder and a key cause of death and disability in individuals. In the development of AUD, there is a connection known as the microbiota-gut-brain axis, where alcohol use disrupts the gut barrier, resulting in changes in intestinal permeability as well as the gut microbiota composition, which in turn impairs brain function and worsens the patient’s mental status and gut activity. Potential mechanisms are explored by which alcohol alters gut and brain function through the effects of the gut microbiota and their metabolites on immune and inflammatory pathways. Alcohol and microbiota dysregulation regulating neurotransmitter release, including DA, 5-HT, and GABA, are also discussed. Thus, based on the above discussion, it is possible to speculate on the gut microbiota as an underlying target for the treatment of diseases associated with alcohol addiction. This review will focus more on how alcohol and gut microbiota affect the structure and function of the gut and brain, specific changes in the composition of the gut microbiota, and some measures to mitigate the changes caused by alcohol exposure. This leads to a potential intervention for alcohol addiction through fecal microbiota transplantation, which could normalize the disruption of gut microbiota after AUD.
Collapse
Affiliation(s)
- Ganggang Chen
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Fenglei Shi
- Department of Othopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Yin
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yao Guo
- Shandong Provincial Mental Health Center, Jinan, China
| | - Anru Liu
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jiacheng Shuai
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Basic Medicine, Shandong University, Jinan, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
20
|
Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum. eNeuro 2022; 9:ENEURO.0119-22.2022. [PMID: 35396255 PMCID: PMC9034757 DOI: 10.1523/eneuro.0119-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.
Collapse
|
21
|
Bauer MR, McVey MM, Germano DM, Zhang Y, Boehm SL. Intra-dorsolateral striatal AMPA receptor antagonism reduces binge-like alcohol drinking in male and female C57BL/6J mice. Behav Brain Res 2022; 418:113631. [PMID: 34715146 PMCID: PMC8671209 DOI: 10.1016/j.bbr.2021.113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
The dorsolateral striatum (DLS) is involved in addiction, reward, and alcohol related behaviors. The DLS primarily receives excitatory inputs which are gated by post-synaptic AMPA receptors. We antagonized AMPA receptors in the DLS to investigate how such modulation affects binge-like alcohol drinking in male and female C57BL/6J mice and whether an associated alcohol drinking history alters dorsomedial striatum (DMS) and DLS AMPA receptor expression. We also investigated the effect of intra-DLS NBQX on locomotor activity and saccharin drinking in mice. Mice were allowed free access to 20% alcohol for two hours each day for a total of seven days. Mice received an intra-DLS infusion of one of four concentrations of NBQX (saline, 0.15, 0.5, or 1.5 μg/side), an AMPA receptor antagonist, immediately prior to alcohol access on day 7. Two-hour binge alcohol intakes, locomotor activity, and blood alcohol concentrations were determined. Intra-DLS NBQX reduced binge-like alcohol drinking in a U-shaped manner in male and female mice. Intake predicted blood alcohol concentration, and locomotor activity was not affected. In a follow up experiment, we assessed whether the most effective NBQX concentration for reducing alcohol consumption also reduced saccharin drinking, finding intra-DLS NBQX did not alter saccharin drinking in male and female mice. These data suggest that AMPA receptors in the DLS play a role in the modulation of binge-like alcohol drinking. These findings further validate the importance of the DLS for alcohol related behaviors and alcohol use disorder.
Collapse
Affiliation(s)
- Meredith R Bauer
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Megan M McVey
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Damon M Germano
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yanping Zhang
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Stephen L Boehm
- Indiana Alcohol Research Center and Department of Psychology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Tan H, Nakovics H, Zeng H, Copello A, Akhtar S, Lee AM, Kiefer F, Vollstädt-Klein S. Assessment of automated craving across substances and across cultures: stability-analysis of the Craving Automated Scale (CAS). J Addict Dis 2021; 40:405-414. [PMID: 34967698 DOI: 10.1080/10550887.2021.2015053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The transition from hedonic to compulsive use in Substance Use Disorders (SUD) is a critical point in SUD progression and hence relevant for assessment and treatment. To measure the habitual patterns of substance consumption, the Craving Automated Scales (CAS) for alcohol (CAS-A), substances (CAS-S) and cigarette smoking (CAS-CS) were developed and introduced to different countries. In this study, we aimed to investigate the structural stability of CAS across substances and cultures. METHODS This study analyzed the CAS-scores of a sample of 370 participants in Germany, China and the UK, including 262 opioid-users, 65 smokers and 43 alcohol-users. We performed stability analyses to check the stability (i. e. factorial invariance) of factor solutions. Based on confirmed stability of the general factor (gfactor) solution and the calculations rule obtained in the previous validation of CAS-alcohol (CAS-A), the factor structures of CAS-A, CAS-S and CAS-CS were compared. RESULTS The gfactor solutions based on calculations rule shows good stability, with the mean stability coefficients of 0.990 and 0.977 for CAS-S and CAS-CS respectively. The gfactor patterns were similar for CAS-A, CAS-S and CAS-CS, as well as across samples (Germany, China and the UK), with most factor-loadings larger than 0.7. Based on these findings, CAS-S and CAS-CS were also associated with established clinical measures of SUD. CONCLUSIONS Our findings suggest the two-gfactor solution based on a proposed calculation rule has a high stability across substances and cultures. This could be in line with common neurobiological mechanisms underlying habitual substance use. Moreover, comparing CAS with established clinical tools suggests that CAS might assess the automated behavior in substance consumption in a more sophisticated way.
