1
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Vojnović Milutinović D, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other's Neurobehavioral Effects in Female Rats. Int J Mol Sci 2024; 25:11721. [PMID: 39519293 PMCID: PMC11546065 DOI: 10.3390/ijms252111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A pervasive exposure to stressors and the consumption of fructose-containing beverages usually go hand-in-hand in everyday life. In contrast to their metabolic outcomes, their impact on the brain and behavior is still understudied. We examined the behavioral response to a novelty (open field test), the expression of biochemical indicators of neuronal activity (Egr1 and FosB/ΔFosB), the synaptic potentiation (CaMKIIα and pCaMKIIThr286), the synaptic plasticity (synaptophysin, PSD95, gephyrin, and drebrin), and the GABAergic system (parvalbumin and GAD67), along with the glucocorticoid receptor (GR) and AMPK, in the medial prefrontal cortex of female Wistar rats subjected to liquid fructose supplementation (F), chronic unpredictable stress (S), or both (SF) over 9 weeks. The only hallmark of the F group was an increased expression of pCaMKIIThr286, which was also observed in the S group, but not in the SF group. The SF group did not show hyperactivity, a decreased expression of FosB, or an increased expression of parvalbumin, as the S group did. The SF group, as with the S group, showed a decreased expression of the GR, although the basal level of corticosterone was unchanged. The SF group showed, as de novo marks, thigmotactic behavior, increased drebrin, and decreased gephyrin expression. These findings suggest that the long-term consumption of fructose, which itself has subtle neurobehavioral consequences, in combination with stress prevents some of its effects, but also contributes to novel outcomes not seen in single treatments.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Željko Pavković
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Vesna Pešić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| |
Collapse
|
3
|
Gutierrez-Castellanos N, Sarra D, Godinho BS, Mainen ZF. Maturation of cortical input to dorsal raphe nucleus increases behavioral persistence in mice. eLife 2024; 13:e93485. [PMID: 38477558 PMCID: PMC10994666 DOI: 10.7554/elife.93485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.
Collapse
Affiliation(s)
| | - Dario Sarra
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Beatriz S Godinho
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
4
|
Vivi E, Seeholzer LR, Nagumanova A, Di Benedetto B. Early Age- and Sex-Dependent Regulation of Astrocyte-Mediated Glutamatergic Synapse Elimination in the Rat Prefrontal Cortex: Establishing an Organotypic Brain Slice Culture Investigating Tool. Cells 2023; 12:2761. [PMID: 38067189 PMCID: PMC10705965 DOI: 10.3390/cells12232761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders. However, animal experiments are highly time-/resource-consuming, thereby calling for alternative methodological approaches. The function of MEGF10 in astrocyte-mediated synapse elimination (pruning) is crucial to refine neuronal networks during development and adulthood. To investigate the impact of MEGF10 during PND in the rat prefrontal cortex (PFC) and its putative role in brain disorders, we established and validated an organotypic brain slice culture (OBSC) system. Using Western blot, we characterized the expression of MEGF10 and the synaptic markers synaptophysin and PSD95 in the cortex of developing pups. We then combined immunofluorescent-immunohistochemistry with Imaris-supported 3D analysis to compare age- and sex-dependent astrocyte-mediated pruning within the PFC in pups and OBSCs. We thereby validated this system to investigate age-dependent astrocyte-mediated changes in pruning during PND. However, further optimizations are required to use OBSCs for revealing sex-dependent differences. In conclusion, OBSCs offer a valid alternative to study physiological astrocyte-mediated synaptic remodeling during PND and might be exploited to investigate the pathomechanisms of brain disorders with aberrant synaptic development.
Collapse
Affiliation(s)
- Eugenia Vivi
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Lea R. Seeholzer
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Anastasiia Nagumanova
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
| | - Barbara Di Benedetto
- Laboratory of Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (E.V.); (L.R.S.); (A.N.)
- Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Decoding Emotion in Drug Abusers: Evidence for Face and Body Emotion Recognition and for Disgust Emotion. Eur J Investig Health Psychol Educ 2022; 12:1427-1440. [PMID: 36135237 PMCID: PMC9498236 DOI: 10.3390/ejihpe12090099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Different drugs damage the frontal cortices, particularly the prefrontal areas involved in both emotional and cognitive functions, with a consequence of decoding emotion deficits for people with substance abuse. The present study aimed to explore the cognitive impairments in drug abusers through facial, body and disgust emotion recognition, expanding the investigation of emotions processing, measuring accuracy and response velocity. Methods: We enrolled 13 addicted to cocaine and 12 alcohol patients attending treatment services in Italy, comparing them with 33 matched controls. Facial emotion and body posture recognition tasks, a disgust rating task and the Barrat Impulsivity Scale were included in the experimental assessment. Results: We found that emotional processes are differently influenced by cocaine and alcohol, suggesting that these substances impact diverse cerebral systems. Conclusions: Drug abusers seem to be less accurate on elaboration of facial, body and disgust emotions. Considering that the participants were not cognitively impaired, our data support the hypothesis that emotional impairments emerge independently from the damage of cognitive functions.
