1
|
Wang D, Yao H, Wang L, Lu B, Liu W, Li J, Gong Y, Cai Y, Li Y, Cai X, Zhang R. Gut-brain axis and vascular dementia: a review on mechanisms and Chinese herbal medicine therapeutics. Front Microbiol 2025; 16:1564928. [PMID: 40438206 PMCID: PMC12116591 DOI: 10.3389/fmicb.2025.1564928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Vascular dementia (VD), the second most prevalent form of dementia among the elderly population, is a cerebrovascular disorder characterized primarily by cognitive impairment. Emerging evidence has revealed that intestinal flora dysbiosis may be implicated not only in gastrointestinal (GI) pathologies but also in central nervous system (CNS) disorders, including VD. The gut-brain axis (GBA) serves as a critical bidirectional pathway through which intestinal flora influences brain physiology and function. Notably, accumulating studies have demonstrated the therapeutic potential of Chinese herbal medicine (CHM) in VD management via modulation of gut microbial composition. This review synthesizes current understanding of the VD- intestinal flora relationship mediated by the GBA, while systematically evaluating evidence for CHM interventions that ameliorate VD through intestinal flora regulation. These insights may offer novel perspectives and methodological approaches for both fundamental research and clinical management of VD.
Collapse
Affiliation(s)
- Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Huiying Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Bowen Lu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Jinghan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yujin Gong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuhao Cai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuehan Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Rui Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
- Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Luo Q, Li F, Liu X, Yan T, Yang L, Zhu W, Zheng H, Li Y, Tu J, Zhu X. Puerarin mitigates cognitive decline and white matter injury via CD36-Mediated microglial phagocytosis in chronic cerebral hypoperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156396. [PMID: 39827816 DOI: 10.1016/j.phymed.2025.156396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) contributes significantly to white matter injury (WMI) and cognitive impairment, often leading to vascular dementia (VaD). Inefficient clearance of myelin debris by microglia impedes white matter repair, making microglia-mediated myelin clearance a promising therapeutic strategy for WMI. Puerarin (Pu), an isoflavonoid monomer from Pueraria lobata, is known for its neuroprotective, anti-inflammatory, and immunoregulatory properties. However, its effects and underlying mechanisms in counteracting CCH-induced damage remain unclear. In this study, we aimed to investigate the therapeutic effects and underlying mechanisms of puerarin in a CCH mouse model. METHODS Right unilateral common carotid artery occlusion (rUCCAO) was used to model CCH in C57BL/6J mice. Puerarin (400 mg/kg/day) was administered intraperitoneally for 10 consecutive days starting immediately post-surgery. Cognitive function was assessed by the Morris Water Maze (MWM) test. WMI, remyelination, neuroinflammation, and microglial phagocytosis were evaluated by western blotting, immunofluorescence staining, RT-PCR, or flow cytometry both in vivo and in vitro. RESULTS Puerarin treatment significantly improved cognitive performance and mitigated WMI in rUCCAO mice. These effects were associated with enhanced microglial phagocytosis and remyelination, reduced neuroinflammation, and increased CD36 expression. Additionally, puerarin also increased the levels of IL-10 and phosphorylated STAT3 (p-STAT3) in brain tissues. Notably, IL-10 neutralization reversed these benefits effects by reducing microglial myelin debris uptake, downregulating STAT3 phosphorylation and CD36 expression. CONCLUSIONS Our findings demonstrate that puerarin has significant therapeutic potential in treating CCH-related cognitive impairments and WMI by modulating CD36-mediated microglial myelin clearance through the IL-10/STAT3 pathway. However, our study was reliant on preclinical animal models, further studies are needed to explore applicability in human subjects.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Fang Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Li Yang
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Wenping Zhu
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
3
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
4
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024; 38:5270-5289. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
6
|