Collapse
Affiliation(s)
- H Tan
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical, Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - H Nakovics
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical, Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - H Zeng
- Department of Psychology, Guangzhou University, Guangzhou, China
| | - A Copello
- School of Psychology, University of Birmingham, Birmingham, UK
| | - S Akhtar
- Birmingham and Solihull Mental Health Foundation Trust, Birmingham, UK
| | - A M Lee
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical, Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - F Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical, Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.,Feuerlein Center on Translational Addiction Medicine, University of Heidelberg, Heidelberg, Germany
| | - S Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical, Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
23
|
Giuliano C, Puaud M, Cardinal RN, Belin D, Everitt BJ. Individual differences in the engagement of habitual control over alcohol seeking predict the development of compulsive alcohol seeking and drinking. Addict Biol 2021; 26:e13041. [PMID: 33955649 DOI: 10.1111/adb.13041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Excessive drinking is an important behavioural characteristic of alcohol addiction, but not the only one. Individuals addicted to alcohol crave alcoholic beverages, spend time seeking alcohol despite negative consequences and eventually drink to intoxication. With prolonged use, control over alcohol seeking devolves to anterior dorsolateral striatum, dopamine-dependent mechanisms implicated in habit learning and individuals in whom alcohol seeking relies more on these mechanisms are more likely to persist in seeking alcohol despite the risk of punishment. Here, we tested the hypothesis that the development of habitual alcohol seeking predicts the development of compulsive seeking and that, once developed, it is associated with compulsive alcohol drinking. Male alcohol-preferring rats were pre-exposed intermittently to a two-bottle choice procedure and trained on a seeking-taking chained schedule of alcohol reinforcement until some individuals developed punishment-resistant seeking behaviour. The associative basis of their seeking responses was probed with an outcome-devaluation procedure, early or late in training. After seeking behaviour was well established, subjects that had developed greater resistance to outcome devaluation (were more habitual) were more likely to show punishment-resistant (compulsive) alcohol seeking. These individuals also drank more alcohol, despite quinine adulteration, even though having similar alcohol preference and intake before and during instrumental training. They were also less sensitive to changes in the contingency between seeking responses and alcohol outcome, providing further evidence of recruitment of the habit system. We therefore provide direct behavioural evidence that compulsive alcohol seeking emerges alongside compulsive drinking in individuals who have preferentially engaged the habit system.
Collapse
Affiliation(s)
- Chiara Giuliano
- Behavioural and Clinical Neuroscience Institute and Department of Psychology University of Cambridge Cambridge UK
| | - Mickaël Puaud
- Behavioural and Clinical Neuroscience Institute and Department of Psychology University of Cambridge Cambridge UK
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute and Department of Psychiatry University of Cambridge Cambridge UK
- Liaison Psychiatry Service Cambridgeshire and Peterborough NHS Foundation Trust Cambridge UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology University of Cambridge Cambridge UK
| | - Barry J. Everitt
- Behavioural and Clinical Neuroscience Institute and Department of Psychology University of Cambridge Cambridge UK
| |
Collapse
|
24
|
Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology 2021; 46:1399-1406. [PMID: 33230269 PMCID: PMC8209220 DOI: 10.1038/s41386-020-00909-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
The prelimbic (PL) region of prefrontal cortex has been implicated in both driving and suppressing cocaine seeking in animal models of addiction. We hypothesized that these opposing roles for PL may be supported by distinct efferent projections. While PL projections to nucleus accumbens core have been shown to be involved in driving reinstatement of cocaine seeking, PL projections to the rostromedial tegmental nucleus (RMTg) may instead suppress reinstatement of cocaine seeking, due to the role of RMTg in behavioral inhibition. Here, we used a functional disconnection approach to temporarily disrupt the PL-RMTg pathway during cue- or cocaine-induced reinstatement. Male Sprague Dawley rats self-administered cocaine during daily 2-h sessions for ≥10 days and then underwent extinction training. Reinstatement of extinguished cocaine seeking was elicited by cocaine-associated cues or cocaine prime. Prior to reinstatement, rats received microinjections of the GABA agonists baclofen/muscimol (1/0.1 mM) into unilateral PL and the AMPA receptor antagonist NBQX (1 mM) into contralateral or ipsilateral RMTg. Functional disconnection of PL-RMTg via contralateral inactivation markedly increased cue-induced reinstatement, but did not increase cocaine-induced reinstatement or drive reinstatement of extinguished cocaine seeking in the absence of cues or cocaine. Enhanced cue-induced reinstatement was also observed with ipsilateral inactivation of PL and RMTg, but not with unilateral inactivation of PL or RMTg alone, indicating that both ipsilateral and contralateral projections from PL to RMTg have an inhibitory influence on behavior. These data further support a suppressive role for PL in cocaine seeking by implicating PL efferent projections to RMTg in inhibiting cue-induced reinstatement.
Collapse
|
25
|
Ersche KD, Lim TV, Murley AG, Rua C, Vaghi MM, White TL, Williams GB, Robbins TW. Reduced Glutamate Turnover in the Putamen Is Linked With Automatic Habits in Human Cocaine Addiction. Biol Psychiatry 2021; 89:970-979. [PMID: 33581835 PMCID: PMC8083107 DOI: 10.1016/j.biopsych.2020.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The balance between goal-directed behavior and habits has been hypothesized to be biased toward the latter in individuals with cocaine use disorder (CUD), suggesting possible neurochemical changes in the putamen, which may contribute to their compulsive behavior. METHODS We assessed habitual behavior in 48 patients with CUD and 42 healthy control participants using a contingency degradation paradigm and the Creature of Habit Scale. In a subgroup of this sample (CUD: n = 21; control participants: n = 22), we also measured glutamate and glutamine concentrations in the left putamen using ultra-high-field (7T) magnetic resonance spectroscopy. We hypothesized that increased habitual tendencies in patients with CUD would be associated with abnormal glutamatergic metabolites in the putamen. RESULTS Compared with their non-drug-using peers, patients with CUD exhibited greater habitual tendencies during contingency degradation, which correlated with increased levels of self-reported daily habits. We further identified a significant reduction in glutamate concentration and glutamate turnover (glutamate-to-glutamine ratio) in the putamen in patients with CUD, which was significantly related to the level of self-reported daily habits. CONCLUSIONS Patients with CUD exhibit enhanced habitual behavior, as assessed both by questionnaire and by a laboratory paradigm of contingency degradation. This automatic habitual tendency is related to a reduced glutamate turnover in the putamen, suggesting a dysregulation of habits caused by chronic cocaine use.
