1
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
2
|
Zhu X, Xu M, Portal C, Lin Y, Ferdinand A, Peng T, Morrisey EE, Dlugosz AA, Castellano JM, Lee V, Seykora JT, Wong SY, Iomini C, Millar SE. Identification of Meibomian gland stem cell populations and mechanisms of aging. Nat Commun 2025; 16:1663. [PMID: 39955307 PMCID: PMC11830078 DOI: 10.1038/s41467-025-56907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identify markers for stem cell populations that maintain distinct regions of the gland and uncover Hedgehog (Hh) signaling as a key regulator of stem cell proliferation. Consistent with this, we show that human Meibomian gland carcinoma exhibits increased Hh signaling. Aged glands display decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Celine Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alyssa Ferdinand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tien Peng
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Joseph M Castellano
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sunny Y Wong
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
4
|
Groveman BR, Schwarz B, Bohrnsen E, Foliaki ST, Carroll JA, Wood AR, Bosio CM, Haigh CL. A PrP EGFR signaling axis controls neural stem cell senescence through modulating cellular energy pathways. J Biol Chem 2023; 299:105319. [PMID: 37802314 PMCID: PMC10641666 DOI: 10.1016/j.jbc.2023.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Mis-folding of the prion protein (PrP) is known to cause neurodegenerative disease; however, the native function of this protein remains poorly defined. PrP has been linked with many cellular functions, including cellular proliferation and senescence. It is also known to influence epidermal growth factor receptor (EGFR) signaling, a pathway that is itself linked with both cell growth and senescence. Adult neural stem cells (NSCs) persist at low levels in the brain throughout life and retain the ability to proliferate and differentiate into new neural lineage cells. KO of PrP has previously been shown to reduce NSC proliferative capacity. We used PrP KO and WT NSCs from adult mouse brain to examine the influence of PrP on cellular senescence, EGFR signaling, and the downstream cellular processes. PrP KO NSCs showed decreased cell proliferation and increased senescence in in vitro cultures. Expression of EGFR was decreased in PrP KO NSCs compared with WT NSCs and additional supplementation of EGF was sufficient to reduce senescence. RNA-seq analysis confirmed that significant changes were occurring at the mRNA level within the EGFR signaling pathway and these were associated with reduced expression of mitochondrial components and correspondingly reduced mitochondrial function. Metabolomic analysis of cellular energy pathways showed that blockages were occurring at critical sites for production of energy and biomass, including catabolism of pyruvate. We conclude that, in the absence of PrP, NSC growth pathways are downregulated as a consequence of insufficient energy and growth intermediates.
Collapse
Affiliation(s)
- Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - James A Carroll
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Aleksandar R Wood
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
5
|
Miller JS, Bennett NE, Rhoades JA. Targeting hedgehog-driven mechanisms of drug-resistant cancers. Front Mol Biosci 2023; 10:1286090. [PMID: 37954979 PMCID: PMC10634604 DOI: 10.3389/fmolb.2023.1286090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Due to the cellular plasticity that is inherent to cancer, the acquisition of resistance to therapy remains one of the biggest obstacles to patient care. In many patients, the surviving cancer cell subpopulation goes on to proliferate or metastasize, often as the result of dramatically altered cell signaling and transcriptional pathways. A notable example is the Hedgehog (Hh) signaling pathway, which is a driver of several cancer subtypes and aberrantly activated in a wide range of malignancies in response to therapy. This review will summarize the field's current understanding of the many roles played by Hh signaling in drug resistance and will include topics such as non-canonical activation of Gli proteins, amplification of genes which promote tolerance to chemotherapy, the use of hedgehog-targeted drugs and tool compounds, and remaining gaps in our knowledge of the transcriptional mechanisms at play.