Zhang M, Huang SS, He WY, Cao WJ, Sun MY, Zhu NW. Nasal Administration of bFGF-Loaded Nanoliposomes Attenuates Neuronal Injury and Cognitive Deficits in Mice with Vascular Dementia Induced by Repeated Cerebral Ischemia‒Reperfusion. Int J Nanomedicine 2024; 19:1431-1450. [PMID: 38371455 PMCID: PMC10873211 DOI: 10.2147/ijn.s452045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF) shows great potential for preventing vascular dementia (VD). However, the blood‒brain barrier (BBB) and low bioavailability of bFGF in vivo limit its application. The present study investigated how nasal administration of bFGF-loaded nanoliposomes (bFGF-lips) affects the impaired learning and cognitive function of VD mice and the underlying mechanism involved. Methods A mouse model of VD was established through repeated cerebral ischemia‒reperfusion. A Morris water maze (MWM) and novel object recognition (NOR) tests were performed to assess the learning and cognitive function of the mice. Hematoxylin and eosin (HE) staining, Nissl staining and TUNEL staining were used to evaluate histopathological changes in mice in each group. ELISA and Western blot analysis were used to investigate the molecular mechanism by which bFGF-lips improve VD incidence. Results Behavioral and histopathological analyses showed that cognitive function was significantly improved in the bFGF-lips group compared to the VD and bFGF groups; in addition, abnormalities and the apoptosis indices of hippocampal neurons were significantly decreased. ELISA and Western blot analysis revealed that bFGF-lips nasal administration significantly increased the concentrations of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), bFGF, B-cell lymphoma 2 (Bcl-2), phosphorylated protein kinase B (PAKT), nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO1) and haem oxygenase-1 (HO-1) in the hippocampus of bFGF-lips mice compared with the VD and bFGF groups. Furthermore, the concentrations of malondialdehyde (MDA), caspase-3 and B-cell lymphoma 2-associated X (Bax) were clearly lower in the bFGF-lips group than in the VD and bFGF groups. Conclusion This study confirmed that the nasal administration of bFGF-lips significantly increased bFGF concentrations in the hippocampi of VD mice. bFGF-lips treatment reduced repeated I/R-induced neuronal apoptosis by regulating apoptosis-related protein concentrations and activating the phosphatidylinositol-3-kinase (PI3K)/(AKT)/Nrf2 signaling pathway to inhibit oxidative stress.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315100, People’s Republic of China
| | - Shuai-shuai Huang
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315100, People’s Republic of China
| | - Wen-yue He
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315100, People’s Republic of China
| | - Wei-juan Cao
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang Province, 315100, People’s Republic of China
| | - Min-yi Sun
- Department of Pharmacy, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315100, People’s Republic of China
| | - Ning-wei Zhu
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang Province, 315100, People’s Republic of China
| |
Collapse
|
7
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
8
|
Wang X, Shi YJ, Niu TY, Chen TT, Li HB, Wu SH, Li GL. Neuroprotective effect of 20 (S) - Protopanaxadiol (PPD) attenuates NLRP3 inflammasome-mediated microglial pyroptosis in vascular dementia rats. Neurosci Lett 2023; 814:137439. [PMID: 37579868 DOI: 10.1016/j.neulet.2023.137439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
20(S)-protopanaxadiol (PPD), one of the ginsenosides from Panax ginseng, has been reported to improve performance with dementia. This study aimed to investigate the neuroprotective effect of PPD attenuating NLRP3 inflammasome-mediated microglial pyroptosis in vascular dementia (VD) rats induced by bilateral common carotid artery ligation (2-VO). Male Sprague-Dawley rats (SPF, 150-180 g, n = 10/group) were randomly divided into PPD (20, 10, 5 mg/kg, subcutaneous injection once per day for 3 weeks), model, and vehicle-sham group. It was found that PPD significantly reversed 2-VO-induced cognitive impairment by decreasing escape latency and spontaneous alternation and increasing the number of crossing platforms, showing memory-improving effects. PPD improved the pathological morphology of brain tissue in VD rats. PPD significantly reduced the cerebral infarction area and the activation of microglia in the cortex and hippocampal DG, CA1, and CA3 area. Moreover, PPD could attenuate NLRP3 inflammasome-mediated microglial pyroptosis, inhibit the positive expression of NLRP3, decrease IL-1β, and IL-18 levels, and increase IL-10 levels in the brain cortex. PPD also significantly alleviated the neurotoxicity by decreasing the Aβ and p-Tau in hippocampal DG, CA1, and CA3 areas. In addition, the levels of NLRP3, ASC, and IL-1β in the cortex, APP, BACE1, and p-Tau in the hippocampus were significantly reduced by PPD. These results suggested that PPD hinders microglial activation to alleviate neuroinflammation of NLRP3 inflammasome and inhibits neurotoxicity of Aβ deposition and Tau phosphorylation in 2-VO-induced VD rats.