Collapse
Affiliation(s)
- Karen D Ersche
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Tsen Vei Lim
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G Murley
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Matilde M Vaghi
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, Stanford University, Stanford, California
| | - Tara L White
- Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island
| | - Guy B Williams
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Departments of Psychiatry, Psychology, and Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
27
|
Scaplen KM, Petruccelli E. Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila. Neurosci Insights 2021; 16:26331055211007441. [PMID: 33870197 PMCID: PMC8020223 DOI: 10.1177/26331055211007441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a debilitating disorder that manifests as problematic patterns of alcohol use. At the core of AUD's behavioral manifestations are the profound structural, physiological, cellular, and molecular effects of alcohol on the brain. While the field has made considerable progress in understanding the neuromolecular targets of alcohol we still lack a comprehensive understanding of alcohol's actions and effective treatment strategies. Drosophila melanogaster is a powerful model for investigating the neuromolecular targets of alcohol because flies model many of the core behavioral elements of AUD and offer a rich genetic toolkit to precisely reveal the in vivo molecular actions of alcohol. In this review, we focus on receptors and channels that are often targeted by alcohol within the brain. We discuss the general roles of these proteins, their role in alcohol-associated behaviors across species, and propose ways in which Drosophila models can help advance the field.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, USA
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
28
|
Vandaele Y, Ahmed SH. Habit, choice, and addiction. Neuropsychopharmacology 2021; 46:689-698. [PMID: 33168946 PMCID: PMC8027414 DOI: 10.1038/s41386-020-00899-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Addiction was suggested to emerge from the progressive dominance of habits over goal-directed behaviors. However, it is generally assumed that habits do not persist in choice settings. Therefore, it is unclear how drug habits may persist in real-world scenarios where this factor predominates. Here, we discuss the poor translational validity of the habit construct, which impedes our ability to determine its role in addiction. New evidence of habitual behavior in a drug choice setting are then described and discussed. Interestingly, habitual preference did not promote drug choice but instead favored abstinence. Here, we propose several clues to reconcile these unexpected results with the habit theory of addiction, and we highlight the need in experimental research to face the complexity of drug addicts' decision-making environments by investigating drug habits in the context of choice and in the presence of cues. On a theoretical level, we need to consider more complex frameworks, taking into account continuous interactions between goal-directed and habitual systems, and alternative decision-making models more representative of real-world conditions.
Collapse
Affiliation(s)
- Y Vandaele
- Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.
| | - S H Ahmed
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, CNRS, Bordeaux, France
| |
Collapse
|
29
|
Abstract
Abstract
Purpose of Review
Current theories of alcohol use disorders (AUD) highlight the importance of Pavlovian and instrumental learning processes mainly based on preclinical animal studies. Here, we summarize available evidence for alterations of those processes in human participants with AUD with a focus on habitual versus goal-directed instrumental learning, Pavlovian conditioning, and Pavlovian-to-instrumental transfer (PIT) paradigms.
Recent Findings
The balance between habitual and goal-directed control in AUD participants has been studied using outcome devaluation or sequential decision-making procedures, which have found some evidence of reduced goal-directed/model-based control, but little evidence for stronger habitual responding. The employed Pavlovian learning and PIT paradigms have shown considerable differences regarding experimental procedures, e.g., alcohol-related or conventional reinforcers or stimuli.
Summary
While studies of basic learning processes in human participants with AUD support a role of Pavlovian and instrumental learning mechanisms in the development and maintenance of drug addiction, current studies are characterized by large variability regarding methodology, sample characteristics, and results, and translation from animal paradigms to human research remains challenging. Longitudinal approaches with reliable and ecologically valid paradigms of Pavlovian and instrumental processes, including alcohol-related cues and outcomes, are warranted and should be combined with state-of-the-art imaging techniques, computational approaches, and ecological momentary assessment methods.
