1
|
La Loggia O, Antunes DF, Aubin-Horth N, Taborsky B. Social Complexity During Early Development has Long-Term Effects on Neuroplasticity in the Social Decision-Making Network. Mol Ecol 2025; 34:e17738. [PMID: 40116137 DOI: 10.1111/mec.17738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
In social species, early social experience shapes the development of appropriate social behaviours during conspecific interactions referred to as social competence. However, the underlying neuronal mechanisms responsible for the acquisition of social competence are largely unknown. A key candidate to influence social competence is neuroplasticity, which functions to restructure neural networks in response to novel experiences or alterations of the environment. One important mediator of this restructuring is the neurotrophin BDNF, which is well conserved among vertebrates. We studied the highly social fish Neolamprologus pulcher, in which the impact of early social experience on social competence has been previously shown. We investigated experimentally how variation in the early social environment impacts markers of neuroplasticity by analysing the relative expression of the bdnf gene and its receptors p75NTR and TrkB across nodes of the social decision-making network. In fish raised in larger groups, bdnf and TrkB were upregulated in the anterior tuberal nucleus, compared to fish raised in smaller groups, while TrkB was downregulated and bdnf was upregulated in the lateral part of the dorsal telencephalon. In the preoptic area (POA), all three genes were upregulated in fish raised in large groups, suggesting that early social experiences might lead to changes of the neuronal connectivity in the POA. Our results highlight the importance of early social experience in programming the constitutive expression of neuroplasticity markers, suggesting that the effects of early social experience on social competence might be due to changes in neuroplasticity.
Collapse
Affiliation(s)
- Océane La Loggia
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Diogo F Antunes
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et Des Systèmes, Université Laval, Quebec, Canada
| | - Barbara Taborsky
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Gilmour KM, Best C, Currie S. Using the reactive scope model to redefine the concept of social stress in fishes. J Exp Biol 2025; 228:jeb249395. [PMID: 40135434 DOI: 10.1242/jeb.249395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The term 'social stress' has traditionally referred to physiological stress responses induced by the behaviour of conspecifics, particularly aggression or agonistic behaviours. Here, we review the physiological consequences of social status in fishes using the reactive scope model (RSM) to explain the divergent physiological phenotypes of dominant and subordinate fish. The RSM plots levels of different physiological mediators (e.g. behaviour, glucocorticoid hormones) over time, using them to define functional ranges that differ in their consequences for the animal. We discuss differences in growth, reproduction and tolerance of environmental challenges, all of which are suppressed in subordinate individuals, and focus on the underlying mechanisms that give rise to these phenotypes. Repeated and/or continual activation of the hypothalamic-pituitary-interrenal (HPI) axis in subordinate fish can lead to prolonged elevation of cortisol, a key physiological mediator. In turn, this increases physiological 'wear and tear' in these individuals, lowering their reactive scope (i.e. the physiological range of a healthy animal) and increasing their susceptibility to homeostatic overload. That is, they experience social stress and, ultimately, their capacity to cope with environmental challenges is limited. By contrast, reactive scope is maintained in dominant individuals, and hence they are better able to tolerate environmental challenges. Redefining social stress in terms of the RSM allows us to overcome the ambiguities and limitations associated with the concept of stress.
Collapse
Affiliation(s)
- Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Carol Best
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Suzanne Currie
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
3
|
Clein RS, Warren MR, Neunuebel JP. Mice employ a bait-and-switch escape mechanism to de-escalate social conflict. PLoS Biol 2024; 22:e3002496. [PMID: 39406349 PMCID: PMC11479765 DOI: 10.1371/journal.pbio.3002496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/11/2024] [Indexed: 10/20/2024] Open
Abstract
Intraspecies aggression has profound ecological and evolutionary consequences, as recipients can suffer injuries, decreases in fitness, and become outcasts from social groups. Although animals implement diverse strategies to avoid hostile confrontations, the extent to which social influences affect escape tactics is unclear. Here, we used computational and machine-learning approaches to analyze complex behavioral interactions as mixed-sex groups of mice, Mus musculus, freely interacted. Mice displayed a rich repertoire of behaviors marked by changes in behavioral state, aggressive encounters, and mixed-sex interactions. A distinctive behavioral sequence consistently occurred after aggressive encounters, where males in submissive states quickly approached and transiently interacted with females immediately before the aggressor engaged with the same female. The behavioral sequences were also associated with substantially fewer physical altercations. Furthermore, the male's behavioral state could be predicted by distinct features of the behavioral sequence, such as kinematics and the latency to and duration of male-female interactions. More broadly, our work revealed an ethologically relevant escape strategy influenced by the presence of females that may serve as a mechanism for de-escalating social conflict and preventing consequential reductions in fitness.
Collapse
Affiliation(s)
- Rachel S. Clein
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Megan R. Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Joshua P. Neunuebel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Program, University of Delaware, Newark, Delaware, United States of America
- Data Science Institute, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
4
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
5
|
Antón-Galindo E, Adel MR, García-González J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in two zebrafish models. Transl Psychiatry 2024; 14:99. [PMID: 38374212 PMCID: PMC10876957 DOI: 10.1038/s41398-024-02801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain
| | - Maja R Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalunya, Spain
- Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- ICREA, Barcelona, Catalunya, Spain
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Catalunya, Spain.
| |
Collapse
|
6
|
Clein RS, Warren MR, Neunuebel JP. Automated behavioral analysis reveals that mice employ a bait-and-switch escape mechanism to de-escalate social conflict. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575321. [PMID: 38260649 PMCID: PMC10802557 DOI: 10.1101/2024.01.12.575321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intraspecies aggression has profound ecological and evolutionary consequences, as recipients can suffer injuries, decreases in fitness, and become outcasts from social groups. Although animals implement diverse strategies to avoid hostile confrontations, the extent to which social influences affect escape tactics is unclear. Here, we used computational and machine-learning approaches to analyze complex behavioral interactions as mixed-sex groups of mice, Mus musculus, freely interacted. Mice displayed a rich repertoire of behaviors marked by changes in behavioral state, aggressive encounters, and mixed-sex interactions. A prominent behavioral sequence consistently occurred after aggressive encounters, where males in submissive states quickly approached and transiently interacted with females immediately before the aggressor engaged with the same female. The behavioral sequences were also associated with substantially fewer physical altercations. Furthermore, the male's behavioral state and the interacting partners could be predicted by distinct features of the behavioral sequence, such as kinematics and the latency to and duration of male-female interactions. More broadly, our work revealed an ethologically relevant escape strategy influenced by the presence of females that may serve as a mechanism for de-escalating social conflict and preventing consequential reductions in fitness.
