1
|
Kumari A, Rahaman A, Zeng XA, Baloch Z. Therapeutic potential and microRNA regulating properties of phytochemicals in Alzheimer's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102439. [PMID: 40114707 PMCID: PMC11925107 DOI: 10.1016/j.omtn.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by the aggregation of Aβ (peptide) and neurofibrillary tangles along with inflammatory processes. Aging is a significant driver of these alterations, and dementia is a major cause of disability and mortality. Despite extensive clinical trials over the past two decades, no effective drug has been developed to improve AD symptoms or slow its progression, indicating the inefficiency of current treatment targets. In AD development, the molecular microenvironment plays a significant role. MicroRNAs (miRNAs) are a key component of this microenvironment, regulate post-transcriptional gene expression, and are expressed more abundantly in the brain than in other tissues. Several dysregulated miRNAs in AD have been linked to neuropathological changes, such as plaque and tangle accrual, as well as altered expression of notorious molecules. Preclinical studies have confirmed the efficacy of phytochemicals/food bioactive compounds (PCs/FBCs) in regulating miRNA expression, which makes them immensely beneficial for targeting miRNA-altered expression patterns in neuronal diseases. This review highlights the potential of miRNAs in driving AD pathology and its development. Furthermore, it discusses the therapeutic efficacy of PCs/FBCs and their miRNA-regulatory properties, especially focusing on antiinflammatory and antioxidant capacities for their development as effective AD agents.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Abdul Rahaman
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
- School of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zulqarnain Baloch
- Faculty of Science and Technology, Kunming University of Science and Technology, Kunming, Yunan, China
| |
Collapse
|
2
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Fattahi F, Asadi MR, Abed S, Kouchakali G, Kazemi M, Mansoori Derakhshan S, Shekari Khaniani M. Blood-based microRNAs as the potential biomarkers for Alzheimer's disease: evidence from a systematic review. Metab Brain Dis 2024; 40:44. [PMID: 39607566 DOI: 10.1007/s11011-024-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progresses over time and is identified by the development of neurofibrillary tangles and amyloid deposits in the brain. Mounting evidence has revealed that microRNAs (miRNAs) are significantly involved in AD progression, and may be used as promising biomarkers for diagnosis and prognosis. Nevertheless, the existing body of data regarding dysregulated circulating miRNAs in AD and their therapeutic applications are characterized by a lack of consistency. A comprehensive search was performed across various databases (PubMed, EMBASE, Web of Science, Scopus, Google Scholar, Cochrane, and ProQuest), starting from its inception and ending in January 2023. The criteria for inclusion consisted of original research studies written in English, which utilized Real-Time PCR to analyze miRNA expression in the blood, serum, or plasma of AD patients and healthy controls. The extracted data included the miRNA(s) investigated, dysregulation status, study type, human sample(s), and major findings. The search produced 608 records, which after careful examination, resulted in 48 suitable articles for data extraction. The research revealed a wide range of sample types used, with whole blood (39.59%) and serum (27.09%, including serum-exosome at 4.17%) emerging as the most prominent. The compiled dataset featured 4001 AD patients and 3886 healthy controls, revealing intricate regulatory patterns among 83 up-regulated (35.78%), 66 down-regulated (28.44%), and 83 not significantly altered (35.78%) miRNAs. Our results demonstrated that specific circulating miRNAs are consistently dysregulated in AD and could serve as non-intrusive biomarkers for the identification, prognosis, and prediction of cognitive decline. Further large-scale prospective studies are required to validate their clinical applications.