Collapse
Affiliation(s)
- Jade S. Miller
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Natalie E. Bennett
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Julie A. Rhoades
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Pharmacology Training Program, Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Yang H, Jin G, Chen S, Luo J, Xu W. Glycoprotein non-metastatic melanoma B interacts with epidermal growth factor receptor to regulate neural stem cell survival and differentiation. Open Med (Wars) 2023; 18:20230639. [PMID: 36820063 PMCID: PMC9938639 DOI: 10.1515/med-2023-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 02/16/2023] Open
Abstract
The functional recovery following spinal cord injury (SCI) remains a challenge clinically. Among the proteins interacted with the glycoprotein non-metastatic melanoma B (GPNMB), epidermal growth factor receptor (EGFR) during activation is able to promote the proliferation of neural stem cells (NSCs) in the spinal cord. We investigated the roles of GPNMB and EGFR in regulating the survival and differentiation of the NSCs. By overexpression and short-hairpin RNA-mediated knockdown of GPNMB in the NSCs, GPNMB promoted cell viability and differentiation by increasing the expressions of βIII tubulin and CNPase (2',3'-cyclic nucleotide 3-phosphodiesterase). Using co-immunoprecipitation, we found that EGFR interacted with GPNMB. Furthermore, EGFR had a similar effect as GPNMB on promoting cell viability and differentiation. Overexpression of EGFR reversed the decrease in viability and differentiation caused by the knockdown of GPNMB, and vice versa. Last but not least, we tested the effect of GPNMB and EGFR on several intracellular pathways and found that GPNMB/EGFR modulated the phosphorylated (p)-c-Jun N-terminal kinase (JNK)1/2/JNK1/2 ratio and the p-nuclear factor κB (NF-κB p65)/NF-κB p65 ratio. In sum, our findings demonstrate the interaction between GPNMB and EGFR that regulates cell bioprocesses, with the hope to provide a new strategy of SCI therapy.
Collapse
Affiliation(s)
- Hua Yang
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gang Jin
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| | - Shihong Chen
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jing Luo
- Department of Rehabilitation, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Wei Xu
- Orthopedics Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai City, Taizhou, Zhejiang Province, 317000, China
| |
Collapse
|
7
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Phase 1 trial of Vismodegib and Erlotinib combination in metastatic pancreatic cancer. Pancreatology 2020; 20:101-109. [PMID: 31787526 PMCID: PMC7195700 DOI: 10.1016/j.pan.2019.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Interplay between the Hedgehog (HH) and epidermal growth factor receptor (EGFR) pathways modulating the outcome of their signaling activity have been reported in various cancers including pancreatic ductal adenocarcinoma (PDAC). Therefore, simultaneous targeting of these pathways may be clinically beneficial. This Phase I study combined HH and EGFR inhibition in metastatic PDAC patients. METHODS Combined effects of HH and EGFR inhibition using Vismodegib and Erlotinib with or without gemcitabine in metastatic solid tumors were assessed by CT. Another cohort of patients with metastatic PDAC was evaluated by FDG-PET and tumor biopsies-derived biomarkers. RESULTS Treatment was well tolerated with the maximum tolerated dose cohort experiencing no grade 4 toxicities though 25% experienced grade 3 adverse effects. Recommended phase II dose of Vismodegib and Erlotinib were each 150 mg daily. No tumor responses were observed although 16 patients achieved stable disease for 2-7 cycles. Paired biopsy analysis before and after first cycle of therapy in PDAC patients showed reduced GLI1 mRNA, phospho-GLI1 and associated HH target genes in all cases. However, only half of the cases showed reduced levels of desmoplasia or changes in fibroblast markers. Most patients had decreased phospho-EGFR levels. CONCLUSIONS Vismodegib and Erlotinib combination was well-tolerated although overall outcome in patients with metastatic PDAC was not significantly impacted by combination treatment. Biomarker analysis suggests direct targets inhibition without significantly affecting the stromal compartment. These findings conflict with pre-clinical mouse models, and thus warrant further investigation into how upstream inhibition of these pathways is circumvented in PDAC.
Collapse
|
9
|
Liu SM, Xiao ZF, Li X, Zhao YN, Wu XM, Han J, Chen B, Li JY, Fan CX, Xu B, Xue XY, Xue WW, Yang Y, Dai JW. Vascular endothelial growth factor activates neural stem cells through epidermal growth factor receptor signal after spinal cord injury. CNS Neurosci Ther 2018; 25:375-385. [PMID: 30155986 DOI: 10.1111/cns.13056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
AIMS Neural stem cells (NSCs) in the adult mammalian spinal cord are activated in response to spinal cord injury (SCI); however, mechanisms modulating this process are not clear. Here, we noticed SCI elevated expression of vascular endothelial growth factor (VEGF) and we aimed to validate the roles of VEGF in NSCs activation after SCI and investigated the related signals during the process. METHODS In vitro we detected whether VEGF promoted spinal cord NSCs proliferation and investigated the involved signals; In vivo, we injected VEGF into rat spinal cord to check the NSCs activation. RESULTS In vitro, VEGF triggered spinal cord NSCs proliferation and maintained self-renewal. Further investigations demonstrated VEGF transactivated epidermal growth factor receptor (EGFR) through VEGF receptor 2 (VEGFR2) to promote spinal cord NSCs proliferation. In vivo, we injected VEGF into spinal cord by laminectomy to confirm the roles of VEGF-VEGFR2-EGFR signals in NSCs activation. VEGF significantly elevated the number of activated NSCs and increased EGFR phosphorylation. In contrast, intraspinal injection of specific inhibitors targeting EGFR and VEGFR2 decreased NSCs activation after SCI. Our results demonstrate that VEGF-VEGFR2-EGFR axis is important for NSCs activation after SCI, providing new insights into the mechanisms of spinal cord NSCs activation postinjury.