Collapse
|
30
|
Bender BN, Torregrossa MM. Dorsolateral striatum dopamine-dependent cocaine seeking is resistant to pavlovian cue extinction in male and female rats. Neuropharmacology 2021; 182:108403. [PMID: 33197468 PMCID: PMC7740074 DOI: 10.1016/j.neuropharm.2020.108403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Cue exposure therapy (CET) reduces craving induced by drug-associated cues in individuals with substance use disorders. A preclinical model of CET, cue extinction, similarly reduces cue-induced cocaine seeking in rodent self-administration models; however, those models may not capture the habitual or compulsive aspects of drug use. Thus, the effectiveness of cue extinction was tested in male and female rats trained to self-administer cocaine using second-order (SO) or fixed-ratio (FR) schedules of reinforcement to facilitate dorsolateral striatum (DLS) dopamine-dependent or -independent response strategies, respectively. Cue extinction significantly reduced drug seeking in FR-trained rats, replicating prior results, but was ineffective in SO-trained rats. SO-trained rats also showed increased indices of glutamate signaling in the DLS relative to FR-trained rats, despite comparable levels of cocaine intake. Furthermore, in SO-trained rats, antagonism of AMPA receptors in the DLS rescued the efficacy of cue extinction to reduce drug seeking. Finally, the effectiveness of cue extinction was also revealed in SO-trained rats when they were taught to perform a new, non-habitual response for cocaine cue presentation. Overall, our findings indicate that habit-like drug seeking leads to plasticity in the DLS and behavior that is resistant to cue extinction, but that the effects of cue extinction are restored when DLS glutamatergic signaling is blocked. These results have implications for the effectiveness of clinical cue exposure therapy.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
31
|
Thompson SL, Gianessi CA, O'Malley SS, Cavallo DA, Shi JM, Tetrault JM, DeMartini KS, Gueorguieva R, Pittman B, Krystal JH, Taylor JR, Krishnan-Sarin S. Saracatinib Fails to Reduce Alcohol-Seeking and Consumption in Mice and Human Participants. Front Psychiatry 2021; 12:709559. [PMID: 34531767 PMCID: PMC8438169 DOI: 10.3389/fpsyt.2021.709559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
More effective treatments to reduce pathological alcohol drinking are needed. The glutamatergic system and the NMDA receptor (NMDAR), in particular, are implicated in behavioral and molecular consequences of chronic alcohol use, making the NMDAR a promising target for novel pharmacotherapeutics. Ethanol exposure upregulates Fyn, a protein tyrosine kinase that indirectly modulates NMDAR signaling by phosphorylating the NR2B subunit. The Src/Fyn kinase inhibitor saracatinib (AZD0530) reduces ethanol self-administration and enhances extinction of goal-directed ethanol-seeking in mice. However, less is known regarding how saracatinib affects habitual ethanol-seeking. Moreover, no prior studies have assessed the effects of Src/Fyn kinase inhibitors on alcohol-seeking or consumption in human participants. Here, we tested the effects of saracatinib on alcohol consumption and craving/seeking in two species, including the first trial of an Src/Fyn kinase inhibitor to reduce drinking in humans. Eighteen male C57BL/6NCrl mice underwent operant conditioning on a variable interval schedule to induce habitual responding for 10% ethanol/0.1% saccharin. Next, mice received 5 mg/kg saracatinib or vehicle 2 h or 30 min prior to contingency degradation to measure habitual responding. In the human study, 50 non-treatment seeking human participants who drank heavily and met DSM-IV criteria for alcohol abuse or dependence were randomized to receive 125 mg/day saracatinib (n = 33) or placebo (n = 17). Alcohol Drinking Paradigms (ADP) were completed in a controlled research setting: before and after 7-8 days of treatment. Each ADP involved consumption of a priming drink of alcohol (0.03 mg%) followed by ad libitum access (3 h) to 12 additional drinks (0.015 g%); the number of drinks consumed and craving (Alcohol Urge Questionnaire) were recorded. In mice, saracatinib did not affect habitual ethanol seeking or consumption at either time point. In human participants, no significant effects of saracatinib on alcohol craving or consumption were identified. These results in mice and humans suggest that Fyn kinase inhibition using saracatinib, at the doses tested here, may not reduce alcohol consumption or craving/seeking among those habitually consuming alcohol, in contrast to reports of positive effects of saracatinib in individuals that seek ethanol in a goal-directed manner. Nevertheless, future studies should confirm these negative findings using additional doses and schedules of saracatinib administration.
Collapse
Affiliation(s)
- Summer L Thompson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Carol A Gianessi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, CT, United States
| | - Stephanie S O'Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dana A Cavallo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Julia M Shi
- Program in Addiction Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanette M Tetrault
- Program in Addiction Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Kelly S DeMartini
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, United States
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Department of Psychology, Yale University, New Haven, CT, United States
| | | |
Collapse
|
32
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Bauer MR, Garcy DP, Boehm SL. Systemic Administration of the AMPA Receptor Antagonist, NBQX, Reduces Alcohol Drinking in Male C57BL/6J, But Not Female C57BL/6J or High-Alcohol-Preferring, Mice. Alcohol Clin Exp Res 2020; 44:2316-2325. [PMID: 32945559 DOI: 10.1111/acer.14461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are ionotropic glutamate receptors that have been investigated for their role in modulating alcohol consumption. However, little is known about the role of AMPA receptors in the control of binge-like or free-access alcohol drinking in C57BL/6J or in selectively bred high-alcohol-preferring (HAP) mice. The purpose of this experiment was to assess the role of systemic administration of the AMPA receptor antagonist, 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX), on alcohol consumption using a model of binge-like drinking, drinking in the dark (DID) and free-access 2-bottle choice (2BC) in male and female C57BL/6J and HAP mice. METHODS C57BL/6J mice were allowed free access to 20% (v/v) alcohol for 2 hours each day beginning 3 hours into the dark cycle for 4 days. On day 5, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 10) 15 minutes before alcohol presentation and were given 4-hour alcohol access (extended DID). HAP mice were given 24-hour free access to 10% (v/v) alcohol and water for 19 days. On day 20, mice were intraperitoneally injected with one of 4 doses of NBQX (0, 3, 10, or 30 mg/kg; n = 9) 15 minutes before alcohol and water presentation. RESULTS In the first 2 hours of DID, at 30 mg/kg, male, but not female C57BL/6J or HAP, mice drank significantly less alcohol compared with controls and 30 mg/kg NBQX did not alter saccharin intake in the males. Although male HAP mice drank significantly less alcohol than female mice following 10 mg/kg NBQX, neither sex exhibited drinking that differed significantly from controls. NBQX did not reduce locomotor behavior at any dose, sex, or genotype. CONCLUSIONS These data suggest that AMPA receptors play a key role in modulating binge-like alcohol consumption without altering saccharin consumption or general locomotion and that this effect is specific to sex and genotype.