Collapse
Affiliation(s)
- Fateme Fattahi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kazemi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Abed S, Ebrahimi A, Fattahi F, Kouchakali G, Shekari-Khaniani M, Mansoori-Derakhshan S. The Role of Non-Coding RNAs in Mitochondrial Dysfunction of Alzheimer's Disease. J Mol Neurosci 2024; 74:100. [PMID: 39466447 DOI: 10.1007/s12031-024-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Although brain amyloid-β (Aβ) peptide buildup is the main cause of Alzheimer's disease (AD), mitochondrial abnormalities can also contribute to the illness's development, as either a primary or secondary factor, as programmed cell death and efficient energy generation depend on the proper operation of mitochondria. As a result, non-coding RNAs (ncRNAs) may play a crucial role in ensuring that nuclear genes related to mitochondria and mitochondrial genes function normally. Interestingly, a significant number of recent studies have focused on the impact of ncRNAs on the expression of nucleus and mitochondrial genes. Additionally, researchers have proposed some intriguing therapeutic approaches to treat and reduce the severity of AD by adjusting the levels of these ncRNAs. The goal of this work was to consolidate the existing knowledge in this field of study by systematically investigating ncRNAs, with a particular emphasis on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Therefore, the impact and processes by which ncRNAs govern mitochondrial activity in the onset and progression of AD are thoroughly reviewed in this article. Collectively, the effects of ncRNAs on physiological and molecular mechanisms associated with mitochondrial abnormalities that exacerbate AD are thoroughly reviewed in the current research, while also emphasizing the relationship between disturbed mitophagy in AD and ncRNAs.
Collapse
Affiliation(s)
- Samin Abed
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Fatemeh Fattahi
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | - Ghazal Kouchakali
- Department of Genetics, Tabriz University of Medical University, Tabriz, Iran
| | | | | |
Collapse
|
5
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
6
|
Wan C, Pei M, Shi K, Cui H, Long H, Qiao L, Xing Q, Wan Q. Toward a Brain-Neuromorphics Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311288. [PMID: 38339866 DOI: 10.1002/adma.202311288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Brain-computer interfaces (BCIs) that enable human-machine interaction have immense potential in restoring or augmenting human capabilities. Traditional BCIs are realized based on complementary metal-oxide-semiconductor (CMOS) technologies with complex, bulky, and low biocompatible circuits, and suffer with the low energy efficiency of the von Neumann architecture. The brain-neuromorphics interface (BNI) would offer a promising solution to advance the BCI technologies and shape the interactions with machineries. Neuromorphic devices and systems are able to provide substantial computation power with extremely high energy-efficiency by implementing in-materia computing such as in situ vector-matrix multiplication (VMM) and physical reservoir computing. Recent progresses on integrating neuromorphic components with sensing and/or actuating modules, give birth to the neuromorphic afferent nerve, efferent nerve, sensorimotor loop, and so on, which has advanced the technologies for future neurorobotics by achieving sophisticated sensorimotor capabilities as the biological system. With the development on the compact artificial spiking neuron and bioelectronic interfaces, the seamless communication between a BNI and a bioentity is reasonably expectable. In this review, the upcoming BNIs are profiled by introducing the brief history of neuromorphics, reviewing the recent progresses on related areas, and discussing the future advances and challenges that lie ahead.
Collapse
Affiliation(s)
- Changjin Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjiao Pei
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Kailu Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hangyuan Cui
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haotian Long
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lesheng Qiao
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qianye Xing
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qing Wan
- Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, China
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
7
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
9
|
Sharma H, Kaushik M, Goswami P, Sreevani S, Chakraborty A, Ashique S, Pal R. Role of miRNAs in Brain Development. Microrna 2024; 13:96-109. [PMID: 38571343 DOI: 10.2174/0122115366287127240322054519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.