Collapse
Affiliation(s)
- Rachel S. Clein
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19713
| | - Megan R. Warren
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19713
- Emory University, Department of Biology, Atlanta, GA 30322
- Center for Translational Social Neuroscience, Emory National Primate Center, Atlanta, GA 30322
| | - Joshua P. Neunuebel
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19713
| |
Collapse
|
7
|
Ryvkin J, Omesi L, Kim YK, Levi M, Pozeilov H, Barak-Buchris L, Agranovich B, Abramovich I, Gottlieb E, Jacob A, Nässel DR, Heberlein U, Shohat-Ophir G. Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons. PLoS Genet 2024; 20:e1011054. [PMID: 38236837 PMCID: PMC10795991 DOI: 10.1371/journal.pgen.1011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Liora Omesi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Yong-Kyu Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Lital Barak-Buchris
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Avi Jacob
- The Kanbar scientific equipment center. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Antón-Galindo E, Adel M, García-Gonzalez J, Leggieri A, López-Blanch L, Irimia M, Norton WHJ, Brennan CH, Fernàndez-Castillo N, Cormand B. Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in a zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529711. [PMID: 36865197 PMCID: PMC9980121 DOI: 10.1101/2023.02.23.529711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the effect of rbfox1 deficiency on behaviour, we used rbfox1sa15940, a rbfox1 loss-of-function line. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 loss-of-function line with a different genetic background, rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that rbfox1 deficiency leads to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study thus highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Maja Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Judit García-Gonzalez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Icahn School of Medicine, Mount Sinai, NYC 10029, USA
| | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Laura López-Blanch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - William HJ Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades raras (CIBERER), Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalunya, 08028, Spain
- Institut de recerca Sant Joan de Déu, Espluges de Llobregat, Catalunya, 08950, Spain
| |
Collapse
|
9
|
Perdikaris P, Prouska P, Dermon CR. Social withdrawal and anxiety-like behavior have an impact on zebrafish adult neurogenesis. Front Behav Neurosci 2023; 17:1244075. [PMID: 37908201 PMCID: PMC10614005 DOI: 10.3389/fnbeh.2023.1244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Accumulating evidence highlights the key role of adult neurogenesis events in environmental challenges, cognitive functions and mood regulation. Abnormal hippocampal neurogenesis has been implicated in anxiety-like behaviors and social impairments, but the possible mechanisms remain elusive. Methods The present study questioned the contribution of altered excitation/inhibition as well as excessive neuroinflammation in regulating the neurogenic processes within the Social Decision-Making (SDM) network, using an adult zebrafish model displaying NMDA receptor hypofunction after sub-chronic MK-801 administration. For this, the alterations in cell proliferation and newborn cell densities were evaluated using quantitative 5-Bromo-2'-Deoxyuridine (BrdU) methodology. Results In short-term survival experiments. MK-801-treated zebrafish displayed decreased cell proliferation pattern within distinct neurogenic zones of telencephalic and preoptic SDM nodes, in parallel to the social withdrawal and anxiety-like comorbidity. BrdU+ cells co-expressed the pro-inflammatory marker IL-1β solely in MK-801-treated zebrafish, indicating a role of inflammation. Following the cessation of drug treatment, significant increases in the BrdU+ cell densities were accompanied by the normalization of the social and anxiety-like phenotype. Importantly, most labeled cells in neurogenic zones showed a radial glial phenotype while a population of newborn cells expressed the early neuronal marker TOAD or mGLuR5, the latter suggesting the possible involvement of metabotropic glutamate receptor 5 in neurogenic events. Discussion Overall, our results indicate the role of radial glial cell proliferation in the overlapping pathologies of anxiety and social disorders, observed in many neuropsychiatric disorders and possibly represent potential novel targets for amelioration of these symptoms.
Collapse
Affiliation(s)
| | | | - Catherine R. Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
10
|
Kumar H, Garg V, Kaur K, Kaur R. Role of Spirulina in Structural Remodeling of Synapse in Telencephalon of Chronic Unpredictable Stress Model of Zebrafish. Ann Neurosci 2023; 30:236-241. [PMID: 38020403 PMCID: PMC10662278 DOI: 10.1177/09727531231166202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Stress can affect the morphology and synaptic organization of the telencephalon. These structural changes at the cellular level can lead to the development of various psychopathologies. Purpose Given that the telencephalon plays a major role in stress responses, the current study aimed to investigate the role of Spirulina platensis as a neuroprotectant supplement in the early life of zebrafish in averting the alteration of synapse morphology in the telencephalon caused by chronic unpredictable stress (CUS) in the later stage. Methods 5dpf larvae were divided into two groups: one group was fed with a commercial fish diet and a second group with a 1% Spirulina-supplemented diet for 90 days. After 90 days, the adult zebrafish were exposed to CUS with different chronic stressors for 15 days. The synaptic plasticity was evaluated by morphometric analysis of synapse in telencephalon of zebrafish by transmission electron microscopy. Results The ultrastructural study demonstrated the protective role of Spirulina in the CUS model as no significant alterations in the length of the active zone, postsynaptic density, and synaptic cleft were observed as compared to the control group in the CUS model. Conclusion Thus, suggesting that the Spirulina supplementation can avert the remodeling effect of stress on synapse ultrastructure.
Collapse
Affiliation(s)
- Harender Kumar
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Vincy Garg
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Kawalpreet Kaur
- Department of Botany, SGGS College, Chandigarh, Punjab, India
| | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
11
|
Kareklas K, Teles MC, Nunes AR, Oliveira RF. Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology. J Neuroendocrinol 2023; 35:e13280. [PMID: 37165563 DOI: 10.1111/jne.13280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.
Collapse
Affiliation(s)
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
12
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
13
|
Kareklas K, Teles MC, Dreosti E, Oliveira RF. Autism-associated gene shank3 is necessary for social contagion in zebrafish. Mol Autism 2023; 14:23. [PMID: 37391856 PMCID: PMC10311831 DOI: 10.1186/s13229-023-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal
| | - Elena Dreosti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal.