Collapse
Affiliation(s)
- Meredith R Bauer
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Daniel P Garcy
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | - Stephen L Boehm
- From the, Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
34
|
Shields CN, Gremel CM. Review of Orbitofrontal Cortex in Alcohol Dependence: A Disrupted Cognitive Map? Alcohol Clin Exp Res 2020; 44:1952-1964. [PMID: 32852095 PMCID: PMC8261866 DOI: 10.1111/acer.14441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Alcoholism is a persistent worldwide problem associated with long-lasting impairments to decision making processes. Some aspects of dysfunction are thought to reflect alcohol-induced changes to relevant brain areas such as the orbitofrontal cortex (OFC). In this review, we will examine how chronic alcohol exposure alters OFC function to potentially contribute to maladaptive decision making, and explore experimental behavioral approaches that may be better suited to test whether alcohol dependence disrupts OFC's function. We argue that although past works suggest impairments in aspects of OFC function, more information may be gained by specifically targeting tasks to the broader function of OFC as put forth by the recent hypothesis of OFC as a "cognitive map" of task space. Overall, we suggest that such a focus could provide a better understanding of how OFC function changes in alcohol dependence, and could inform better assessment tools and treatment options for clinicians working with this population.
Collapse
Affiliation(s)
- Chloe N. Shields
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Gibson AS, Keefe KA, Furlong TM. Accelerated habitual learning resulting from L-dopa exposure in rats is prevented by N-acetylcysteine. Pharmacol Biochem Behav 2020; 198:173033. [PMID: 32888972 DOI: 10.1016/j.pbb.2020.173033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Instrumental actions are initially goal-directed and driven by their associated outcome. However, with repeated experience habitual actions develop which are automated and efficient, as they are instead driven by antecedent stimuli. Dopamine is thought to facilitate the transition from goal-directed to habitual actions. This idea has been largely derived from evidence that psychostimulants accelerate the development of habitual actions. In the current study, we examined the impact of L-dopa (levodopa or L-dihydroxyphenylalanine), which also potentiates dopamine activity, on habitual learning. L-dopa was systemically administered prior to training rats to press a lever for a food outcome. When tested, L-dopa exposed animals were insensitive to changes in the value of the food outcome, and hence demonstrated accelerated habitual behavioral control compared to control animals that remained goal directed. We also showed that when N-acetylcysteine (NAC), an antioxidant and regulator of glutamate activity, was co-administered with L-dopa, it prevented the transition to habitual behavior; an effect demonstrated previously for cocaine. Therefore, this study establishes similarities between L-dopa and psychostimulants in both the development and prevention of habitual actions, and supports the notion that excess dopamine potentiates habitual learning. This finding extends the limited existing knowledge of the impact of L-dopa on learning and behavior, and has implications for neurological disorders where L-dopa is the primary treatment.
Collapse
Affiliation(s)
- Anne S Gibson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
36
|
Pickens CL, Cook A, Gaeddert B. Dose-dependent effects of alcohol injections on omission-contingency learning have an inverted-U pattern. Behav Brain Res 2020; 392:112736. [PMID: 32497681 DOI: 10.1016/j.bbr.2020.112736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Previous examinations of the long-term effects of alcohol exposure on omission-contingency learning have produced mixed results across different age or sex groups, with evidence for faster learning or no effect. However, none of these experiments made comparisons using the same exposure-dose across the age/sex groups. Here, we exposed rats to 6 weeks of alcohol injections (3 days/week, 1.75 or 3.5 g/kg/24-h, i.p. broken up into 2 injections/day) in adolescent/early adult males or females (PND27-66) or adult males (PND62-101). We then tested the rats in autoshaping and omission-contingency tasks. In contrast to our hypotheses, the low 1.75-g/kg/24-h dose led to slower omission learning and the higher 3.5-g/kg/24-h dose had no effect. There were no age- or sex-differences in omission learning. Additionally, during autoshaping training, rats exposed in adolescence/early adulthood had a faster shift to sign-tracking in their sign-tracking/goal-tracking ratios than rats exposed in adulthood, with no consistent effect of alcohol exposure or sex-differences. Our results suggest complex effects of alcohol on the neural substrates of omission-contingency learning at different doses, which will require future investigation.
Collapse
Affiliation(s)
- Charles L Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| | - Anna Cook
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Brooke Gaeddert
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
37
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
38
|
Hogarth L. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacology 2020; 45:720-735. [PMID: 31905368 PMCID: PMC7265389 DOI: 10.1038/s41386-020-0600-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
Abstract
Drug addiction may be a goal-directed choice driven by excessive drug value in negative affective states, a habit driven by strong stimulus-response associations, or a compulsion driven by insensitivity to costs imposed on drug seeking. Laboratory animal and human evidence for these three theories is evaluated. Excessive goal theory is supported by dependence severity being associated with greater drug choice/economic demand. Drug choice is demonstrably goal-directed (driven by the expected value of the drug) and can be augmented by stress/negative mood induction and withdrawal-effects amplified in those with psychiatric symptoms and drug use coping motives. Furthermore, psychiatric symptoms confer risk of dependence, and coping motives mediate this risk. Habit theory of addiction has weaker support. Habitual behaviour seen in drug-exposed animals often does not occur in complex decision scenarios, or where responding is rewarded, so habit is unlikely to explain most human addictive behaviour where these conditions apply. Furthermore, most human studies have not found greater propensity to habitual behaviour in drug users or as a function of dependence severity, and the minority that have can be explained by task disengagement producing impaired explicit contingency knowledge. Compulsion theory of addiction also has weak support. The persistence of punished drug seeking in animals is better explained by greater drug value (evinced by the association with economic demand) than by insensitivity to costs. Furthermore, human studies have provided weak evidence that propensity to discount cost imposed on drug seeking is associated with dependence severity. These data suggest that human addiction is primarily driven by excessive goal-directed drug choice under negative affect, and less by habit or compulsion. Addiction is pathological because negative states powerfully increase expected drug value acutely outweighing abstinence goals.