Collapse
Affiliation(s)
- Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP), 244001, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Gwalior, 474005, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Maharashtra Educational Society's H. K. College of Pharmacy, Mumbai, Maharashtra, 400102, India
| | - Sanakattula Sreevani
- Department of Pharmacology, Vivekananda College of Pharmacy, Rajajinagar, Bengaluru, Karnataka, 560055, India
| | - Ananya Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, 700064, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| |
Collapse
|
10
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
11
|
Gundacker A, Glat M, Wais J, Stoehrmann P, Pollak A, Pollak DD. Early-life iron deficiency persistently disrupts affective behaviour in mice. Ann Med 2023; 55:1265-1277. [PMID: 37096819 PMCID: PMC10132221 DOI: 10.1080/07853890.2023.2191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND/OBJECTIVE Iron deficiency (ID) is the most common nutrient deficiency, affecting two billion people worldwide, including about 30% of pregnant women. During gestation, the brain is particularly vulnerable to environmental insults, which can irrevocably impair critical developmental processes. Consequently, detrimental consequences of early-life ID for offspring brain structure and function have been described. Although early life ID has been associated with an increased long-term risk for several neuropsychiatric disorders, the effect on depressive disorders has remained unresolved. MATERIALS AND METHODS A mouse model of moderate foetal and neonatal ID was established by keeping pregnant dams on an iron-deficient diet throughout gestation until postnatal day 10. The ensuing significant decrease of iron content in the offspring brain, as well as the impact on maternal behaviour and offspring vocalization was determined in the first postnatal week. The consequences of early-life ID for depression- and anxiety-like behaviour in adulthood were revealed employing dedicated behavioural assays. miRNA sequencing of hippocampal tissue of offspring revealed specific miRNAs signatures accompanying the behavioural deficits of foetal and neonatal ID in the adult brain. RESULTS Mothers receiving iron-deficient food during pregnancy and lactation exhibited significantly less licking and grooming behaviour, while active pup retrieval and pup ultrasonic vocalizations were unaltered. Adult offspring with a history of foetal and neonatal ID showed an increase in depression- and anxiety-like behaviour, paralleled by a deranged miRNA expression profile in the hippocampus, specifically levels of miR200a and miR200b. CONCLUSION ID during the foetal and neonatal periods has life-long consequences for affective behaviour in mice and leaves a specific and persistent mark on the expression of miRNAs in the brain. Foetal and neonatal ID needs to be further considered as risk factor for the development of depression and anxiety disorders later in life.Key MessagesMarginal reduction of gestational alimentary iron intake decreases brain iron content of the juvenile offspring.Early-life ID is associated with increased depression- and anxiety-like behaviour in adulthood.Reduction of maternal alimentary iron intake during pregnancy is reflected in an alteration of miRNA signatures in the adult offspring brain.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonathan Wais
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Liu Y, Tian J. Neuroprotective factors affect the progression of Alzheimer's disease. Biochem Biophys Res Commun 2023; 681:276-282. [PMID: 37797415 DOI: 10.1016/j.bbrc.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Alzheimer's disease(AD) is a neurodegenerative disease that occurs mostly in the elderly and is characterized by chronic progressive cognitive dysfunction, which seriously threatens the health and life-quality of patients. Alterations at the molecular level, which causes pathological changes of AD brain, have impacted the progression of AD. In this review, we illustrate the recent evidence of the alteration of neuroprotective proteins in AD, such as changes in their contents and variants. Furthermore, we elucidate the single nucleotide polymorphism (SNP) and gene changes. Finally, we highlight the epigenetic changes in AD, which helps to display the characteristics of the disease and provides guidance regarding research hot spots in the field against AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China.
| |
Collapse
|
13
|
Statsenko Y, Kuznetsov NV, Morozova D, Liaonchyk K, Simiyu GL, Smetanina D, Kashapov A, Meribout S, Gorkom KNV, Hamoudi R, Ismail F, Ansari SA, Emerald BS, Ljubisavljevic M. Reappraisal of the Concept of Accelerated Aging in Neurodegeneration and Beyond. Cells 2023; 12:2451. [PMID: 37887295 PMCID: PMC10605227 DOI: 10.3390/cells12202451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Genetic and epigenetic changes, oxidative stress and inflammation influence the rate of aging, which diseases, lifestyle and environmental factors can further accelerate. In accelerated aging (AA), the biological age exceeds the chronological age. OBJECTIVE The objective of this study is to reappraise the AA concept critically, considering its weaknesses and limitations. METHODS We reviewed more than 300 recent articles dealing with the physiology of brain aging and neurodegeneration pathophysiology. RESULTS (1) Application of the AA concept to individual organs outside the brain is challenging as organs of different systems age at different rates. (2) There is a need to consider the deceleration of aging due to the potential use of the individual structure-functional reserves. The latter can be restored by pharmacological and/or cognitive therapy, environment, etc. (3) The AA concept lacks both standardised terminology and methodology. (4) Changes in specific molecular biomarkers (MBM) reflect aging-related processes; however, numerous MBM candidates should be validated to consolidate the AA theory. (5) The exact nature of many potential causal factors, biological outcomes and interactions between the former and the latter remain largely unclear. CONCLUSIONS Although AA is commonly recognised as a perspective theory, it still suffers from a number of gaps and limitations that assume the necessity for an updated AA concept.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Big Data Analytic Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Daria Morozova
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Katsiaryna Liaonchyk
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
| | - Gillian Lylian Simiyu
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Darya Smetanina
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Aidar Kashapov
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Sarah Meribout
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (G.L.S.); (D.S.); (A.K.); (S.M.); (K.N.-V.G.)