Collapse
Affiliation(s)
- Xue Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ya-Jin Shi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ting-Yuan Niu
- Medical College, Henan University of Chinese Medicine, Zheng-Zhou 450046, China
| | - Ting-Ting Chen
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Han-Bing Li
- Medical College, Henan University of Chinese Medicine, Zheng-Zhou 450046, China
| | - Su-Hui Wu
- Medical College, Henan University of Chinese Medicine, Zheng-Zhou 450046, China.
| | - Gen-Lin Li
- Medical College, Henan University of Chinese Medicine, Zheng-Zhou 450046, China.
| |
Collapse
|
9
|
Tao Q, Zhang J, Liang Q, Song S, Wang S, Yao X, Gao Q, Wang L. Puerarin alleviates sleep disorders in aged mice related to repairing intestinal mucosal barrier. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:29. [PMID: 37698689 PMCID: PMC10497485 DOI: 10.1007/s13659-023-00390-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
More and more evidence suggests that puerarin, a potential remedy for gut inflammation, may have an ameliorative effect on sleep disturbances. However, the relationship between puerarin and sleep disruption has not been extensively researched. This study aims to explore the role and mechanisms of puerarin in improving sleep disorders. We established a light-induced sleep disorder model in mice and assessed the effects of puerarin on cognitive behavior using open field and water maze tests. Pathological detection demonstrated that sleep disturbances resulted in observable damage to the liver, lung, and kidney. Puerarin reversed multi-organ damage and inflammation. Further, puerarin activated paneth cells, resulting in increased lysozyme and TGF-β production, and stimulating intestinal stem cell proliferation. Puerarin also effectively inhibited the expression of F4/80, iNOS, TNF-α, and IL-1β in the small intestine, while it increased Chil3, CD206, and Arg-1 levels. Moreover, puerarin treatment significantly decreased P-P65, TLR4, Bcl-xl, and cleaved caspase-3 protein levels while increasing barrier protein levels, including ZO-1, Occludin, Claudin 1 and E-cadherin suggesting a reduction in inflammation and apoptosis in the gut. Overall, puerarin diminished systemic inflammation, particularly intestinal inflammation, and enhanced intestinal barrier integrity in mice with sleep disorders. Our findings suggest a potential new therapeutic pathway for sleep disorders.
Collapse
Affiliation(s)
- Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinhua Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuxia Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoming Yao
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
10
|
Ren Y, Qu S. Constituent isoflavones of Puerariae radix as a potential neuroprotector in cognitive impairment: Evidence from preclinical studies. Ageing Res Rev 2023; 90:102040. [PMID: 37619620 DOI: 10.1016/j.arr.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
With the increasing aging population worldwide, the incidence of senile cognitive impairment (CI) is increasing, posing a serious threat to the health of elderly persons. Despite developing new drugs aimed at improving CI, progress in this regard has been insufficient. Natural preparations derived from plants have become an unparalleled resource for developing new drugs. Puerariae radix (PR) has a long history as Chinese herbal medicine. PR is rich in various chemical components such as isoflavones, triterpenes, and saponins. The isoflavones (puerarin, daidzein, formononetin, and genistein) exhibit potential therapeutic effects on CI through multiple mechanisms. Relevant literature was organized from major scientific databases such as PubMed, Elsevier, SpringerLink, ScienceDirect, and Web of Science. Using "Puerariae radix," "Pueraria lobata," "isoflavones," "puerarin," "antioxidant," "daidzein," "formononetin," "genistein," "Alzheimer"s disease," and "vascular cognitive impairment" as keywords, the relevant literature was extracted from the databases mentioned above. We found that isoflavones from PR have neuroprotective effects on multiple models of CI via multiple targets and mechanisms. These isoflavones prevent Aβ aggregation, inhibit tau hyperphosphorylation, increase cholinergic neurotransmitter levels, reduce neuroinflammation and oxidative stress, improve synaptic plasticity, promote nerve regeneration, and prevent apoptosis. PR has been used as traditional Chinese herbal medicine for a long time, and its constituent isoflavones exert significant therapeutic effects on CI through various neuroprotective mechanisms. This review will contribute to the future development of isoflavones present in PR as novel drug candidates for the clinical treatment of CI.