Collapse
Affiliation(s)
- Lee Hogarth
- School of Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK.
| |
Collapse
|
39
|
Renteria R, Cazares C, Gremel CM. Habitual Ethanol Seeking and Licking Microstructure of Enhanced Ethanol Self-Administration in Ethanol-Dependent Mice. Alcohol Clin Exp Res 2020; 44:880-891. [PMID: 32020644 DOI: 10.1111/acer.14302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND A significant component of ethanol (EtOH) dependence is the disruption to decision-making processes. Prior work has shown EtOH dependence biases habitual seeking of EtOH and disrupts neural mechanisms supporting decision-making. This has contributed to the hypothesis that habitual EtOH seeking in EtOH dependence may promote excessive habitual or compulsive EtOH consumption. However, decision-making and behavioral processes underlying seeking and consummatory behaviors differ. Here, we examine the microstructure of EtOH consummatory behavior in the context of habitual EtOH seeking. METHODS Following home cage pre-exposure to EtOH, C57Bl/6J mice underwent 4 rounds of chronic intermittent EtOH (CIE) or air exposure. Following acute withdrawal, mice began training for operant self-administration of 15% EtOH. Training consisted of 16-hour sessions in which mice were trained in a random ratio (RR) schedule of reinforcement for 30-second access to the EtOH sipper. To test for CIE-induced changes in action control, we used sensory-specific satiation and assessed the effect of outcome devaluation on EtOH seeking. Importantly, the use of a lickometer during operant training allowed us to measure the microstructure of lick behavior. RESULTS Prior induction of EtOH dependence led to increased EtOH seeking, consumption, and an insensitivity to outcome devaluation, the latter indicative of habitual EtOH seeking. We also found altered consummatory lick patterns in CIE-exposed mice compared to Air controls. While CIE mice had significantly more licks in a burst and a longer burst duration, there were no differences in the total number of bursts compared to Air controls. Furthermore, these EtOH consummatory behaviors correlated with blood EtOH concentrations (BECs), while EtOH-seeking responses did not. CONCLUSIONS Our results confirm that EtOH dependence can produce habitual EtOH seeking and suggests the increased EtOH consummatory behaviors following EtOH dependence are separable from decision-making processes controlling EtOH seeking.
Collapse
Affiliation(s)
- Rafael Renteria
- From the, Department of Psychology, (RR, CMG), University of California San Diego, La Jolla, California
| | - Christian Cazares
- The Neurosciences Graduate Program, (CC, CMG), University of California San Diego, La Jolla, California
| | - Christina M Gremel
- From the, Department of Psychology, (RR, CMG), University of California San Diego, La Jolla, California.,The Neurosciences Graduate Program, (CC, CMG), University of California San Diego, La Jolla, California
| |
Collapse
|
40
|
Age-dependent impairment of metabotropic glutamate receptor 2-dependent long-term depression in the mouse striatum by chronic ethanol exposure. Alcohol 2020; 82:11-21. [PMID: 31233806 PMCID: PMC6925350 DOI: 10.1016/j.alcohol.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Chronic alcohol exposure is associated with increased reliance on behavioral strategies involving the dorsolateral striatum (DLS), including habitual or stimulus-response behaviors. Presynaptic G protein-coupled receptors (GPCRs) on cortical and thalamic inputs to the DLS inhibit glutamate release, and alcohol-induced disruption of presynaptic GPCR function represents a mechanism by which alcohol could disinhibit DLS neurons and thus bias toward use of DLS-dependent behaviors. Metabotropic glutamate receptor 2 (mGlu2) is a Gi/o-coupled GPCR that robustly modulates glutamate transmission in the DLS, inducing long-term depression (LTD) at both cortical and thalamic synapses. Loss of mGlu2 function has recently been associated with increased ethanol seeking and consumption, but the ability of alcohol to produce adaptations in mGlu2 function in the DLS has not been investigated. We exposed male C57Bl/6J mice to a 2-week chronic intermittent ethanol (CIE) paradigm followed by a brief withdrawal period, then used whole-cell patch clamp recordings of glutamatergic transmission in the striatum to assess CIE effects on mGlu2-mediated synaptic plasticity. We report that CIE differentially disrupts mGlu2-mediated long-term depression in the DLS vs. dorsomedial striatum (DMS). Interestingly, CIE-induced impairment of mGlu2-LTD in the dorsolateral striatum is only observed when alcohol exposure occurs during adolescence. Incubation of striatal slices from CIE-exposed adolescent mice with a positive allosteric modulator of mGlu2 fully rescues mGlu2-LTD. In contrast to the 2-week CIE paradigm, acute exposure of striatal slices to ethanol concentrations that mimic ethanol levels during CIE exposure fails to disrupt mGlu2-LTD. We did not observe a reduction of mGlu2 mRNA or protein levels following CIE exposure, suggesting that alcohol effects on mGlu2 occur at the functional level. Our findings contribute to growing evidence that adolescents are uniquely vulnerable to certain alcohol-induced neuroadaptations, and identify enhancement of mGlu2 activity as a strategy to reverse the effects of adolescent alcohol exposure on DLS physiology.
