1
|
Yun M, Kim DH, Ha TS, Lee KM, Park E, Knaden M, Hansson BS, Kim YJ. Male cuticular pheromones stimulate removal of the mating plug and promote re-mating through pC1 neurons in Drosophila females. eLife 2024; 13:RP96013. [PMID: 39255004 PMCID: PMC11386958 DOI: 10.7554/elife.96013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.
Collapse
Affiliation(s)
- Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eungyu Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
2
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
3
|
Ali MZ, Anushree A, Bilgrami AL, Ahsan A, Ola MS, Haque R, Ahsan J. Phenylacetaldehyde induced olfactory conditioning in Drosophila melanogaster (Diptera: Drosophilidae) larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:25. [PMID: 38092368 PMCID: PMC10718815 DOI: 10.1093/jisesa/iead112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic odorant, exists in varied fruits including overripe bananas and prickly pear cactus, the 2 major host fruits of Drosophila melanogaster. It acts as a potent ligand for the Ionotropic receptor 84a (IR84a) and the Odorant receptor 67a (OR67a), serving as an important food and courtship cue for adult fruit flies. Drosophila melanogaster larvae respond robustly to diverse feeding odorants, such as ethyl acetate (EA), an aliphatic ester. Since the chemical identity and concentration of an odorant are vital neural information handled by the olfactory system, we studied how larvae respond to PAH, an aromatic food odorant with aphrodisiac properties for adult flies. Our findings revealed that PAH attracted larvae significantly in a dose-dependent manner. Larvae could also be trained with PAH associated to appetitive and aversive reinforcers. Thus, like EA, PAH might serve as an important odorant cue for larvae, aiding in food tracking and survival in the wild. Since IR84a/IR8a complex primarily governs PAH response in adult flies, we examined expression of Ir84a and Ir8a in early third-instar larvae. Our experiments showed the presence of Ir8a, a novel finding. However, contrary to adult flies, PAH-responsive Ir84a was not found. Our behavioral experiments with Ir8a1 mutant larvae exhibited normal chemotaxis to PAH, whereas Orco1 mutant showed markedly reduced chemotaxis, indicating an OR-mediated neural circuitry for sensing of PAH in larvae. The results obtained through this study are significantly important as information on how larvae perceive and process PAH odorant at the neuronal level is lacking.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
4
|
Weng JW, Park H, Valotteau C, Chen RT, Essmann CL, Pujol N, Sternberg PW, Chen CH. Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Curr Biol 2023; 33:3585-3596.e5. [PMID: 37541249 PMCID: PMC10530406 DOI: 10.1016/j.cub.2023.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.
Collapse
Affiliation(s)
- Jen-Wei Weng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Claire Valotteau
- Aix-Marseille Univ, INSERM, CNRS, LAI, Turing Centre for Living Systems, 163 Avenue de Luminy, 13009 Marseille, France
| | - Rui-Tsung Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Clara L Essmann
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-University, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, 163 Avenue de Luminy, case 906, 13009 Marseille, France
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Chun-Hao Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University. No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
6
|
Kopp A, Barmina O. Interspecific variation in sex-specific gustatory organs in Drosophila. J Comp Neurol 2022; 530:2439-2450. [PMID: 35603778 PMCID: PMC9339527 DOI: 10.1002/cne.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Drosophila males use leg gustatory bristles to discriminate between male and female cuticular pheromones as an important part of courtship behavior. In Drosophila melanogaster, several male-specific gustatory bristles are present on the anterior surface of the first tarsal segment of the prothoracic leg, in addition to a larger set of gustatory bristles found in both sexes. These bristles are thought to be specialized for pheromone detection. Here, we report the number and location of sex-specific gustatory bristles in 27 other Drosophila species. Although some species have a pattern similar to D. melanogaster, others lack anterior male-specific bristles but have many dorsal male-specific gustatory bristles instead. Some species have both anterior and dorsal male-specific bristles, while others lack sexual dimorphism entirely. In several distantly related species, the number of gustatory bristles is much greater in males than in females due to a male-specific transformation of ancestrally mechanosensory bristles to a chemosensory identity. This variation in the extent and pattern of sexual dimorphism may affect the formation and function of neuronal circuits that control Drosophila courtship and contribute to the evolution of mating behavior.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California Davis
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis
| |
Collapse
|
7
|
Tabata J. Genetic Basis Underlying Structural Shift of Monoterpenoid Pheromones in Mealybugs. J Chem Ecol 2022; 48:546-553. [PMID: 35112225 DOI: 10.1007/s10886-021-01339-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Insect sex pheromones are examples of semiochemicals that trigger the most conspicuous biological activities, and they have attracted the interest of chemical ecologists since the dawn of this multidisciplinary field. For a deeper understanding of the ecological and evolutionary scenario of pheromones, as well as other targets of chemical ecology, it is essential to analyze the chemicals produced by individual organisms along with sound chemical identifications using reference compounds. Prof. Kenji Mori and his colleagues have developed various synthetic routes and have provided their products as authentic standards to many researchers. Using such a legacy, the tiny amounts of pheromones emitted by individual mealybug females were successfully analyzed and quantified by selected-ion-monitoring mode of gas chromatography-mass spectrometry. The results of the analyses of the monoterpene pheromones from Planococcus citri, P. minor, and their hybrids suggested that shift of the cyclobutane structure in P. citri and its acyclic form in P. minor is largely attributable to a single genetic locus.
