1
|
Iijima S, Takeda K, Nagahiro T, Watanabe K, Ikegaya Y, Matsumoto N. Acute curcumin administration enhances delta oscillations in the hippocampus underlying object memory improvement. J Pharmacol Sci 2025; 158:95-102. [PMID: 40288828 DOI: 10.1016/j.jphs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Curcumin mitigates memory deficits or improves memory when it is chronically administered to animals. Due to limited bioavailability of curcumin, it remains almost unknown whether acutely treated curcumin influences cognitive function and underlying neural activity. To address this question, we monitored behavior and neural activity in the hippocampus and medial prefrontal cortex of mice treated with vehicle or curcumin while they were engaged in a novel object recognition task. Object recognition memory performance in the novel object recognition task was increased in curcumin-treated mice. Moreover, delta oscillations in the hippocampus were enhanced in the curcumin-administered mice in the test trial. Altogether, acute curcumin treatment boosts delta oscillations for memory recognition possibly by neuromodulation.
Collapse
Affiliation(s)
- Sena Iijima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kinjiro Takeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Nagahiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kisa Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
3
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
4
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
5
|
Neves L, Lobão-Soares B, Araujo APDC, Furtunato AMB, Paiva I, Souza N, Morais AK, Nascimento G, Gavioli E, Tort ABL, Barbosa FF, Belchior H. Theta and gamma oscillations in the rat hippocampus support the discrimination of object displacement in a recognition memory task. Front Behav Neurosci 2022; 16:970083. [PMID: 36620858 PMCID: PMC9811406 DOI: 10.3389/fnbeh.2022.970083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Episodic memory depends on the recollection of spatial and temporal aspects of past experiences in which the hippocampus plays a critical role. Studies on hippocampal lesions in rodents have shown that dentate gyrus (DG) and CA3 are necessary to detect object displacement in memory tasks. However, the understanding of real-time oscillatory activity underlying memory discrimination of subtle and pronounced displacements remains elusive. Here, we chronically implanted microelectrode arrays in adult male Wistar rats to record network oscillations from DG, CA3, and CA1 of the dorsal hippocampus while animals executed an object recognition task of high and low spatial displacement tests (HD: 108 cm, and LD: 54 cm, respectively). Behavioral analysis showed that the animals discriminate between stationary and displaced objects in the HD but not LD conditions. To investigate the hypothesis that theta and gamma oscillations in different areas of the hippocampus support discrimination processes in a recognition memory task, we compared epochs of object exploration between HD and LD conditions as well as displaced and stationary objects. We observed that object exploration epochs were accompanied by strong rhythmic activity in the theta frequency (6-12 Hz) band in the three hippocampal areas. Comparison between test conditions revealed higher theta band power and higher theta-gamma phase-amplitude coupling in the DG during HD than LD conditions. Similarly, direct comparison between displaced and stationary objects within the HD test showed higher theta band power in CA3 during exploration of displaced objects. Moreover, the discrimination index between displaced and stationary objects directly correlated with CA1 gamma band power in epochs of object exploration. We thus conclude that theta and gamma oscillations in the dorsal hippocampus support the successful discrimination of object displacement in a recognition memory task.
Collapse
Affiliation(s)
- Lívia Neves
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Paula de Castro Araujo
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, PB, Brazil,Department of Psychology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Izabela Paiva
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicholy Souza
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Anne Kelly Morais
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - George Nascimento
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elaine Gavioli
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Flávio Freitas Barbosa
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, PB, Brazil,Department of Psychology, Federal University of Paraíba, João Pessoa, PB, Brazil,*Correspondence: Flávio Freitas Barbosa,
| | - Hindiael Belchior
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Hindiael Belchior,
| |
Collapse
|
6
|
Scleidorovich P, Weitzenfeld A, Fellous JM, Dominey PF. Integration of velocity-dependent spatio-temporal structure of place cell activation during navigation in a reservoir model of prefrontal cortex. BIOLOGICAL CYBERNETICS 2022; 116:585-610. [PMID: 36222887 DOI: 10.1007/s00422-022-00945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Sequential behavior unfolds both in space and in time. The same spatial trajectory can be realized in different manners in the same overall time by changing instantaneous speeds. The current research investigates how speed profiles might be given behavioral significance and how cortical networks might encode this information. We first demonstrate that rats can associate different speed patterns on the same trajectory with distinct behavioral choices. In this novel experimental paradigm, rats follow a small baited robot in a large megaspace environment where the rat's speed is precisely controlled by the robot's speed. Based on this proof of concept and research showing that recurrent reservoir networks are ideal for representing spatio-temporal structures, we then test reservoir networks in simulated navigation contexts and demonstrate they can discriminate between traversals of the same path with identical durations but different speed profiles. We then test the networks in an embodied robotic setup, where we use place cell representations from physically navigating robots as input and again successfully discriminate between traversals. To demonstrate that this capability is inherent to recurrent networks, we compared the model against simple linear integrators. Interestingly, although the linear integrators could also perform the speed profile discrimination, a clear difference emerged when examining information coding in both models. Reservoir neurons displayed a form of statistical mixed selectivity as a complex interaction between spatial location and speed that was not as abundant in the linear integrators. This mixed selectivity is characteristic of cortex and reservoirs and allows us to generate specific predictions about the neural activity that will be recorded in rat cortex in future experiments.