Collapse
Affiliation(s)
- Su-Mei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Zhi-Feng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Nan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xian-Ming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Yin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cai-Xia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Wu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
10
|
Oh JY, Suh HN, Choi GE, Lee HJ, Jung YH, Ko SH, Kim JS, Chae CW, Lee CK, Han HJ. Modulation of sonic hedgehog-induced mouse embryonic stem cell behaviours through E-cadherin expression and integrin β1-dependent F-actin formation. Br J Pharmacol 2018; 175:3548-3562. [PMID: 29933500 DOI: 10.1111/bph.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behaviour in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly elucidated. Thus, we investigated the effect of Shh on the regulation of mESC behaviour as well as the effect of Shh-pretreated mESCs in skin wound healing. EXPERIMENTAL APPROACH The underlying mechanisms of Shh signalling pathway in growth and motility of mESCs were investigated using Western blot analysis, a cell proliferation assay and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using a mouse excisional wound splinting model. KEY RESULTS Shh disrupted the adherens junction through proteolysis by activating MMPs. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 up-regulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, the skin wound healing assay revealed that Shh-treated mESCs increased angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. CONCLUSIONS AND IMPLICATIONS Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation by a mechanism involving FAK/Src and Rac1/Cdc42 signalling pathways in mESCs.
Collapse
Affiliation(s)
- Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea.,Minipig Model Group, Animal Model Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Old Sonic Hedgehog, new tricks: a new paradigm in thoracic malignancies. Oncotarget 2018; 9:14680-14691. [PMID: 29581874 PMCID: PMC5865700 DOI: 10.18632/oncotarget.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
The Sonic Hedgehog (Shh) pathway is physiologically involved during embryogenesis, but is also activated in several diseases, including solid cancers. Previous studies have demonstrated that the Shh pathway is involved in oncogenesis, tumor progression and chemoresistance in lung cancer and mesothelioma. The Shh pathway is also closely associated with epithelial-mesenchymal transition and cancer stem cells. Recent findings have revealed that a small proportion of lung cancer cells expressed an abnormal full-length Shh protein, associated with cancer stem cell features. In this paper, we review the role of the Shh pathway in thoracic cancers (small cell lung cancer, non-small cell lung cancer, and mesothelioma) and discuss the new perspectives of cancer research highlighted by the recent data of the literature.
Collapse
|
12
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM, Yu FJ. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem 2017; 119:3829-3842. [PMID: 28941302 DOI: 10.1002/jcb.26414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| | - Feng-Jing Yu
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
13
|
Dong H, Lin X, Li Y, Hu R, Xu Y, Guo X, La Q, Wang S, Fang C, Guo J, Li Q, Mao S, Liu B. Genetic deletion of Rnd3 in neural stem cells promotes proliferation via upregulation of Notch signaling. Oncotarget 2017; 8:91112-91122. [PMID: 29207629 PMCID: PMC5710772 DOI: 10.18632/oncotarget.20247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022] Open
Abstract
Rnd3, a Rho GTPase, is involved in the inhibition of actin cytoskeleton dynamics through the Rho kinase-dependent signaling pathway. We previously demonstrated that mice with genetic deletion of Rnd3 developed a markedly larger brain compared with wild-type mice. Here, we demonstrate that Rnd3 knockout mice developed an enlarged subventricular zone, and we identify a novel role for Rnd3 as an inhibitor of Notch signaling in neural stem cells. Rnd3 deficiency, both in vivo and in vitro, resulted in increased levels of Notch intracellular domain protein. This led to enhanced Notch signaling and promotion of aberrant neural stem cell growth, thereby resulting in a larger subventricular zone and a markedly larger brain. Inhibition of Notch activity abrogated this aberrant neural stem cell growth.
