1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Muroi Y, Ishii T. Neuronal stress-coping mechanisms in postpartum females. Neurosci Res 2025:S0168-0102(25)00032-X. [PMID: 39978735 DOI: 10.1016/j.neures.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Animals exhibit a wide range of stress responses aimed at restoring homeostasis and promoting adaptation. In response to stress, they employ coping mechanisms to maintain physiological balance. Dysregulated stress-coping strategies have been associated with mental disorders, including depression, anxiety, and post-traumatic stress disorder. Understanding the neuronal mechanisms that regulate stress-coping is critical for elucidating normal physiological responses and addressing the pathological processes underlying these disorders. Stress responses are influenced by sex and life stage, with notable variability in the prevalence and severity of mental disorders based on these factors. Stress-coping mechanisms are pivotal in determining the vulnerability or resilience of an individual to stress. Thus, identifying differences in stress-coping strategies between sexes and across life stages is essential for advancing prevention and treatment strategies for stress-related mental disorders. This review explores the neuronal mechanisms underlying stress responses, emphasizing the distinct stress-coping strategies utilized by postpartum females. Highlighting these differences underscores the need for targeted prevention and treatment approaches that consider sex- and life stage-specific variations in stress-coping mechanisms.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido 080-8555, Japan
| |
Collapse
|
3
|
Dokukin NV, Chudakova DA, Shkap MO, Kovalchuk AM, Kibirsky PD, Baklaushev VP. Direct Neural Reprogramming in situ: Existing Approaches and Their Optimization. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:214-230. [PMID: 40254400 DOI: 10.1134/s000629792460426x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025]
Abstract
Direct in situ neuronal reprogramming (transdifferentiation) of glial cells (astrocytes and microglia) has attracted a significant interest as a potential approach for the treatment of a wide range of neurodegenerative diseases and damages of the central nervous system (CNS). The nervous system of higher mammals has a very limited capacity for repair. Disruption of CNS functioning due to traumatic injuries or neurodegenerative processes can significantly affect the quality of patients' life, lead to motor and cognitive impairments, and result in disability and, in some cases, death. Restoration of lost neurons in situ via direct reprogramming of glial cells without the intermediate stage of pluripotency seems to be the most attractive approach from the viewpoint of translational biomedicine. The ability of astroglia to actively proliferate in response to the damage of neural tissue supports the idea that these neuron-like cells, which are already present at the lesion site, are good candidates for transdifferentiation into neurons, considering that the possibility of direct neuronal reprogramming of astrocytes both in vitro and in vivo have demonstrated in many independent studies. Overexpression of proneuronal transcription factors, e.g., neurogenic differentiation factors 1-4 (NeuroD1-4), Neurogenin 2 (NeuroG2), Ascl1 (Achaete-Scute homolog 1), and Dlx2 (distal-less homeobox 2), including pioneer transcription factors that recognize target sequences in the compacted chromatin and activate transcription of silent genes, has already been proven as a potential therapeutic strategy. Other strategies, such as microRNA-mediated suppression of activity of PTB and REST transcription factors and application of small molecules or various biomaterials, are also utilized in neuronal reprogramming. However, the efficiency of direct in situ reprogramming is limited by a number of factors, including cell specificity of transgene delivery systems and promoters, brain regions in which transdifferentiation occurs, factors affecting cell metabolism, microenvironment, etc. Reprogramming in situ, which takes place in the presence of a large number of different cell types, requires monitoring and precise phenotypic characterization of subpopulations of cells undergoing transdifferentiation in order to confirm the reprogramming of the astroglia into neurons and subsequent integration of these neurons into the CNS. Here, we discussed the most efficient strategies of neuronal reprogramming and technologies used to visualize the transdifferentiation process, with special focus on the obstacles to efficient neuronal conversion, as well as approaches to overcome them.
Collapse
Affiliation(s)
- Nikita V Dokukin
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Daria A Chudakova
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
- National Medical Research Center of Children's Health, Ministry of Health of the Russian Federation, Moscow, 119991, Russia
| | - Matvey O Shkap
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Anna M Kovalchuk
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Pavel D Kibirsky
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia.