Collapse
Affiliation(s)
- Pablo Scleidorovich
- Department of Computer Science and Engineering, University of South Florida, Tampa, USA
| | - Alfredo Weitzenfeld
- Department of Computer Science and Engineering, University of South Florida, Tampa, USA
| | - Jean-Marc Fellous
- Departments of Psychology and Biomedical Engineering, University of Arizona, Tucson, USA
| | - Peter Ford Dominey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences du Sport, 21000, Dijon, France.
- Robot Cognition Laboratory, Institute Marey, Dijon, France.
| |
Collapse
|
7
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
8
|
Klippel Zanona Q, Alves Marconi G, de Sá Couto Pereira N, Lazzarotto G, Luiza Ferreira Donatti A, Antonio Cortes de Oliveira J, Garcia-Cairasco N, Elisa Calcagnotto M. Absence-like seizures, cortical oscillations abnormalities and decreased anxiety-like behavior in Wistar Audiogenic Rats with cortical microgyria. Neuroscience 2022; 500:26-40. [DOI: 10.1016/j.neuroscience.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
9
|
Sahu M, Tripathi R, Jha NK, Jha SK, Ambasta RK, Kumar P. Cross talk mechanism of disturbed sleep patterns in neurological and psychological disorders. Neurosci Biobehav Rev 2022; 140:104767. [PMID: 35811007 DOI: 10.1016/j.neubiorev.2022.104767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The incidence and prevalence of sleep disorders continue to increase in the elderly populace, particularly those suffering from neurodegenerative and neuropsychiatric disorders. This not only affects the quality of life but also accelerates the progression of the disease. There are many reasons behind sleep disturbances in such patients, for instance, medication use, nocturia, obesity, environmental factors, nocturnal motor disturbances and depressive symptoms. This review focuses on the mechanism and effects of sleep dysfunction in neurodegenerative and neuropsychiatric disorders. Wherein we discuss disturbed circadian rhythm, signaling cascade and regulation of genes during sleep deprivation. Moreover, we explain the perturbation in brainwaves during disturbed sleep and the ocular perspective of neurodegenerative and neuropsychiatric manifestations in sleep disorders. Further, as the pharmacological approach is often futile and carries side effects, therefore, the non-pharmacological approach opens newer possibilities to treat these disorders and widens the landscape of treatment options for patients.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India.
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
| |
Collapse
|
10
|
Vrontou S, Bédécarrats A, Wei X, Ayodeji M, Brassai A, Molnár L, Mody I. Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Commun 2022; 4:fcac166. [PMID: 35794872 PMCID: PMC9253886 DOI: 10.1093/braincomms/fcac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase–amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5–12 Hz) and γ (30–120 Hz) oscillations, a reversed phase–amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.5–4 Hz) synchrony between the two regions during non-rapid eye movement sleep. In addition, we report on significant circadian variations in the frequencies of θ and γ oscillations, and massive synchronous δ oscillations during wheel running. Our results reveal novel and specific network alterations and feasible signs for diminished brain connectivity in the accelerated ovarian failure mouse model of menopause. Taken together, our results may have identified changes possibly responsible for some of the memory and cognitive deficits previously described in this model. Corresponding future studies in menopausal women could shed light on fundamental mechanisms underlying the neurological and psychiatric comorbidities present during this important transitional phase in women’s lives.
Collapse
Affiliation(s)
- Sophia Vrontou
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Alexis Bédécarrats
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | | | - Attila Brassai
- Department of Pharmacology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology , Târgu Mureş 540139 , Romania
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania , Târgu Mureş 540485 , Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
- Department of Physiology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| |
Collapse
|
11
|
Soltani Zangbar H, Shahabi P, Seyedi Vafaee M, Ghadiri T, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Jafarzadehgharehziaaddin M. Hippocampal neurodegeneration and rhythms mirror each other during acute spinal cord injury in male rats. Brain Res Bull 2021; 172:31-42. [PMID: 33848614 DOI: 10.1016/j.brainresbull.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Spinal Cord Injury (SCI), triggers neurodegenerative changes in the spinal cord, and simultaneously alters oscillatory manifestations of motor cortex. However, these disturbances may not be limited to motor areas and other parts such as hippocampus, which is vital in the neurogenesis and cognitive function, may be affected in the neurogenic and oscillatory manners. Addressing this remarkable complication of SCI, we evaluated the hippocampal neurogenesis and rhythms through acute phase of SCI. In the present study, we used 40 male rats (Sham.W1 = 10, SCI.W1 = 10, Sham.W2 = 10, SCI.W2 = 10), and findings revealed that contusive SCI declines hippocampal rhythms (Delta, Theta, Beta, Gamma) power and max-frequency. Also, there was a significant decrease in the DCX + and BrdU + cells of the dentate gyrus; correlated significantly with rhythms power decline. Considering the TUNEL assay analysis, there were significantly greater apoptotic cells, in the CA1, CA3, and DG regions of injured animals. Furthermore, according to the western blotting analysis, the expression of receptors (NMDA, GABAA, Muscarinic1), which are essential in the neurogenesis and generation of rhythms significantly attenuated following SCI. Our study demonstrated that acute SCI, alters the power and max-frequency of hippocampal rhythms parallel with changes in the hippocampal neurogenesis, apoptosis, and receptors expression.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Centre (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, Xu S, Chan F, Garland T. Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics 2020; 216:781-804. [PMID: 32978270 PMCID: PMC7648575 DOI: 10.1534/genetics.120.303668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California 92521
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Alexandra S Fowler
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| |
Collapse
|