Collapse
|
6
|
Zhu Y, Wang MJ, Crawford KM, Ramírez-Tapia JC, Lussier AA, Davis KA, de Leeuw C, Takesian AE, Hensch TK, Smoller JW, Dunn EC. Sensitive period-regulating genetic pathways and exposure to adversity shape risk for depression. Neuropsychopharmacology 2022; 47:497-506. [PMID: 34689167 PMCID: PMC8674315 DOI: 10.1038/s41386-021-01172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Animal and human studies have documented the existence of developmental windows (or sensitive periods) when experience can have lasting effects on brain structure or function, behavior, and disease. Although sensitive periods for depression likely arise through a complex interplay of genes and experience, this possibility has not yet been explored in humans. We examined the effect of genetic pathways regulating sensitive periods, alone and in interaction with common childhood adversities, on depression risk. Guided by a translational approach, we: (1) performed association analyses of three gene sets (60 genes) shown in animal studies to regulate sensitive periods using summary data from a genome-wide association study of depression (n = 807,553); (2) evaluated the developmental expression patterns of these genes using data from BrainSpan (n = 31), a transcriptional atlas of postmortem brain samples; and (3) tested gene-by-development interplay (dGxE) by analyzing the combined effect of common variants in sensitive period genes and time-varying exposure to two types of childhood adversity within a population-based birth cohort (n = 6254). The gene set regulating sensitive period opening associated with increased depression risk. Notably, 6 of the 15 genes in this set showed developmentally regulated gene-level expression. We also identified a statistical interaction between caregiver physical or emotional abuse during ages 1-5 years and genetic risk for depression conferred by the opening genes. Genes involved in regulating sensitive periods are differentially expressed across the life course and may be implicated in depression vulnerability. Our findings about gene-by-development interplay motivate further research in large, more diverse samples to further unravel the complexity of depression etiology through a sensitive period lens.
Collapse
Affiliation(s)
- Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Min-Jung Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Alexandre A Lussier
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kathryn A Davis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christiaan de Leeuw
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan W Smoller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Center on the Developing Child, Cambridge, MA, USA.
| |
Collapse
|
7
|
Vincent C, Gilabert-Juan J, Gibel-Russo R, Alvarez-Fischer D, Krebs MO, Le Pen G, Prochiantz A, Di Nardo AA. Non-cell-autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Mol Psychiatry 2021; 26:6469-6480. [PMID: 33963285 PMCID: PMC8760049 DOI: 10.1038/s41380-021-01132-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The OTX2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, which projects to limbic structures controlling complex behaviors. OTX2 is also produced in choroid plexus epithelium, from which it is secreted into cerebrospinal fluid and transferred to limbic structure parvalbumin interneurons. Previously, adult male mice subjected to early-life stress were found susceptible to anxiety-like behaviors, with accompanying OTX2 expression changes in ventral tegmental area or choroid plexus. Here, we investigated the consequences of reduced OTX2 levels in Otx2 heterozygote mice, as well as in Otx2+/AA and scFvOtx2tg/0 mouse models for decreasing OTX2 transfer from choroid plexus to parvalbumin interneurons. Both male and female adult mice show anxiolysis-like phenotypes in all three models. In Otx2 heterozygote mice, we observed no changes in dopaminergic neuron numbers and morphology in ventral tegmental area, nor in their metabolic output and projections to target structures. However, we found reduced expression of parvalbumin in medial prefrontal cortex, which could be rescued in part by adult overexpression of Otx2 specifically in choroid plexus, resulting in increased anxiety-like behavior. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of anxiety-related phenotypes in the mouse.
Collapse
Affiliation(s)
- Clémentine Vincent
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Javier Gilabert-Juan
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rachel Gibel-Russo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France
| | | | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
- Institut de Psychiatrie, CNRS GDR 3557, Paris, France
- Faculté de Médecine, Université de Paris, Pôle Hospitalo-Universitaire Evaluation Prévention et Innovation Thérapeutique, GHU Paris Psychiatrie et Neurosciences site Sainte-Anne, Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des Maladies Psychiatriques, INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, INSERM U1050, Labex MemoLife, PSL Research University, Collège de France, Paris, France.
| |
Collapse
|
8
|
Gabard-Durnam L, McLaughlin KA. Sensitive periods in human development: charting a course for the future. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Dombrovski M, Condron B. Critical periods shaping the social brain: A perspective from Drosophila. Bioessays 2020; 43:e2000246. [PMID: 33215730 DOI: 10.1002/bies.202000246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Many sensory processing regions of the central brain undergo critical periods of experience-dependent plasticity. During this time ethologically relevant information shapes circuit structure and function. The mechanisms that control critical period timing and duration are poorly understood, and this is of special importance for those later periods of development, which often give rise to complex cognitive functions such as social behavior. Here, we review recent findings in Drosophila, an organism that has some unique experimental advantages, and introduce novel views for manipulating plasticity in the post-embryonic brain. Critical periods in larval and young adult flies resemble classic vertebrate models with distinct onset and termination, display clear connections with complex behaviors, and provide opportunities to control the time course of plasticity. These findings may extend our knowledge about mechanisms underlying extension and reopening of critical periods, a concept that has great relevance to many human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|