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal.
| |
Collapse
|
14
|
Almeida MM, Cabrita E, Fatsini E. The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals (Basel) 2023; 13:ani13060978. [PMID: 36978519 PMCID: PMC10044175 DOI: 10.3390/ani13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Physical complexity adds physical enrichment to rearing conditions. This enrichment promotes fish welfare and reduces detrimental characteristics that fish develop in captivity. Senegalese sole (Solea senegalensis) is an important species for European aquaculture, where it is reared in intensive conditions using fibreglass tanks. However, reproductive dysfunctions present in this species do not allow it to complete its life cycle in captivity. Recently, dominance behaviour has been studied to try to solve this problem. The present study aimed to assess the effect of sand as environmental enrichment in the dominance behaviour and brain mRNA abundance of Senegalese sole juveniles. Four tanks of sole (n = 48 fish in total) were established in two different environments (with and without sand). Juveniles were subjected to dominance tests of feeding and territoriality. Behaviours analysed by video recordings related to the distance from the food delivered and harassment behaviour towards other individuals (e.g., resting of the head on another individual). In both environments, dominant sole were the first to feed, displayed more head-resting behaviour and dominated the area close to the feeding point, where the events were reduced in fish maintained in the sand. mRNA expression related to differentiation of dopamine neurons (nr4a2) and regulation of maturation (fshra) were significantly upregulated in dominant fish in the sand environment compared to dominants maintained without sand. The use of an enriched environment may affect Senegalese sole dominance, enhance welfare and possibly advance future maturation.
Collapse
|
15
|
Scaia MF, Trudeau VL, Somoza GM, Pandolfi M. Fighting cichlids: An integrated multimodal analysis to understand female and male aggression in Cichlasoma dimerus. Horm Behav 2023; 148:105301. [PMID: 36623433 DOI: 10.1016/j.yhbeh.2022.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023]
Abstract
Aggression has been historically linked to males and androgen levels and, even if females from different species also display aggressive behavior, female aggression is still widely understudied. The aim of the present work is to disentangle how sex differences in social plasticity can be explained by sex steroid hormone levels, gonadal state and/or morphometric characteristics. In this context, we performed intrasexual dyadic encounters to identify social plasticity after acquiring a winner or loser status in males and females of Cichlasoma dimerus. This integral analysis suggests that the reproductive and hormonal variables analyzed explain the behavioral variation among winner and loser males and females, and that there are significant differences between sexes and contest outcome when individual morphometric variables are excluded from the analysis. Interestingly, there are no sex differences in aggressive and submissive behaviors, and clustering into winners and losers is mainly explained by specific behavioral displays, such as bites, chases, approaches, passive copings, and escapes. Correlation heatmaps show a positive correlation between estradiol with aggression and a negative correlation with submission, suggesting estrogens may have a dual role regulating agonistic behavior. Finally, these results suggest that size difference can help to understand aggression in females but not in males, and that assessment of the opponent's body size is important to understand aggression also before the initiation of the contest in both sexes. Overall, this study constitutes an integral approach adding insights into the importance of reproductive and hormonal variables to understand social plasticity in males and females.
Collapse
Affiliation(s)
- María Florencia Scaia
- Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gustavo Manuel Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Argentina
| | - Matías Pandolfi
- Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Kung TA, Chen PJ. Exploring specific biomarkers regarding neurobehavioral toxicity of lead dioxide nanoparticles in medaka fish in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159268. [PMID: 36208768 DOI: 10.1016/j.scitotenv.2022.159268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nano-scale lead dioxide (nPbO2) is an industrial metal oxide nanoparticle that can be also formed as a corrosion by-product from chlorination of Pb-containing plumbing materials. nPbO2 governs release of toxic lead ion in drinking water and receiving organisms; however, its modes of toxic action regarding neurobehavioral toxicity remain unclear. This study evaluated the toxicity mechanism of nPbO2 (10 and 20 mg/L) versus its released Pb(II)aq (100 μg/L) in terms of aqueous chemistry, bioavailability and neurobehavioral toxicity to medaka fish in different water matrices. In very hard water (VHW), dissolved salts enhanced the aggregation and sedimentation of nPbO2, resulting in higher bioavailability and altered locomotion of treated fish than those fish exposed to nPbO2 in soft water with humic acid (SW + HA). Transcriptomic results identified six differentially expressed genes with greater altered expression with nPbO2 than the control or Pb(II)aq exposure. With VHW exposure, nPbO2 caused greater altered expression of genes involved in cell adhesion (nlgn1 and epd), cell cytoskeleton (α1-tubulin), and relevant apoptosis (c-fos, birc5.1-a and casp3), as compared with SW + HA or Pb(II)aq exposure. This study provides novel molecular mechanistic insights into the neurobehavioral nanotoxicity using nPbO2 and medaka fish as surrogates, suggesting nPbO2 promotes neurobehavioral dysfunction, leading to adverse outcomes from gene alteration to the organismal level. The identified biomarkers responded specifically to the nPbO2-induced neurotoxicity in different water matrices can be used for evaluating toxicity risks of small metal oxide particulates on human or aquatic life under environmentally relevant exposures.
Collapse
Affiliation(s)
- Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Food Safety Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
17
|
Social Enhancement of Adult Neurogenesis in Zebrafish is Not Regulated by Cortisol. Neuroscience 2023; 509:51-62. [PMID: 36400322 DOI: 10.1016/j.neuroscience.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. This lack of consistency may be explained by methodological differences across studies, namely in the stimuli and/or cortisol treatments used. Here, we tested the effects of the social environment on adult neurogenesis, considering a positive and a negative social context, and different durations of cortisol exposure. We hypothesise that there is an interaction between the valence of the social environment and cortisol, such that elevated acute cortisol experienced during social interactions only have a detrimental effect on neurogenesis in negative social contexts. Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.
Collapse
|
18
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
19
|
A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci 2022; 12:brainsci12091147. [PMID: 36138883 PMCID: PMC9496774 DOI: 10.3390/brainsci12091147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are complex disorders which can be associated with many comorbidities and exhibit multifactorial-dependent phenotypes. An important characteristic is represented by the early onset of the symptoms, during childhood or young adulthood, with a great impact on the socio-cognitive functioning of the affected individuals. Thus, the aim of our review is to describe and to argue the necessity of early developmental stages zebrafish models, focusing on NDDs, especially autism spectrum disorders (ASD) and also on schizophrenia. The utility of the animal models in NDDs or schizophrenia research remains quite controversial. Relevant discussions can be opened regarding the specific characteristics of the animal models and the relationship with the etiologies, physiopathology, and development of these disorders. The zebrafish models behaviors displayed as early as during the pre-hatching embryo stage (locomotor activity prone to repetitive behavior), and post-hatching embryo stage, such as memory, perception, affective-like, and social behaviors can be relevant in ASD and schizophrenia research. The neurophysiological processes impaired in both ASD and schizophrenia are generally highly conserved across all vertebrates. However, the relatively late individual development and conscious social behavior exhibited later in the larval stage are some of the most important limitations of these model animal species.