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Research Institute of Pulmonology, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
4
|
Horie I, Muroi Y, Ishii T. Noradrenergic Regulation of the Medial Prefrontal Cortex Mediates Stress Coping in Postpartum Female Mice. Mol Neurobiol 2025; 62:137-155. [PMID: 38829510 DOI: 10.1007/s12035-024-04240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
The prevalence of depression in women increases during the postpartum period. We previously reported that subchronic exposure to social stress decreased passive coping in postpartum female mice. This study aimed to investigate whether noradrenaline regulation might regulate coping styles in mice. We first determined whether a different type of stress, subchronic physical stress, decreases passive coping in postpartum females. Postpartum female, virgin female, and male mice were exposed to subchronic restraint stress (restraint stress for 4 h for 5 consecutive days). Subchronic restraint stress decreased passive coping in postpartum females but not in virgin females and males in the forced swim and tail suspension tests. We next examined the neuronal mechanism by which subchronic stress decreases passive coping in postpartum female mice. Neuronal activity and expression of noradrenergic receptors in the medial prefrontal cortex (mPFC) were analyzed using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction, respectively. The mPFC was manipulated using chemogenetics, knockdown, or an α2A adrenergic receptor (AR) antagonist. Immunohistochemistry revealed that subchronic restraint stress increased glutamatergic neuron activation in the mPFC via forced swim stress and decreased α2A AR expression in postpartum females. Chemogenetic activation of glutamatergic neurons in the mPFC, knockdown of α2AAR in the mPFC, and the α2A AR receptor antagonist atipamezole treatment decreased passive coping in postpartum females. Subchronic restraint stress decreased passive coping in postpartum females by increasing glutamatergic neuron activity in the mPFC through α2A AR attenuation. The noradrenergic regulation of the mPFC may be a new target for treating postpartum depression.
Collapse
Affiliation(s)
- Ikuko Horie
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| | - Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| |
Collapse
|
5
|
Yun Y, Wang X, Xu J, Chen J, Wang X, Yang P, Qin L. Optogenetic stimulation of basal forebrain cholinergic neurons prevents neuroinflammation and neuropsychiatric manifestations in pristane induced lupus mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:11. [PMID: 37322485 DOI: 10.1186/s12993-023-00213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neuroinflammation has been identified as one of the primary pathogenic factors of neuropsychiatric systemic lupus erythematosus (NPSLE). However, there are no dedicated treatments available in clinics to alleviate neuroinflammation in NPSLE. It has been proposed that stimulating basal forebrain (BF) cholinergic neurons may provide potent anti-inflammatory effects in several inflammatory diseases, but its potential role in NPSLE remains unexplored. This study aims to investigate whether and how stimulating BF cholinergic neurons has a protective effect on NPSLE. RESULTS Optogenetic stimulation of BF cholinergic neurons significantly ameliorated olfactory dysfunction and anxiety- and depression-like phenotype in pristane induced lupus (PIL) mice. The increased expression of adhesion molecules (P-selectin and vascular cell adhesion molecule-1 (VCAM-1)), leukocyte recruitment, blood-brain barrier (BBB) leakage were significantly decreased. Notably, the brain histopathological changes, including the elevated levels of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), IgG deposition in the choroid plexus and lateral ventricle wall and lipofuscin accumulation in the cortical and hippocampal neurons, were also significantly attenuated. Furthermore, we confirmed the colocalization between the BF cholinergic projections and the cerebral vessels, and the expression of α7-nicotinic acetylcholine receptor (α7nAChR) on the cerebral vessels. CONCLUSION Our data indicate that stimulation of BF cholinergic neurons could play a neuroprotective role in the brain through its cholinergic anti-inflammatory effects on cerebral vessels. Therefore, this may be a promising preventive target for NPSLE.