Collapse
Affiliation(s)
- Huimin Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.,Department of Cell Biology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xi Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.,Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313013, China
| | - Ronghua Hu
- Department of Intensive Medicine, Hubei Cancer Hospital, Wuhan, Hubei 430079, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaojie Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiong La
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shun Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Congcong Fang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute of The First Affiliated Hospital, Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Shanping Mao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
14
|
Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, Fang Y, Han S, Li X, Fan C, Dai J. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair. Adv Healthc Mater 2017; 6. [PMID: 28233428 DOI: 10.1002/adhm.201601279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs) transplantation is a promising strategy to restore neuronal relays and neurological function of injured spinal cord because of the differentiation potential into functional neurons, but the transplanted NSCs often largely diffuse from the transplanted site and mainly differentiate into glial cells rather than neurons due to the adverse microenviornment after spinal cord injury (SCI). This paper fabricates a dual functional collagen scaffold tethered with a collagen-binding epidermal growth factor receptor (EGFR) antibody to simultaneously promote NSCs retention and neuronal differentiation by specifically binding to EGFR molecule expressed on NSCs and attenuating EGFR signaling, which is responsible for the inhibition of differentiation of NSCs toward neurons. Compared to unmodified control scaffold, the dual functional scaffold promotes the adhesion and neuronal differentiation of NSCs in vitro. Moreover, the implantation of the dual functional scaffold with exogenous NSCs in rat SCI model can capture and retain NSCs at the injury sites, and promote the neuronal differentiation of the retained NSCs into functional neurons, and finally dedicate to improving motor function of SCI rats, which provides a potential strategy for synchronously promoting stem cell retention and differentiation with biomaterials for SCI repair.
Collapse
Affiliation(s)
- Bai Xu
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Yannan Zhao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Zhifeng Xiao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Bin Wang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Xing Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Yongxiang Fang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Sufang Han
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| |
Collapse
|
15
|
Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands. Dev Biol 2016; 412:278-87. [PMID: 26930157 DOI: 10.1016/j.ydbio.2016.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/11/2023]
Abstract
The hedgehog family includes Sonic hedgehog (Shh), Desert hedgehog, and Indian hedgehog, which are well known as a morphogens that play many important roles during development of numerous organs such as the tongue, pancreas, kidney, cartilage, teeth and salivary glands (SMG). In Shh null mice, abnormal development of the salivary gland is seen after embryonic day 14 (E14). Shh also induced lobule formation and lumen formation in acini-like structures in cultured E14 SMG. In this study, we investigated the relationship between Shh and epidermal growth factor (EGF)/ErbB signaling in developing fetal mouse SMG. Administration of Shh to cultured E13 SMG stimulated branching morphogenesis (BrM) and induced synthesis of mRNAs for EGF ligands and receptors of the ErbB family. Shh also stimulated activation of ErbB signaling system such as ERK1/2. AG1478, a specific inhibitor of ErbB receptors, completely suppressed BrM and activation of EGF/ErbB/ERK1/2 cascade in E13 SMGs cultured with Shh. The expressions of mRNA for Egf in mesenchyme and mRNA for Erbb1, Erbb2 and Erbb3 in epithelium of E13 SMG were specifically induced by administration of Shh. These results show that Shh stimulates BrM of fetal mouse SMG, at least in part, through activation of the EGF/ErbB/ERK1/2 signaling system.
Collapse
|
16
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
17
|
Bernal C, Araya C, Palma V, Bronfman M. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone. Front Cell Neurosci 2015; 9:78. [PMID: 25852474 PMCID: PMC4364249 DOI: 10.3389/fncel.2015.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis.
Collapse
Affiliation(s)
- Carolina Bernal
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontifical Catholic University of Chile Santiago, Chile
| | - Claudia Araya
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontifical Catholic University of Chile Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Development, Faculty of Science, FONDAP Center for Genome Regulation, University of Chile Santiago, Chile
| | - Miguel Bronfman
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Center for Aging and Regeneration, Pontifical Catholic University of Chile Santiago, Chile
| |
Collapse
|
18
|
Lindsey S, Langhans SA. Epidermal growth factor signaling in transformed cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:1-41. [PMID: 25619714 DOI: 10.1016/bs.ircmb.2014.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells, which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression, causing a multitude of transcriptional changes that ultimately impact cell morphology, proliferation, and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights are gained into the molecular mechanisms of cross talk between EGFR signaling and other signaling pathways, including their roles in therapeutic resistance to anti-EGFR therapies, a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer.