Collapse
|
20
|
Caron A, Trzuskot L, Lindsey BW. Uncovering the spectrum of adult zebrafish neural stem cell cycle regulators. Front Cell Dev Biol 2022; 10:941893. [PMID: 35846369 PMCID: PMC9277145 DOI: 10.3389/fcell.2022.941893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neural stem and progenitor cells (aNSPCs) persist lifelong in teleost models in diverse stem cell niches of the brain and spinal cord. Fish maintain developmental stem cell populations throughout life, including both neuro-epithelial cells (NECs) and radial-glial cells (RGCs). Within stem cell domains of the brain, RGCs persist in a cycling or quiescent state, whereas NECs continuously divide. Heterogeneous populations of RGCs also sit adjacent the central canal of the spinal cord, showing infrequent proliferative activity under homeostasis. With the rise of the zebrafish (Danio rerio) model to study adult neurogenesis and neuroregeneration in the central nervous system (CNS), it has become evident that aNSPC proliferation is regulated by a wealth of stimuli that may be coupled with biological function. Growing evidence suggests that aNSPCs are sensitive to environmental cues, social interactions, nutrient availability, and neurotrauma for example, and that distinct stem and progenitor cell populations alter their cell cycle activity accordingly. Such stimuli appear to act as triggers to either turn on normally dormant aNSPCs or modulate constitutive rates of niche-specific cell cycle behaviour. Defining the various forms of stimuli that influence RGC and NEC proliferation, and identifying the molecular regulators responsible, will strengthen our understanding of the connection between aNSPC activity and their biological significance. In this review, we aim to bring together the current state of knowledge on aNSPCs from studies investigating the zebrafish CNS, while highlighting emerging cell cycle regulators and outstanding questions that will help to advance this fascinating field of stem cell biology.
Collapse
Affiliation(s)
- Aurélien Caron
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lidia Trzuskot
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Benjamin W Lindsey
- Laboratory of Neural Stem Cell Plasticity and Regeneration, Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
22
|
Lubeckyj RA, Sun L. Laser capture microdissection-capillary zone electrophoresis-tandem mass spectrometry (LCM-CZE-MS/MS) for spatially resolved top-down proteomics: a pilot study of zebrafish brain. Mol Omics 2022; 18:112-122. [PMID: 34935839 PMCID: PMC9066772 DOI: 10.1039/d1mo00335f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mass spectrometry (MS)-based spatially resolved top-down proteomics (TDP) of tissues is crucial for understanding the roles played by microenvironmental heterogeneity in the biological functions of organs and for discovering new proteoform biomarkers of diseases. There are few published spatially resolved TDP studies. One of the challenges relates to the limited performance of TDP for the analysis of spatially isolated samples using, for example, laser capture microdissection (LCM) because those samples are usually mass-limited. We present the first pilot study of LCM-capillary zone electrophoresis (CZE)-MS/MS for spatially resolved TDP and used zebrafish brain as the sample. The LCM-CZE-MS/MS platform employed a non-ionic detergent and a freeze-thaw method for efficient proteoform extraction from LCM isolated brain sections followed by CZE-MS/MS without any sample cleanup step, ensuring high sensitivity. Over 400 proteoforms were identified in a CZE-MS/MS analysis of one LCM brain section via consuming the protein content of roughly 250 cells. We observed drastic differences in proteoform profiles between two LCM brain sections isolated from the optic tectum (Teo) and telencephalon (Tel) regions. Proteoforms of three proteins (npy, penkb, and pyya) having neuropeptide hormone activity were exclusively identified in the isolated Tel section. Proteoforms of reticulon, myosin, and troponin were almost exclusively identified in the isolated Teo section, and those proteins play essential roles in visual and motor activities. The proteoform profiles accurately reflected the main biological functions of the Teo and Tel regions of the brain. Additionally, hundreds of post-translationally modified proteoforms were identified.
Collapse
Affiliation(s)
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Scaia MF, Akinrinade I, Petri G, Oliveira RF. Sex Differences in Aggression Are Paralleled by Differential Activation of the Brain Social Decision-Making Network in Zebrafish. Front Behav Neurosci 2022; 16:784835. [PMID: 35250500 PMCID: PMC8890505 DOI: 10.3389/fnbeh.2022.784835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Although aggression is more prevalent in males, females also express aggressive behaviors and in specific ecological contexts females can be more aggressive than males. The aim of this work is to assess sex differences in aggression and to characterize the patterns of neuronal activation of the social-decision making network (SDMN) in response to intra-sexual aggression in both male and female zebrafish. Adult fish were exposed to social interaction with a same-sex opponent and all behavioral displays, latency, and time of resolution were quantified. After conflict resolution, brains were sampled and sex differences on functional connectivity throughout the SDMN were assessed by immunofluorescence of the neuronal activation marker pS6. Results suggest that both sexes share a similar level of motivation for aggression, but female encounters show shorter conflict resolution and a preferential use of antiparallel displays instead of overt aggression, showing a reduction of putative maladaptive effects. Although there are no sex differences in the neuronal activation in any individual brain area from the SDMN, agonistic interactions increased neuronal activity in most brain areas in both sexes. Functional connectivity was assessed using bootstrapped adjacency matrices that capture the co-activation of the SDMN nodes. Male winners increased the overall excitation and showed no changes in inhibition across the SDMN, whereas female winners and both male and female losers showed a decrease in both excitation and inhibition of the SDMN in comparison to non-interacting control fish. Moreover, network centrality analysis revealed both shared hubs, as well as sex-specific hubs, between the sexes for each social condition in the SDMN. In summary, a distinct neural activation pattern associated with social experience during fights was found for each sex, suggesting a sex-specific differential activation of the social brain as a consequence of social experience. Overall, our study adds insights into sex differences in agonistic behavior and on the neuronal architecture of intrasexual aggression in zebrafish.