Collapse
|
41
|
Complementary Control over Habits and Behavioral Vigor by Phasic Activity in the Dorsolateral Striatum. J Neurosci 2020; 40:2139-2153. [PMID: 31969469 DOI: 10.1523/jneurosci.1313-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Despite clear evidence linking the basal ganglia to the control of outcome insensitivity (i.e., habit) and behavioral vigor (i.e., its behavioral speed/fluidity), it remains unclear whether or how these functions relate to one another. Here, using male Long-Evans rats in response-based and cue-based maze-running tasks, we demonstrate that phasic dorsolateral striatum (DLS) activity occurring at the onset of a learned behavior regulates how vigorous and habitual it is. In a response-based task, brief optogenetic excitation at the onset of runs decreased run duration and the occurrence of deliberative behaviors, whereas midrun stimulation carried little effect. Outcome devaluation showed these runs to be habitual. DLS inhibition at run start did not produce robust effects on behavior until after outcome devaluation. At that time, when the DLS was plausibly most critically required for performance (i.e., habitual), inhibition reduced performance vigor measures and caused a dramatic loss of habitual responding (i.e., animals quit the task). In a second cue-based "beacon" task requiring behavior initiation at the start of the run and again in the middle of the run, DLS excitation at both time points could improve the vigor of runs. Postdevaluation testing showed behavior on the beacon task to be habitual as well. This pattern of results suggests that one role for phasic DLS activity at behavior initiation is to promote the execution of the behavior in a vigorous and habitual fashion by a diverse set of measures.SIGNIFICANCE STATEMENT Our research expands the literature twofold. First, we find that features of a habitual behavior that are typically studied separately (i.e., maze response performance, deliberation movements, running vigor, and outcome insensitivity) are quite closely linked together. Second, efforts have been made to understand "what" the dorsolateral striatum (DLS) does for habitual behavior, and our research provides a key set of results showing "when" it is important (i.e., at behavior initiation). By showing such dramatic control over habits by DLS activity in a phasic time window, plausible real-world applications could involve more informed DLS perturbations to curb intractably problematic habits.
Collapse
|
42
|
Neural circuits in goal-directed and habitual behavior: Implications for circuit dysfunction in obsessive-compulsive disorder. Neurochem Int 2019; 129:104464. [DOI: 10.1016/j.neuint.2019.104464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023]
|
43
|
Fritz BM, Muñoz B, Atwood BK. Genetic Selection for Alcohol Preference in Mice Alters Dorsal Striatum Neurotransmission. Alcohol Clin Exp Res 2019; 43:2312-2321. [PMID: 31491046 DOI: 10.1111/acer.14187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although it is widely acknowledged that the risk of developing an alcohol use disorder (AUD) is strongly influenced by genetic factors, very little is known about how this genetic predisposition may alter neurotransmission in a way that promotes AUD susceptibility. The dorsal striatum has garnered increased attention as a brain region of interest in AUD development given its significant roles in goal-directed and habitual behavior. METHODS In the present work, dorsal striatal neurotransmission parameters were measured in preclinical mouse models of high and low AUD risk. We performed brain slice whole-cell patch clamp electrophysiological recordings from medium spiny neurons (MSNs) in the dorsomedial (DMS) and dorsolateral (DLS) striatum of naïve adult male and female selectively bred high- and low-alcohol-preferring lines of mice (HAP and LAP). RESULTS We found that MSNs of HAP mice were significantly more excitable than those of LAP mice, specifically in the DLS. Additionally, the frequencies of spontaneous glutamate- and GABA-mediated currents were both elevated in HAP mice relative to LAP mice in both dorsal striatal subregions, whereas amplitude differences were more variable between lines and subregions. AMPAR/NMDAR current ratios were significantly lower in HAP mice in both DLS and DMS. CONCLUSIONS Collectively, these results suggest that genetic predisposition for high or low alcohol consumption produces significantly different basal functional states within both DLS and DMS which may be important factors in the behavioral phenotypes of HAP and LAP mice.
Collapse
Affiliation(s)
- Brandon M Fritz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
44
|
Abstract
Substance and alcohol use disorders impose large health and economic burdens on individuals, families, communities, and society. Neither prevention nor treatment efforts are effective in all individuals. Results are often modest. Advances in neuroscience and addiction research have helped to describe the neurobiological changes that occur when a person transitions from recreational substance use to a substance use disorder or addiction. Understanding both the drivers and consequences of substance use in vulnerable populations, including those whose brains are still maturing, has revealed behavioral and biological characteristics that can increase risks of addiction. These findings are particularly timely, as law- and policymakers are tasked to reverse the ongoing opioid epidemic, as more states legalize marijuana, as new products including electronic cigarettes and newly designed abused substances enter the legal and illegal markets, and as "deaths of despair" from alcohol and drug misuse continue.
Collapse
Affiliation(s)
- George R. Uhl
- New Mexico VA Healthcare SystemAlbuquerqueNew Mexico
| | | | | |
Collapse
|
45
|
Repetitive transcranial magnetic stimulation: Re-wiring the alcoholic human brain. Alcohol 2019; 74:113-124. [PMID: 30420113 DOI: 10.1016/j.alcohol.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol use disorders (AUDs) are one of the leading causes of mortality and morbidity worldwide. In spite of significant advances in understanding the neural underpinnings of AUDs, therapeutic options remain limited. Recent studies have highlighted the potential of repetitive transcranial magnetic stimulation (rTMS) as an innovative, safe, and cost-effective treatment for AUDs. Here, we summarize the fundamental principles of rTMS and its putative mechanisms of action via neurocircuitries related to alcohol addiction. We will also discuss advantages and limitations of rTMS, and argue that Hebbian plasticity and connectivity changes, as well as state-dependency, play a role in shaping some of the long-term effects of rTMS. Visual imaging studies will be linked to recent clinical pilot studies describing the effect of rTMS on alcohol craving and intake, pinpointing new advances, and highlighting conceptual gaps to be filled by future controlled studies.
Collapse
|
46
|
Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:11-21. [PMID: 28887182 PMCID: PMC5837910 DOI: 10.1016/j.pnpbp.2017.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
Abstract
Addiction is characterized by compulsive drug use despite negative consequences. Here we review studies that indicate that compulsive drug use, and in particular punishment resistance in animal models of addiction, is related to impaired cortical control over habitual behavior. In humans and animals, instrumental behavior is supported by goal-directed and habitual systems that rely on distinct corticostriatal networks. Chronic exposure to addictive drugs or stress has been shown to bias instrumental response strategies toward habit learning, and impair prefrontal cortical (PFC) control over responding. Moreover, recent work has implicated prelimbic PFC hypofunction in the punishment resistance that has been observed in a subset of animals with an extended history of cocaine self-administration. This may be related to a broader role for prelimbic PFC in mediating adaptive responding and behavioral flexibility, including exerting goal-directed control over behavior. We hypothesize that impaired cortical control and reduced flexibility between habitual and goal-directed systems may be critically involved in the development of maladaptive, compulsive drug use.