Collapse
Affiliation(s)
- Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
11
|
Liu X, Huang R, Wan J. Puerarin: a potential natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023; 162:114581. [PMID: 36966665 DOI: 10.1016/j.biopha.2023.114581] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Puerarin is an isoflavone compound derived from Pueraria lobata in traditional Chinese medicine. Accumulating evidence has indicated that puerarin demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Based on the latest research progress on puerarin as a neuroprotective agent, its pharmacological activity, molecular mechanism, and therapeutic application were systematically reviewed with emphasis on pre-clinical studies. The related information was extracted and compiled from major scientific databases, including PubMed, ScienceDirect, SpringerLink, and Chinese National Knowledge Infrastructure, using 'Puerarin', 'Neuroprotection', 'Apoptosis', 'Autophagy', 'Antioxidant', 'Mitochondria', 'Anti-inflammation' as keywords. This review complied with The Preferred Reporting Items for Systematic Reviews criteria. Forty-three articles met established inclusion and exclusion criteria. Puerarin has shown neuroprotective effects against a variety of neurological disorders, including ischemic cerebrovascular disease, subarachnoid hemorrhage, epilepsy, cognitive disorders, traumatic brain injury, Parkinson's disease, Alzheimer's disease, anxiety, depression, diabetic neuropathy, and neuroblastoma/glioblastoma. Puerarin demonstrates anti-apoptosis, proinflammatory mediator inhibitory, autophagy regulatory, anti-oxidative stress, mitochondria protection, Ca2+ influx inhibitory, and anti-neurodegenerative activities. Puerarin exerts noticeable neuroprotective effects on various models of neurological disorders in vivo (animal). This review will contribute to the development of puerarin as a novel clinical drug candidate for the treatment of neurological disorders. However, well-designed, high-quality, large-scale, multicenter randomized clinical studies are needed to determine the safety and clinical utility of puerarin in patients with neurological disorders.
Collapse
Affiliation(s)
- Xue Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiye Wan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Chi X, Wang L, Liu H, Zhang Y, Shen W. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies. Front Neurosci 2023; 17:1123817. [PMID: 36937659 PMCID: PMC10014821 DOI: 10.3389/fnins.2023.1123817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Post-stroke cognitive impairment, is a major complication of stroke, characterized by cognitive dysfunction, which directly affects the quality of life. Post-stroke cognitive impairment highlights the causal relationship between stroke and cognitive impairment. The pathological damage of stroke, including the increased release of excitatory amino acids, oxidative stress, inflammatory responses, apoptosis, changed neurotrophic factor levels and gene expression, influence synaptic plasticity. Synaptic plasticity refers to the activity-dependent changes in the strength of synaptic connections and efficiency of synaptic transmission at pre-existing synapses and can be divided into structural synaptic plasticity and functional synaptic plasticity. Changes in synaptic plasticity have been proven to play important roles in the occurrence and treatment of post-stroke cognitive impairment. Evidence has indicated that Chinese herbal drugs have effect of treating post-stroke cognitive impairment. In this review, we overview the influence of pathological damage of stroke on synaptic plasticity, analyze the changes of synaptic plasticity in post-stroke cognitive impairment, and summarize the commonly used Chinese herbal drugs whose active ingredient or extracts can regulate synaptic plasticity. This review will summarize the relationship between post-stroke cognitive impairment and synaptic plasticity, provide new ideas for future exploration of the mechanism of post-stroke cognitive impairment, compile evidence of applying Chinese herbal drugs to treat post-stroke cognitive impairment and lay a foundation for the development of novel formulas for treating post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxi Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
14
|
Chiou JS, Chou CH, Ho MW, Tien N, Liang WM, Chiu ML, Tsai FJ, Wu YC, Chou IC, Lu HF, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese herbal medicine therapy on risks of all-cause mortality, infections, parasites, and circulatory-related mortality in HIV/AIDS patients with neurological diseases. Front Pharmacol 2023; 14:1097862. [PMID: 36937878 PMCID: PMC10020503 DOI: 10.3389/fphar.2023.1097862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Long-term living with human immunodeficiency virus (HIV) and/or antiretroviral therapy (ART) is associated with various adverse effects, including neurocognitive impairment. Heterogeneous neurocognitive impairment remains an important issue, affecting between 15-65% of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) patients and resulting in work performance, safety, and health-related outcomes that have a heavy economic burden. Methods: We identified 1,209 HIV/AIDS patients with neurological diseases during 2010-2017. The Kaplan-Meier method, log-rank test, and Cox proportional hazards model were used to analyze 308 CHM users and 901 non-CHM users within this population. Major CHM clusters were determined using association rule mining and network analysis. Results and Discussion: Results showed that CHM users had a 70% lower risk of all-cause mortality (adjusted hazard ratio (aHR) = 0.30, 95% confidence interval (CI):0.16-0.58, p < 0.001) (p = 0.0007, log-rank test). Furthermore, CHM users had an 86% lower risk of infections, parasites, and circulatory-related mortality (aHR = 0.14, 95% confidence interval (CI):0.04-0.46, p = 0.001) (p = 0.0010, log-rank test). Association rule mining and network analysis showed that two CHM clusters were important for patients with neurological diseases. In the first CHM cluster, Huang Qin (HQ; root of Scutellaria baicalensis Georgi), Gan Cao (GC; root of Glycyrrhiza uralensis Fisch.), Huang Lian (HL; root of Coptis chinensis Franch.), Jie Geng (JG; root of Platycodon grandiflorus (Jacq.) A.DC.), and Huang Bai (HB; bark of Phellodendron amurense Rupr.) were identified as important CHMs. Among them, the strongest connection strength was identified between the HL and HQ. In the second CHM cluster, Suan-Zao-Ren-Tang (SZRT) and Ye Jiao Teng (YJT; stem of Polygonum multiflorum Thunb.) were identified as important CHMs with the strongest connection strength. CHMs may thus be effective in treating HIV/AIDS patients with neurological diseases, and future clinical trials are essential for the prevention of neurological dysfunction in the population.