Collapse
Affiliation(s)
- María Florencia Scaia
- Instituto de Biodiversidad y Biología Experimental y Aplicada—CONICET, Ciudad Auntónoma de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neuroendocrinología y Comportamiento, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ibukun Akinrinade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Giovanni Petri
- ISI Foundation and ISI Global Science Foundation, Torino, Italy
| | - Rui F. Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA– Instituto Universitário, Lisbon, Portugal
- Champalimaud Neuroscience Programme, Lisbon, Portugal
- *Correspondence: Rui F. Oliveira
| |
Collapse
|
24
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
25
|
Romano D, Stefanini C. Robot-Fish Interaction Helps to Trigger Social Buffering in Neon Tetras: The Potential Role of Social Robotics in Treating Anxiety. Int J Soc Robot 2021. [DOI: 10.1007/s12369-021-00829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe emerging field of social robotics comprises several multidisciplinary applications. Anxiety and stress therapies can greatly benefit by socio-emotional support provided by robots, although the intervention of social robots as effective treatment needs to be fully understood. Herein, Paracheirodon innesi, a social fish species, was used to interact with a robotic fish to understand intrinsic and extrinsic mechanisms causing anxiety, and how social robots can be effectively used as anxiety treatments. In the first experiment we tested the effects of a conspecific-mimicking robot on the fish tendency to swim in the bottom when transferred in a new tank. Here, P. innesi spent a significantly longer time in the upper section of the test tank when the robotic fish was present, clearly indicating a reduction of their state of anxiety due to social stimuli. The second experiment was based on a modification of the dark/light preference test, since many teleost fish are scototactic, preferring dark environments. However, when the robotic fish was placed in the white half of the test tank, P. innesi individuals swam longer in this section otherwise aversive. Social support provided by the robotic fish in both experiments produced a better recovery from anxiety due to social buffering, a phenomenon regulated by specific neural mechanisms. This study provides new insights on the evolution and mechanisms of social buffering to reduce anxiety, as well as on the use of social robots as an alternative to traditional approaches in treating anxiety symptoms.
Collapse
|
26
|
Hubená P, Horký P, Slavík O. Fish self-awareness: limits of current knowledge and theoretical expectations. Anim Cogn 2021; 25:447-461. [PMID: 34655023 DOI: 10.1007/s10071-021-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Animal self-awareness is divided into three levels: bodily, social, and introspective self-awareness. Research has focused mainly on the introspection of so-called higher organisms such as mammals. Herein, we turn our attention to fish and provide opinions on their self-awareness based on a review of the scientific literature. Our specific aims are to discuss whether fish (A) could have a neural substrate supporting self-awareness and whether they display signs of (B) social and (C) introspective self-awareness. The present knowledge does not exclude the possibility that fish could have a simple neocortex or other structures that support certain higher cognitive processes, as the function of the primate cerebral cortex can be replaced by other neurological structures. Fish are known to display winner, loser, and audience effects, which could be interpreted as signs of social self-awareness. The audience effect may be explained not only by ethological cost and benefit theory but also by the concept of public self-awareness, which comes from human studies. The behavioural and neural manifestations of depression may be induced in fish under social subordination and may be viewed as certain awareness of a social status. The current findings on fish introspective self-awareness have been debated in the scientific community and, therefore, demand replication to provide more evidence. Further research is needed to verify the outlined ideas; however, the current knowledge indicates that fish are capable of certain higher cognitive processes, which raises questions and implications regarding ethics and welfare in fish-related research and husbandry.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| |
Collapse
|
27
|
Antunes DF, Teles MC, Zuelling M, Friesen CN, Oliveira RF, Aubin‐Horth N, Taborsky B. Early social deprivation shapes neuronal programming of the social decision-making network in a cooperatively breeding fish. Mol Ecol 2021; 30:4118-4132. [PMID: 34133783 PMCID: PMC8457231 DOI: 10.1111/mec.16019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
The early social environment an animal experiences may have pervasive effects on its behaviour. The social decision-making network (SDMN), consisting of interconnected brain nuclei from the forebrain and midbrain, is involved in the regulation of behaviours during social interactions. In species with advanced sociality such as cooperative breeders, offspring are exposed to a large number and a great diversity of social interactions every day of their early life. This diverse social environment may have life-long consequences on the development of several neurophysiological systems within the SDMN, although these effects are largely unknown. We studied these life-long effects in a cooperatively breeding fish, Neolamprologus pulcher, focusing on the expression of genes involved in the monoaminergic and stress response systems in the SDMN. N. pulcher fry were raised until an age of 2 months either with their parents, subordinate helpers and same-clutch siblings (+F), or with same-clutch siblings only (-F). Analysis of the expression of glucocorticoid receptor, mineralocorticoid receptor, corticotropin releasing factor, dopamine receptors 1 and 2, serotonin transporter and DNA methyltransferase 1 genes showed that early social experiences altered the neurogenomic profile of the preoptic area. Moreover, the dopamine receptor 1 gene was up-regulated in the preoptic area of -F fish compared to +F fish. -F fish also showed up-regulation of GR1 expression in the dorsal medial telencephalon (functional equivalent to the basolateral amygdala), and in the dorsolateral telencephalon (functional equivalent to the hippocampus). Our results suggest that early social environment has life-long effects on the development of several neurophysiological systems within the SDMN.
Collapse
Affiliation(s)
- Diogo F. Antunes
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Magda C. Teles
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
| | - Matthew Zuelling
- Division of Evolutionary EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| | - Caitlin N. Friesen
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | - Rui F. Oliveira
- Instituto Gulbenkian de CiênciaOeirasPortugal
- ISPA‐Instituto UniversitárioLisbonPortugal
- Champalimaud ResearchLisbonPortugal
| | - Nadia Aubin‐Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Barbara Taborsky
- Division of Behavioural EcologyInstitute of Ecology and EvolutionUniversity of BernHinterkappelenSwitzerland
| |
Collapse
|
28
|
Dunlap KD, Teles MC, Oliveira RF. Social stimuli increase activity of adult-born cells in the telencephalon of zebrafish, Danio rerio. J Exp Biol 2021; 224:271856. [PMID: 34223613 DOI: 10.1242/jeb.242253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Fish have particularly high levels of adult neurogenesis, and this high neurogenic capacity may contribute to behavioural plasticity. While it is known that adult-born cells can differentiate into neurons and incorporate into neural circuits, it is unclear whether they are responsive to external stimuli and thereby capable of contributing to behavioural change. We tested whether cells born in the telencephalon of adult zebrafish are activated by social stimuli. We marked cell birth with BrdU and, 40 d later, exposed fish to brief (15 min) visual social stimuli and assayed cellular activity through immunolocalization of phospho-S6-ribosomal protein (pS6). BrdU+/pS6+ colabeled cells were found in six brain regions, and, in four regions (D, Dl, Dm and POA), the number of colabelled cells and fraction of BrdU+ cells that labeled pS6+ increased during social stimulation. These results are consistent with the hypothesis that adult-born neurons play a role in regulating social behaviour.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciências, Oeiras, Portugal.,ISPA-Instituto Universitário, Lisboa, Portugal.,Champalimaud Neuroscience Programme, Lisboa, Portugal
| |
Collapse
|
29
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
30
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
31
|
Lopatina OL, Panina YA, Malinovskaya NA, Salmina AB. Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior. Rev Neurosci 2020; 32:131-142. [PMID: 33550784 DOI: 10.1515/revneuro-2020-0077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.