Collapse
Affiliation(s)
- Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Jingyi Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang, China
| | - Xueru Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Shi YY, Wang AJ, Liu XL, Dai MY, Cai HB. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. Front Immunol 2023; 14:1193222. [PMID: 37325638 PMCID: PMC10262918 DOI: 10.3389/fimmu.2023.1193222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target immune checkpoints that suppress immune cell activity. Low efficiency and high resistance are currently the main barriers to their clinical application. As a representative technology of targeted protein degradation, proteolysis-targeting chimeras (PROTACs) are considered to have potential for addressing these limitations. Methods We synthesized a stapled peptide-based PROTAC (SP-PROTAC) that specifically targeted palmitoyltransferase ZDHHC3 and resulted in the decrease of PD-L1 in human cervical cancer cell lines. Flow cytometry, confocal microscopy, protein immunoblotting, Cellular Thermal Shift Assay (CETSA), and MTT assay analyses were conducted to evaluate the effects of the designed peptide and verify its safety in human cells. Results In cervical cancer celllines C33A and HeLa, the stapled peptide strongly downregulated PD-L1 to < 50% of baseline level at 0.1 μM. DHHC3 expression decreased in both dosedependentand time-dependent manners. MG132, the proteasome inhibitor, can alleviate the SP-PROTAC mediated degradation of PD-L1 in human cancer cells. In a co-culture model of C33A and T cells, treatment with the peptide induced IFN-γ and TNF-α release in a dose-dependent manner by degrading PD-L1. These effects were more significant than that of the PD-L1 inhibitor, BMS-8. Conclusions Cells treated with 0.1 μM of SP-PROTAC or BMS-8 for 4 h revealed that the stapled peptide decreased PD-L1 more effectively than BMS-8. DHHC3-targeting SP-PROTAC decreased PD-L1 in human cervical cancer more effectively than the inhibitor BMS-8.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - An-Jin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Xue-Lian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhou Y, Zhang K, Wang F, Chen J, Chen S, Wu M, Lai M, Zhang Y, Zhou W. Polypyrimidine tract binding protein knockdown reverses depression-like behaviors and cognition impairment in mice with lesioned cholinergic neurons. Front Aging Neurosci 2023; 15:1174341. [PMID: 37181622 PMCID: PMC10172502 DOI: 10.3389/fnagi.2023.1174341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background and objectives Depression is a common comorbidity of dementia and may be a risk factor for dementia. Accumulating evidence has suggested that the cholinergic system plays a central role in dementia and depression, and the loss of cholinergic neurons is associated with memory decline in aging and Alzheimer's patients. A specific loss of cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) is correlated with depression and dysfunction of cognition in mice. In this study, we examined the potential regenerative mechanisms of knockdown the RNA-binding protein polypyrimidine tract binding protein (PTB) in reversing depression-like behaviors and cognition impairment in mice with lesioned cholinergic neurons. Methods We lesioned cholinergic neurons in mice induced by injection of 192 IgG-saporin into HDB; then, we injected either antisense oligonucleotides or adeno-associated virus-shRNA (GFAP promoter) into the injured area of HDB to deplete PTB followed by a broad range of methodologies including behavioral examinations, Western blot, RT-qPCR and immunofluorescence. Results We found that the conversion of astrocytes to newborn neurons by using antisense oligonucleotides on PTB in vitro, and depletion of PTB using either antisense oligonucleotides or adeno-associated virus-shRNA into the injured area of HDB could specifically transform astrocytes into cholinergic neurons. Meanwhile, knockdown of PTB by both approaches could relieve the depression-like behaviors shown by sucrose preference, forced swimming or tail-suspension tests, and alleviate cognitive impairment such as fear conditioning and novel object recognition in mice with lesioned cholinergic neurons. Conclusion These findings suggest that supplementing cholinergic neurons after PTB knockdown may be a promising therapeutic strategy to revert depression-like behaviors and cognitive impairment.