Collapse
Affiliation(s)
- Rachel J. Smith
- Corresponding author at: 3474 TAMU, College Station, TX 77843
| | | |
Collapse
|
47
|
Clemens KJ, Holmes NM. An extended history of drug self-administration results in multiple sources of control over drug seeking behavior. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:48-55. [PMID: 29129722 DOI: 10.1016/j.pnpbp.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/28/2023]
Abstract
It is widely recognized that across the development of drug addiction, cues associated with drug use come to exert increasing control over drug seeking and taking behaviors. However, there remain gaps in our knowledge regarding how the different types of drug related cues affect drug seeking and taking behaviors, and how the emergence of cue control over these behaviors relates to the onset of drug seeking compulsions. This paper reviews the literature on drug self-administration in animals to address these gaps. It first identifies the different types of cues that acquire control over reward seeking behavior generally, and examines whether the same types of cues acquire control over drug seeking behavior specifically. It then examines how the role of drug related cues in motivating and reinforcing drug seeking behavior changes across an extended drug-taking history, with a particular focus on the case of nicotine. The evidence reviewed shows that, after an extended history of drug taking, drug seeking behaviors are controlled by contextual cues associated with the development of drug seeking habits, response contingent cues that accompany delivery of the drug, as well as internal states that correlate with levels of drug intake. These multiple sources of control over drug seeking are discussed in relation to the generation of an addicted phenotype in animal models and the hypothesized progression from internal control over drug use to compulsive drug seeking.
Collapse
Affiliation(s)
- Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Thrailkill EA, Trask S, Vidal P, Alcalá JA, Bouton ME. Stimulus control of actions and habits: A role for reinforcer predictability and attention in the development of habitual behavior. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2018; 44:370-384. [PMID: 30407063 PMCID: PMC6233324 DOI: 10.1037/xan0000188] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Goal-directed actions are instrumental behaviors whose performance depends on the organism's knowledge of the reinforcing outcome's value. In contrast, habits are instrumental behaviors that are insensitive to the outcome's current value. Although habits in everyday life are typically controlled by stimuli that occasion them, most research has studied habits using free-operant procedures in which no discrete stimuli are present to occasion the response. We therefore studied habit learning when rats were reinforced for lever pressing on a random-interval 30-s schedule in the presence of a discriminative stimulus (S) but not in its absence. In Experiment 1, devaluing the reinforcer with taste aversion conditioning weakened instrumental responding in a 30-s S after 4, 22, and 66 sessions of instrumental training. Even extensive practice thus produced goal-directed action, not habit. Experiments 2 and 3 contrastingly found habit when the duration of S was increased from 30 s to 8 min. Experiment 4 then found habit with the 30-s S when it always contained a reinforcer; goal-directed action was maintained when reinforcers were earned at the same rate but occurred in only 50% of Ss (as in the previous experiments). The results challenge the view that habits are an inevitable consequence of repeated reinforcement (as in the law of effect) and instead suggest that discriminated habits develop when the reinforcer becomes predictable. Under those conditions, organisms may pay less attention to their behavior, much as they pay less attention to signals associated with predicted reinforcers in Pavlovian conditioning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Sydney Trask
- Department of Psychological Science, University of Vermont
| | - Pedro Vidal
- Department of Psychological Science, University of Vermont
| | - José A Alcalá
- Department of Psychological Science, University of Vermont
| | - Mark E Bouton
- Department of Psychological Science, University of Vermont
| |
Collapse
|
49
|
Abstract
Drug addiction or substance-use disorder is a chronically relapsing disorder that progresses through binge/intoxication, withdrawal/negative affect and preoccupation/anticipation stages. These stages represent diverse neurobiological mechanisms that are differentially involved in the transition from recreational to compulsive drug use and from positive to negative reinforcement. The progression from recreational to compulsive substance use is associated with downregulation of the brain reward systems and upregulation of the brain stress systems. Individual differences in the neurobiological systems that underlie the processing of reward, incentive salience, habits, stress, pain, and executive function may explain (i) the vulnerability to substance-use disorder; (ii) the diversity of emotional, motivational, and cognitive profiles of individuals with substance-use disorders; and (iii) heterogeneous responses to cognitive and pharmacological treatments. Characterization of the neuropsychological mechanisms that underlie individual differences in addiction-like behaviors is the key to understanding the mechanisms of addiction and development of personalized pharmacotherapy.
Collapse
Affiliation(s)
- Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
50
|
Hogarth L, Lam‐Cassettari C, Pacitti H, Currah T, Mahlberg J, Hartley L, Moustafa A. Intact goal‐directed control in treatment‐seeking drug users indexed by outcome‐devaluation and Pavlovian to instrumental transfer: critique of habit theory. Eur J Neurosci 2018; 50:2513-2525. [DOI: 10.1111/ejn.13961] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Lee Hogarth
- School of Psychology University of Exeter Exeter UK
- School of Psychology University of New South Wales Sydney NSW Australia
| | - Christa Lam‐Cassettari
- MARCS Institute for Brain, Behaviour and Development Western Sydney University Sydney NSW Australia
| | - Helena Pacitti
- School of Psychology University of New South Wales Sydney NSW Australia
| | - Tara Currah
- School of Psychology University of Exeter Exeter UK
| | - Justin Mahlberg
- School of Social Sciences and Psychology Western Sydney University Sydney NSW Australia
| | | | - Ahmed Moustafa
- MARCS Institute for Brain, Behaviour and Development Western Sydney University Sydney NSW Australia
- School of Social Sciences and Psychology Western Sydney University Sydney NSW Australia
| |
Collapse
|