Collapse
Affiliation(s)
- Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russia
| | - Yulia A Panina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
32
|
Fu J, Guo O, Zhen Z, Zhen J. Essential Functions of the Transcription Factor Npas4 in Neural Circuit Development, Plasticity, and Diseases. Front Neurosci 2020; 14:603373. [PMID: 33335473 PMCID: PMC7736240 DOI: 10.3389/fnins.2020.603373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Signaling from the synapse to nucleus is mediated by the integration and propagation of both membrane potential changes (postsynaptic potentials) and intracellular second messenger cascades. The electrical propagation of postsynaptic potentials allows for rapid neural information processing, while propagating second messenger pathways link synaptic activity to the transcription of genes required for neuronal survival and adaptive changes (plasticity) underlying circuit formation and learning. The propagation of activity-induced calcium signals to the cell nucleus is a major synapse-to-nucleus communication pathway. Neuronal PAS domain protein 4 (Npas4) is a recently discovered calcium-dependent transcription factor that regulates the activation of genes involved in the homeostatic regulation of excitatory–inhibitory balance, which is critical for neural circuit formation, function, and ongoing plasticity, as well as for defense against diseases such as epilepsy. Here, we summarize recent findings on the neuroprotective functions of Npas4 and the potential of Npas4 as a therapeutic target for the treatment of acute and chronic diseases of the central nervous system.
Collapse
Affiliation(s)
- Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Zhihang Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
33
|
Kisspeptin-1 regulates forebrain dopaminergic neurons in the zebrafish. Sci Rep 2020; 10:19361. [PMID: 33168887 PMCID: PMC7652893 DOI: 10.1038/s41598-020-75777-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC–MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
Collapse
|
34
|
Shen C, Zhou Y, Tang C, He C, Zuo Z. Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2020; 256:127106. [PMID: 32447115 DOI: 10.1016/j.chemosphere.2020.127106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Mepanipyrim is a widely used fungicide, and residues of mepanipyrim are frequently detected in commodities. However, the neurotoxicity and underlying mechanisms of mepanipyrim are still insufficiently understood. In this study, zebrafish embryos at 0.5-1.0 post-fertilization hours (hpf) were exposed to 0.1, 1, 10 and 100 μg/L mepanipyrim for 7 days. Our results showed that mepanipyrim could cause the locomotor hyperactivity and increase the concentration of γ-amino butyric acid (GABA) and the Na+/K+- and Ca2+-ATPase activities in zebrafish larvae. We have conducted the RNA-sequence and RT-qPCR to analyze the gene expressions. The mRNA expression levels of calcium/sodium ion conduction associated genes were observably up-regulated, demonstrating that mepanipyrim could enhance the cell energy metabolism, the synaptic transmission and skeletal muscle contraction, which were consistent with the locomotor hyperactivity. Meanwhile, exposure to mepanipyrim could significantly change the gene expression levels of gad1, bdnf, nlgn1, and type A and B GABA receptors in zebrafish larvae. This is the first study focusing on the underlying mechanisms of the neurotoxic effects that are induced by mepanipyrim.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
35
|
Fenske L, Concato AC, Vanin AP, Tamagno WA, de Oliveira Sofiatti JR, Treichel H, da Rosa JGS, Barcellos LJG, Kaizer RR. 17-α-Ethinylestradiol modulates endocrine and behavioral responses to stress in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29341-29351. [PMID: 32440876 DOI: 10.1007/s11356-020-09318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.
Collapse
Affiliation(s)
- Lurian Fenske
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Ani Carla Concato
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Ana Paula Vanin
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Wagner Antonio Tamagno
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil
| | - Jéssica Reis de Oliveira Sofiatti
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | - Helen Treichel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil
| | | | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rosilene R Kaizer
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal da Fronteira Sul, Rodovia RS 135, Km 72, Erechim, RS, 99700-970, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Sertão, Rodovia RS 135, Km 25, Sertão, RS, 99170-000, Brazil.
| |
Collapse
|
36
|
Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. PLoS Genet 2020; 16:e1008831. [PMID: 32555673 PMCID: PMC7299326 DOI: 10.1371/journal.pgen.1008831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/05/2020] [Indexed: 01/13/2023] Open
Abstract
Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates. Agonistic encounters induce changes in the brain and behavior, but their underlying molecular mechanisms remain poorly understood. The fighting fish Betta splendens are small freshwater fish that are well known for their aggressiveness and are widely used to study aggression. Here, by measuring aggressive behavior displays (bite/strike/surface-breathing) between two opponents during fighting, we demonstrate that the two opponents in each fighting pair showed similar fighting configurations by influencing each other. In addition, we compared brain gene expression between opponents and showed synchronization of gene expression within a fighting pair, leading to pair-specific synchronization in genes associated with ion transport, synapse function, and learning and memory. This study presents the possibility that similar behaviors in pairs of animals under similar conditions may trigger synchronizing waves of transcription between the individuals, providing a hint to support the idea that fighting behaviors contain cooperative aspects at the molecular level.
Collapse
|
37
|
Sulawesi Crested Macaque (Macaca nigra) Grooming Networks Are Robust to Perturbation While Individual Associations Are More Labile. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractSocial and environmental disturbance occurs naturally, and species in bonded social groups should be resilient to it. Empirical evidence of social responses to disturbance in primates, however, remains limited. We constructed social networks using group-level scan samples (N = 299) to test the robustness of grooming networks in a captive group of 20 Sulawesi crested macaques (Macaca nigra) to two management interventions involving environmental and social disturbance. During the first, the institution removed six castrated males and one female, contracepted six of the nine remaining females, and moved the group to a new enclosure. The second involved the introduction of a novel, reproductive male five weeks later. Networks remained stable following the first intervention. However, after introduction of the male, the number of grooming partners and the frequency of grooming with non-maternal kin increased in female-only networks. We observed less marked increases in the grooming frequency and number of grooming partners in whole group networks. Ten weeks later, network structure was more similar to that of pre-intervention networks than post-intervention networks. Our results suggest that reproductive males play a more important role in structuring Sulawesi crested macaque social networks than castrated males, as networks expanded and relationships between non-maternal kin occurred more frequently after introduction of the reproductive male. However, network responses to interventions appeared to be temporary as networks following a period of acclimation more closely resembled pre-intervention networks than post-intervention networks. Our study demonstrates the utility of social network analysis for understanding the impact of disturbance on stable social groups.