Collapse
Affiliation(s)
- Jian-Shiun Chiou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Chen-Hsing Chou
- PhD Program for Health Science and Industry, College of Healthcare, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Te-Mao Li, ; Ying-Ju Lin,
| |
Collapse
|
15
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
17
|
Wang W, Zhu S, Chen H, Wu N, Chen H, Wang D. Development and Validation of Ultrahigh-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry Method for Quantitative Determination of Ten Active Compounds in Ge-Gen-Jiao-Tai-Wan. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:4713799. [PMID: 35441054 PMCID: PMC9013549 DOI: 10.1155/2022/4713799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
A rapid, accurate, and sensitive method for the simultaneous determination of 10 main components, namely puerarin, daidzin, coptisine, epiberberine, jatrorrhizine, berberine, palmatine, coumarin, daidzein, and cinnamic acid in Ge-Gen-Jiao-Tai-Wan, was developed based on ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Analysis was performed on an Agilent 1290 Infinity II series UHPLC system, equipped with a Waters ACQUITY UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) by using (A) 0.1% acetic acid and (B) methanol as mobile phase. The flow rate was 0.3 mL/min, and the injection volume was 1 μL. Mass spectrometry was operated in multiple reaction monitoring mode using an Agilent 6460 triple quadrupole mass spectrometer equipped with an AJS-ESI ion source. Agilent Mass Hunter Work Station Software was employed for data acquisition and processing. All calibration curves showed excellent linear regressions (R 2 > 0.9992). The precision, repeatability, and stability of the ten compounds were below 4.56% in terms of relative standard deviation. The average extraction recovery ranged from 96.53% to 102.69% with a relative standard deviation of 1.14-3.78% for all samples. This study potently contributes to the quantitative evaluation of Ge-Gen-Jiao-Tai-Wan, thereby providing a scientific basis for further studies and clinical application of Ge-Gen-Jiao-Tai-Wan.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuangquan Zhu
- Department of Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Hao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ning Wu
- Changsha Social Work College, Changsha 410116, China
| | - Han Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
18
|
Zhang L, Liu L, Wang M. Effects of puerarin on chronic inflammation: Focus on the heart, brain, and arteries. Aging Med (Milton) 2021; 4:317-324. [PMID: 34964013 PMCID: PMC8711227 DOI: 10.1002/agm2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
Age-associated increases in physical and mental stress, known as allostatic load, could lead to a chronic low-grade inflammation in the heart, brain, and arteries. This low-grade inflammation potentially contributes to adverse structural and functional remodeling, such as intimal medial thickening, endothelial dysfunction, arterial stiffening, cardiac hypertrophy and ischemia, and cognitive decline. These cellular and tissue remodeling is the fertile soil for the development of age-associated structural and functional disorders in the cardiovascular and cerebrovascular systems in the pathogenesis of obesity, type II diabetes, hypertension, atherosclerosis, heart dysfunction, and cognitive decline. Growing evidence indicates that puerarin, a polyphenol, extracted from Puerara Labota, efficiently alleviates the initiation and progression of obesity, type II diabetes, hypertension, atherosclerosis, cardiac ischemia, cardiac arrythmia, cardiac hypertrophy, ischemic stroke, and cognition decline via suppression of oxidative stress and inflammation. This mini review focuses on recent advances in the effects of puerarin on the oxidative and inflammatory molecular, cellular, tissue events in the heart, brain, and arteries.
Collapse
Affiliation(s)
- Li Zhang
- Department of CardiologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Lisheng Liu
- National Centre for Cardiovascular DiseaseThe Beijing Hypertension League InstituteBeijingChina
| | - Mingyi Wang
- Laboratory of Cardiovascular ScienceIntramural Research ProgramNational Institute on AgingNational Institutes of HealthBRCBaltimoreMarylandUSA
| |
Collapse
|