Collapse
Affiliation(s)
- Jun Tabata
- National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
8
|
Borrero-Echeverry F, Solum M, Trona F, Becher PG, Wallin EA, Bengtsson M, Witzgall P, Lebreton S. The female sex pheromone (Z)-4-undecenal mediates flight attraction and courtship in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 137:104355. [PMID: 35007554 DOI: 10.1016/j.jinsphys.2022.104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Specific mate communication and recognition underlies reproduction and hence speciation. Our study provides new insights in Drosophila melanogaster premating olfactory communication. Mate communication evolves during adaptation to ecological niches and makes use of social signals and habitat cues. Female-produced, species-specific volatile pheromone (Z)-4-undecenal (Z4-11Al) and male pheromone (Z)-11-octadecenyl acetate (cVA) interact with food odour in a sex-specific manner. Furthermore, Z4-11Al, which mediates upwind flight attraction in both sexes, also elicits courtship in experienced males. Two isoforms of the olfactory receptor Or69a are co-expressed in the same olfactory sensory neurons. Z4-11Al is perceived via Or69aB, while the food odorant (R)-linalool is a main ligand for the other variant, Or69aA. However, only Z4-11Al mediates courtship in experienced males, not (R)-linalool. Behavioural discrimination is reflected by calcium imaging of the antennal lobe, showing distinct glomerular activation patterns by these two compounds. Male sex pheromone cVA is known to affect male and female courtship at close range, but does not elicit upwind flight attraction as a single compound, in contrast to Z4-11Al. A blend of the food odour vinegar and cVA attracted females, while a blend of vinegar and female pheromone Z4-11Al attracted males, instead. Sex-specific upwind flight attraction to blends of food volatiles and male and female pheromone, respectively, adds a new element to Drosophila olfactory premating communication and is an unambiguous paradigm for identifying the behaviourally active components, towards a more complete concept of food-pheromone odour objects.
Collapse
Affiliation(s)
- Felipe Borrero-Echeverry
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; Corporación Colombiana de Investgación Agropecuaria, Agrosavia, Mosquera, Colombia
| | - Marit Solum
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Federica Trona
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Marie Bengtsson
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Peter Witzgall
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Sebastien Lebreton
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden; IRSEA, Research Institute for Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| |
Collapse
|
9
|
GABA transmission from mAL interneurons regulates aggression in Drosophila males. Proc Natl Acad Sci U S A 2022; 119:2117101119. [PMID: 35082150 PMCID: PMC8812560 DOI: 10.1073/pnas.2117101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aggression is dependent on the sex of the conspecific in almost all animal species. But the neuronal basis of how sex-specific chemosensory signals regulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we demonstrate that activation of a group of GABAergic central brain neurons, known to respond to sex-specific pheromonal stimuli, enhances aggression in dyadic male encounters. Inactivation of this neuronal group decreases aggression and increases the reciprocal social behavior of courtship. Our results can help trace the neural circuit from pheromone processing in the sensory neurons to behavior integration in the central brain and ultimately help understand how neurons encode the behavior of aggression. Aggression is known to be regulated by pheromonal information in many species. But how central brain neurons processing this information modulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we systematically characterize the role of a group of sexually dimorphic GABAergic central brain neurons, popularly known as mAL, in aggression regulation. The mAL neurons are known to be activated by male and female pheromones. In this report, we show that mAL activation robustly increases aggression, whereas its inactivation decreases aggression and increases intermale courtship, a behavior considered reciprocal to aggression. GABA neurotransmission from mAL is crucial for this behavior regulation. Exploiting the genetic toolkit of the fruit fly model, we also find a small group of approximately three to five GABA+ central brain neurons with anatomical similarities to mAL. Activation of the mAL resembling group of neurons is necessary for increasing intermale aggression. Overall, our findings demonstrate how changes in activity of GABA+ central brain neurons processing pheromonal information, such as mAL in Drosophila melanogaster, directly modulate the social behavior of aggression in male–male pairings.
Collapse
|
10
|
Peng Q, Chen J, Su X, Wang R, Han C, Pan Y. The sex determination gene doublesex is required during adulthood to maintain sexual orientation. J Genet Genomics 2021; 49:165-168. [PMID: 34474181 DOI: 10.1016/j.jgg.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xiangbin Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Caihong Han
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|