Collapse
|
38
|
Shahar OD, Schuman EM. Large-scale cell-type-specific imaging of protein synthesis in a vertebrate brain. eLife 2020; 9:50564. [PMID: 32091983 PMCID: PMC7048392 DOI: 10.7554/elife.50564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Despite advances in methods to detect protein synthesis, it has not been possible to measure endogenous protein synthesis levels in vivo in an entire vertebrate brain. We developed a transgenic zebrafish line that allows for cell-type-specific labeling and imaging of nascent proteins in the entire animal. By replacing leucine with glycine in the zebrafish MetRS-binding pocket (MetRS-L270G), we enabled the cell-type-specific incorporation of the azide-bearing non-canonical-amino-acid azidonorleucine (ANL) during protein synthesis. Newly synthesized proteins were then labeled via 'click chemistry'. Using a Gal4-UAS-ELAV3 line to express MetRS-L270G in neurons, we measured protein synthesis intensities across the entire nervous system. We visualized endogenous protein synthesis and demonstrated that seizure-induced neural activity results in enhanced translation levels in neurons. This method allows for robust analysis of endogenous protein synthesis in a cell-type-specific manner, in vivo at single-cell resolution.
Collapse
|
39
|
Abstract
Zebrafish (Danio rerio) are highly social animals that engage in a diverse variety of nonreproductive social behaviors that emerge as early as 14 days postfertilization (dpf). However, we observe considerable behavioral variability at this stage, and comparisons across studies are potentially complicated both by chronological gaps in measurements and inconsistencies in developmental staging. To address these issues, we adapted our assay for social orienting and cueing in the adult zebrafish and used it to probe behavior in a critical window of larval development. In addition, we performed measurements of body length and tested a cohort of larvae with impaired growth to understand if this morphological feature is predictive of individual sociality. We report that zebrafish exhibit increasingly complex social behaviors between 10 and 16 dpf, including place preference, orienting, and social cueing. Furthermore, social behavior is related to standard length on an individual basis beginning at 14 dpf, such that developmentally stunted 14 dpf zebrafish raised on dry feed do not exhibit social behaviors, suggesting some morphological features are more predictive than chronological age. This highly variable and early stage in development provides an opportunity to further understand how genetic and environmental factors affect the assembly of neural circuits underlying complex behaviors.
Collapse
|
40
|
Morandini L, Ramallo MR, Scaia MF, Höcht C, Somoza GM, Pandolfi M. Dietary L-tryptophan modulates agonistic behavior and brain serotonin in male dyadic contests of a cichlid fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:867-880. [PMID: 31691094 DOI: 10.1007/s00359-019-01373-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 02/03/2023]
Abstract
Although some studies have investigated the effects of dietary L-tryptophan on agonistic behavior, research on adult fish specimens is still lacking. Moreover, submissive behaviors have been generally overlooked. We focused on agonistic behavior between males of the cichlid fish Cichlasoma dimerus, in dyadic encounters held in a novel context after being fed or not with an L-tryptophan enriched diet (TRP) for 2 weeks. We arranged three different dyads: control/control (control conditions: not TRP enriched), control/TRP, and TRP/TRP. We also registered the response of the brain serotonergic system in four brain regions. TRP/TRP dyads showed higher latencies to first attack, lower overall aggression, and lower proportions of bites and passive copings (submissive display) compared to control/control. TRP dominant males performed fewer bites with respect to controls, and subordinate males opposed to TRP males showed fewer passive copings. Higher serotonergic activities were found in subordinates' optic tectum and in the telencephalon and preoptic area/hypothalamus of TRP males. Altogether, results point out that dietary L-tryptophan reduced males' motivation to attack and dominant aggression, which consequently influenced subordinate agonistic repertory. In addition, males within TRP/TRP dyads showed a switch in their behavioral agonistic repertory. These behavioral outcomes were probably due to modifications at brain serotonergic functioning.
Collapse
Affiliation(s)
- L Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - M R Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - M F Scaia
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - C Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2 (B 7130IWA), Chascomús, Buenos Aires, Argentina
| | - M Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, FCEN, UBA e IBBEA, CONICET-UBA, Intendente Güiraldes 2160, Pabellón 2, Piso 4°, Lab. 26, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
41
|
|
42
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
43
|
Gubert C, Hannan AJ. Environmental enrichment as an experience-dependent modulator of social plasticity and cognition. Brain Res 2019; 1717:1-14. [DOI: 10.1016/j.brainres.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
|
44
|
Mustafa A, Thörnqvist PO, Roman E, Winberg S. The aggressive spiegeldanio, carrying a mutation in the fgfr1a gene, has no advantage in dyadic fights with zebrafish of the AB strain. Behav Brain Res 2019; 370:111942. [PMID: 31085203 DOI: 10.1016/j.bbr.2019.111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/25/2023]
Abstract
Zebrafish which carries a mutation in the fibroblast growth factor receptor 1A (fgfr1a), also known as spiegeldanio (spd), has previously been reported to be bolder and more aggressive than wildtype (AB) zebrafish. However, in previous studies aggression has been quantified in mirror tests. In dyadic fights the behavior of the combatants is modified by the behavior of their opponent, and fighting a mirror has been reported to have different effects on brain gene expression and brain monoaminergic systems. In the present study aggression was quantified in fgfr1a mutants and AB zebrafish using a mirror test after which the fish were allowed to interact in pairs, either consisting of two fgfr1a mutants or one AB and one fgfr1a mutant fish. Following dyadic interaction aggressive behavior was again quantified in individual fish in a second mirror test after which the fish were sacrificed and brain tissue analyzed for monoamines and monoamine metabolites. The results confirm that fgfr1a mutants are more aggressive than AB zebrafish in mirror tests. However, fgfr1a mutant fish did not have any advantage in fights for social dominance, and agonistic behavior of fgfr1a mutants did not differ from that of AB fish during dyadic interactions. Moreover, as the AB fish, fgfr1a mutant fish losing dyadic interactions showed a typical loser effect and social subordination resulted in an activation of the brain serotonergic system in fgfr1a mutants as well as in AB fish. Overall the effects of dyadic interaction were similar in fgfr1a mutant fish and zebrafish of the AB strain.