Collapse
Affiliation(s)
- Yiying Zhou
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, Health Science Center, Ningbo University, Ningbo, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Fangmin Wang
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, Health Science Center, Ningbo University, Ningbo, China
| | - Jiali Chen
- Department of Gynaecology and Obstetrics, Ningbo Medical Treatment Center, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Shanshan Chen
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, Health Science Center, Ningbo University, Ningbo, China
| | - Manqing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaojun Lai
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, Health Science Center, Ningbo University, Ningbo, China
| | - Yisheng Zhang
- Department of Gynaecology and Obstetrics, Ningbo Medical Treatment Center, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- *Correspondence: Yisheng Zhang,
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction Research, Ningbo Kangning Hospital, Health Science Center, Ningbo University, Ningbo, China
- Wenhua Zhou,
| |
Collapse
|
8
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
9
|
The effect of glucagon like peptide-1 receptor agonist on behavioral despair and anxiety-like behavior in ovariectomized rats: Modulation of BDNF/CREB, Nrf2 and lipocalin 2. Behav Brain Res 2022; 435:114053. [PMID: 35961539 DOI: 10.1016/j.bbr.2022.114053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Ovariectomized (OVX) rodents show behavioral despair and anxiety-like behaviors. Glucagon-like peptide-1 receptor agonists (GLP-1RA) possess neuroprotective effects by reducing oxidative stress and neuroinflammation, thereby preventing synaptic loss. The objective of the present study is to evaluate the effect of GLP-1RA, namely liraglutide, on emotional behaviors, and to identify the level of oxidative stress, neuroinflammation, and BDNF signaling in the hippocampus of OVX rats. Forty female young Wistar rats were divided into 5 groups: Control, Control+liraglutide treated, OVX, OVX+fluoxetine, and OVX+liraglutide (150 µg/kg for 15 days, sc). Open field test and elevated plus-maze test were used to evaluate behaviors that are suggestive of anxiety. A forced swimming test was used to evaluate behavioral despair. At the end of the experiments, blood glucose level and body weight gain were measured. The levels of BDNF, CREB, Nrf2, and lipocalin 2 in the hippocampal tissue were measured by ELISA. Malondialdehyde (MDA) and glutathione levels were also evaluated. Statistical analysis was conducted through ANOVA and Bonferroni tests. Seven weeks post-OVX rats exhibited high anxiety related behavior and behavioral despair in comparison with the control groups. These behavioral changes were associated with increased lipocalin 2 and MDA levels in rats. Moreover, BDNF, CREB, and Nrf2 levels decreased significantly in the hippocampus of OVX rats. Liraglutide treatment limited the reduction of BDNF and Nrf2 levels in the hippocampus, maintaining them at the control levels. Liraglutide treatment also prevented the symptoms of behavioral despair and anxiety related behavior. As the main finding of the study GLP-1RA reduced behavioral despair and anxiety level and this may be related to the preservation of BDNF/Nrf2 levels and the decrease in oxidative stress and lipocalin 2 levels in the hippocampus.
Collapse
|
10
|
Guillén-Ruiz G, Cueto-Escobedo J, Hernández-López F, Rivera-Aburto LE, Herrera-Huerta EV, Rodríguez-Landa JF. Estrous cycle modulates the anxiogenic effects of caffeine in the elevated plus maze and light/dark box in female rats. Behav Brain Res 2021; 413:113469. [PMID: 34280462 DOI: 10.1016/j.bbr.2021.113469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023]
Abstract
Caffeine is a commonly used stimulant of the central nervous system that reduces fatigue, increases alertness, and exerts positive effects on emotion through actions on various brain structures. High doses of caffeine can cause headaches, heart palpitations, hyperactivity, and anxiety symptoms. Consequently, reducing the consumption of stimulant substances, such as sugar and caffeine, is proposed to ameliorate symptoms of premenstrual syndrome in women. The administration of steroid hormones has been suggested to modulate the effects of caffeine, but unknown is whether endogenous hormone variations during the estrous cycle modulate the pharmacological effects of caffeine. The present study evaluated the effects of caffeine (10, 20, and 40 mg/kg) during metestrus-diestrus and proestrus-estrus of the ovarian cycle in rats on anxiety-like behavior using the elevated plus maze and light/dark box. During metestrus-diestrus, all doses of caffeine increased anxiety-like behavior, indicated by the main variables in both behavioral tests (i.e., higher Anxiety Index and lower percent time spent on the open arms in the elevated plus maze and less time spent in the light compartment in the light/dark box). During proestrus-estrus, only 20 and 40 mg/kg caffeine increased these parameters of anxiety-like behavior, albeit only slightly. In conclusion, caffeine increased anxiety-like behaviors in metestrus-diestrus, with an attenuation of these effects of lower doses of caffeine in proestrus-estrus. These effects that were observed in metestrus-diestrus and proestrus-estrus may be associated with low and high concentrations of steroid hormones, respectively, that naturally occur during these phases of the ovarian cycle.
Collapse
Affiliation(s)
- Gabriel Guillén-Ruiz
- Cátedras CONACyT-Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Fabiola Hernández-López
- Unidad de Medicina Familiar No. 66, Instituto Mexicano del Seguro Social, Xalapa, Veracruz, Mexico
| | - Lina E Rivera-Aburto
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|