Collapse
Affiliation(s)
- Stephan Lindsey
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
19
|
Xu C, Li X, Topham MK, Kuwada SK. Regulation of sonic hedgehog expression by integrin β1 and epidermal growth factor receptor in intestinal epithelium. IUBMB Life 2014; 66:694-703. [PMID: 25355554 DOI: 10.1002/iub.1319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
Abstract
We previously found that conditional deletion of integrin β1 in intestinal epithelium of mice caused early postnatal lethality and intestinal phenotypic changes including excessive proliferation and defective differentiation of intestinal epithelium due to loss of Hedgehog expression. Here, we link these defects to the Hedgehog (Hh) signaling pathway and show that loss of integrin β1 leads to excessive phosphorylation of MEK-1 and increased expression of ErbB receptors, including the epidermal growth factor receptor (EGFR). We show that increased EGFR signaling attenuates Hh abundance and that an EGFR inhibitor rescues conditional β1 integrin null pups from postnatal lethality. These studies link the loss of Hh expression in the intestinal epithelium of integrin β1-deficient mice to excessive EGFR/MAPK signaling, and identify a unique mechanism for crosstalk between stromal and epithelial signaling pathways that is critical for intestinal epithelial differentiation and function.
Collapse
Affiliation(s)
- Changxin Xu
- Department of Oncological Sciences and Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
20
|
Aberger F, Ruiz i Altaba A. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 2014; 33:93-104. [PMID: 24852887 PMCID: PMC4151135 DOI: 10.1016/j.semcdb.2014.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/12/2014] [Indexed: 01/10/2023]
Abstract
Canonical Hedgehog (HH) signaling leads to the regulation of the GLI code: the sum of all positive and negative functions of all GLI proteins. In humans, the three GLI factors encode context-dependent activities with GLI1 being mostly an activator and GLI3 often a repressor. Modulation of GLI activity occurs at multiple levels, including by co-factors and by direct modification of GLI structure. Surprisingly, the GLI proteins, and thus the GLI code, is also regulated by multiple inputs beyond HH signaling. In normal development and homeostasis these include a multitude of signaling pathways that regulate proto-oncogenes, which boost positive GLI function, as well as tumor suppressors, which restrict positive GLI activity. In cancer, the acquisition of oncogenic mutations and the loss of tumor suppressors - the oncogenic load - regulates the GLI code toward progressively more activating states. The fine and reversible balance of GLI activating GLI(A) and GLI repressing GLI(R) states is lost in cancer. Here, the acquisition of GLI(A) levels above a given threshold is predicted to lead to advanced malignant stages. In this review we highlight the concepts of the GLI code, the oncogenic load, the context-dependency of GLI action, and different modes of signaling integration such as that of HH and EGF. Targeting the GLI code directly or indirectly promises therapeutic benefits beyond the direct blockade of individual pathways.
Collapse
Affiliation(s)
- Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, 8242 CMU, 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| |
Collapse
|
21
|
CMV-induced pathology: pathway and gene-gene interaction analysis. Exp Mol Pathol 2014; 97:154-65. [PMID: 24984270 DOI: 10.1016/j.yexmp.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
Mucoepidermoid carcinoma (MEC) is the most prevalent malignant tumor in major and minor salivary glands (SGs). We have recently identified human cytomegalovirus (hCMV) as a principle component in the multifactorial causation of SG-MEC. This finding is corroborated by the ability of the purified mouse CMV (mCMV) to induce malignant transformation of SG cells in a three-dimensional in vitro mouse model, using a similar oncogenic signaling pathway. Our prior studies indicate that the core tumor microenvironment (TME) is a key regulator of pathologic progression, particularly the cancer-associated fibroblast (CAF) component. Studies of early CAFs immunodetect aberrant expression of ECM components, as well as multiple growth factors, cytokines and transcription factors. Here we present the mechanistic insight derived from a mathematical structure ("wiring diagram") used to model complex relationships between a highly relevant (p=9.43×10(-12)) global "cancer network" of 32 genes and their known links. Detailed characterization of the functional architecture of the examined "cancer network" exposes the critical crosstalk and compensatory pathways that limit the efficacy of targeted anti-kinase therapies.
Collapse
|
22
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Araújo GLL, Araújo JAM, Schroeder T, Tort ABL, Costa MR. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis. Front Cell Neurosci 2014; 8:77. [PMID: 24653675 PMCID: PMC3949322 DOI: 10.3389/fncel.2014.00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/21/2014] [Indexed: 02/02/2023] Open
Abstract
The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.
Collapse
Affiliation(s)
- Geissy L L Araújo
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Jessica A M Araújo
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Cell Systems Dynamics, ETH Zurich Basel, Switzerland
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|