Collapse
Affiliation(s)
- Arshi Mustafa
- Department of Neuroscience, Uppsala University, P.O. Box 593, SE-751 24, Uppsala, Sweden; Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-75236, Sweden
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Uppsala University, P.O. Box 593, SE-751 24, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, P.O. Box 593, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
45
|
Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci 2019; 20:ijms20061296. [PMID: 30875831 PMCID: PMC6471844 DOI: 10.3390/ijms20061296] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
For the past few years there has been an exponential increase in the use of animal models to confirm the pathogenicity of candidate disease-causing genetic variants found in patients. One such animal model is the zebrafish. Despite being a non-mammalian animal, the zebrafish model has proven its potential in recapitulating the phenotypes of many different human genetic disorders. This review will focus on recent advances in the modeling of neurodevelopmental disorders in zebrafish, covering aspects from early brain development to techniques used for modulating gene expression, as well as how to best characterize the resulting phenotypes. We also review other existing models of neurodevelopmental disorders, and the current efforts in developing and testing compounds with potential therapeutic value.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark and the Novo Nordisk Foundation for Stem cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
46
|
Maruska K, Soares MC, Lima-Maximino M, Henrique de Siqueira-Silva D, Maximino C. Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res 2019; 1711:156-172. [PMID: 30684457 DOI: 10.1016/j.brainres.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Social plasticity, defined as the ability to adaptively change the expression of social behavior according to previous experience and to social context, is a key ecological performance trait that should be viewed as crucial for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of evolutionary relevant questions that can be asked. Second, that diversity also suggests translational relevance, since it is more likely that "core" mechanisms of social plasticity are discovered by analyzing a wider variety of social arrangements than relying on a single species. We analyze examples of social plasticity across fish species with different social organizations, concluding that a "core" mechanism is the initiation of behavioral shifts through the modulation of a conserved "social decision-making network", along with other relevant brain regions, by monoamines, neuropeptides, and steroid hormones. The consolidation of these shifts may be mediated via neurogenomic adjustments and regulation of the expression of plasticity-related molecules (transcription factors, cell cycle regulators, and plasticity products).
Collapse
Affiliation(s)
- Karen Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Monica Lima-Maximino
- Laboratório de Biofísica e Neurofarmacologia, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil; Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil; Grupo de Estudos em Reprodução de Peixes Amazônicos, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Caio Maximino
- Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
47
|
Bloch NI, Corral-López A, Buechel SD, Kotrschal A, Kolm N, Mank JE. Early neurogenomic response associated with variation in guppy female mate preference. Nat Ecol Evol 2018; 2:1772-1781. [PMID: 30297748 PMCID: PMC6349141 DOI: 10.1038/s41559-018-0682-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Understanding the evolution of mate choice requires dissecting the mechanisms of female preference, particularly how these differ among social contexts and preference phenotypes. Here we study the female neurogenomic response after only 10 minutes of mate exposure in both a sensory component (optic tectum) and a decision-making component (telencephalon) of the brain. By comparing the transcriptional response between females with and without preferences for colorful males, we identified unique neurogenomic elements associated with the female preference phenotype that are not present in females without preference. Network analysis revealed different properties for this response at the sensory-processing and the decision-making levels, and showed that this response is highly centralized in the telencephalon. Furthermore, we identified an additional set of genes that vary in expression across social contexts, beyond mate evaluation. We show that transcription factors among those loci are predicted to regulate the transcriptional response of the genes we found to be associated with female preference.
Collapse
Affiliation(s)
- Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
|
49
|
Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. Forebrain Control of Behaviorally Driven Social Orienting in Zebrafish. Curr Biol 2018; 28:2445-2451.e3. [PMID: 30057306 DOI: 10.1016/j.cub.2018.06.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
Deficits in social engagement are diagnostic of multiple neurodevelopmental disorders, including autism and schizophrenia [1]. Genetically tractable animal models like zebrafish (Danio rerio) could provide valuable insight into developmental factors underlying these social impairments, but this approach is predicated on the ability to accurately and reliably quantify subtle behavioral changes. Similarly, characterizing local molecular and morphological phenotypes requires knowledge of the neuroanatomical correlates of social behavior. We leveraged behavioral and genetic tools in zebrafish to both refine our understanding of social behavior and identify brain regions important for driving it. We characterized visual social interactions between pairs of adult zebrafish and discovered that they perform a stereotyped orienting behavior that reflects social attention [2]. Furthermore, in pairs of fish, the orienting behavior of one individual is the primary factor driving the same behavior in the other individual. We used manual and genetic lesions to investigate the forebrain contribution to this behavior and identified a population of neurons in the ventral telencephalon whose ablation suppresses social interactions, while sparing other locomotor and visual behaviors. These neurons are cholinergic and express the gene encoding the transcription factor Lhx8a, which is required for development of cholinergic neurons in the mouse forebrain [3]. The neuronal population identified in zebrafish lies in a region homologous to mammalian forebrain regions implicated in social behavior such as the lateral septum [4]. Our data suggest that an evolutionarily conserved population of neurons controls social orienting in zebrafish.
Collapse
Affiliation(s)
- Sarah J Stednitz
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Erin M McDermott
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Denver Ncube
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alexandra Tallafuss
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
50
|
Lindsey BW, Hall ZJ, Heuzé A, Joly JS, Tropepe V, Kaslin J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog Neurobiol 2018; 170:99-114. [PMID: 29902500 DOI: 10.1016/j.pneurobio.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/20/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
Neural stem and progenitor cells (NSPCs) are the primary source of new neurons in the brain and serve critical roles in tissue homeostasis and plasticity throughout life. Within the vertebrate brain, NSPCs are located within distinct neurogenic niches differing in their location, cellular composition, and proliferative behaviour. Heterogeneity in the NSPC population is hypothesized to reflect varying capacities for neurogenesis, plasticity and repair between different neurogenic zones. Since the discovery of adult neurogenesis, studies have predominantly focused on the behaviour and biological significance of adult NSPCs (aNSPCs) in rodents. However, compared to rodents, who show lifelong neurogenesis in only two restricted neurogenic niches, zebrafish exhibit constitutive neurogenesis across multiple stem cell niches that provide new neurons to every major brain division. Accordingly, zebrafish are a powerful model to probe the unique cellular and molecular profiles of NSPCs and investigate how these profiles govern tissue homeostasis and regenerative plasticity within distinct stem cell populations over time. Amongst the NSPC populations residing in the zebrafish central nervous system (CNS), proliferating radial-glia, quiescent radial-glia and neuro-epithelial-like cells comprise the majority. Here, we provide insight into the extent to which these distinct NSPC populations function and mature during development, respond to experience, and contribute to successful CNS regeneration in teleost fish. Together, our review brings to light the dynamic biological roles of these individual NSPC populations and showcases their diverse regenerative modes to achieve vertebrate brain repair later in life.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ontario, Canada; Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| | - Zachary J Hall
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Aurélie Heuzé
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Jean-Stéphane Joly
- CASBAH INRA group, UMR9197 Neuro-PSI, CNRS, 91 198, Gif-sur-Yvette, France.
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada.
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, VIC, Australia.
| |
Collapse
|