| | - Rifat Hamoudi
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
| | - Fatima Ismail
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Suraiya Anjum Ansari
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bright Starling Emerald
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain 27272, United Arab Emirates; (D.M.); (K.L.); (R.H.); (S.A.A.); (B.S.E.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
14
|
Citterio LA, Mancuso R, Agostini S, Meloni M, Clerici M. Serum and Exosomal miR-7-1-5p and miR-223-3p as Possible Biomarkers for Parkinson's Disease. Biomolecules 2023; 13:biom13050865. [PMID: 37238734 DOI: 10.3390/biom13050865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of Parkinson's disease (PD) is poorly understood, and is strongly suspected to include both genetic and environmental factors. In this context, it is essential to investigate possible biomarkers for both prognostic and diagnostic purposes. Several studies reported dysregulated microRNA expression in neurodegenerative disorders, including PD. Using ddPCR, we investigated the concentrations of miR-7-1-5p, miR-499-3p, miR-223-3p and miR-223-5p-miRNAs involved in the α-synuclein pathway and in inflammation-in the serum and serum-isolated exosomes of 45 PD patients and 49 age- and sex-matched healthy controls (HC). While miR-499-3p and miR-223-5p showed no differences (1), serum concentration of miR-7-1-5p was significantly increased (p = 0.0007 vs. HC) and (2) miR-223-3p serum (p = 0.0006) and exosome (p = 0.0002) concentrations were significantly increased. ROC curve analysis showed that miR-223-3p and miR-7-1-5p serum concentration discriminates between PD and HC (p = 0.0001, in both cases). Notably, in PD patients, both miR-223-3p serum (p = 0.0008) and exosome (p = 0.006) concentrations correlated with levodopa equivalent daily dosage (LEDD). Finally, serum α-synuclein was increased in PD patients compared to HC (p = 0.025), and in patients correlated with serum miR-7-1-5p in (p = 0.05). Our results suggest that both miR-7-1-5p and miR-223-3p, distinguishing PD from HC, have the potential to be useful and non-invasive biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy
| |
Collapse
|
15
|
Raschka T, Sood M, Schultz B, Altay A, Ebeling C, Fröhlich H. AI reveals insights into link between CD33 and cognitive impairment in Alzheimer's Disease. PLoS Comput Biol 2023; 19:e1009894. [PMID: 36780558 PMCID: PMC9956604 DOI: 10.1371/journal.pcbi.1009894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2023] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Modeling biological mechanisms is a key for disease understanding and drug-target identification. However, formulating quantitative models in the field of Alzheimer's Disease is challenged by a lack of detailed knowledge of relevant biochemical processes. Additionally, fitting differential equation systems usually requires time resolved data and the possibility to perform intervention experiments, which is difficult in neurological disorders. This work addresses these challenges by employing the recently published Variational Autoencoder Modular Bayesian Networks (VAMBN) method, which we here trained on combined clinical and patient level gene expression data while incorporating a disease focused knowledge graph. Our approach, called iVAMBN, resulted in a quantitative model that allowed us to simulate a down-expression of the putative drug target CD33, including potential impact on cognitive impairment and brain pathophysiology. Experimental validation demonstrated a high overlap of molecular mechanism predicted to be altered by CD33 perturbation with cell line data. Altogether, our modeling approach may help to select promising drug targets.
Collapse
Affiliation(s)
- Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
- Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
| | - Meemansa Sood
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| | - Bruce Schultz
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Aybuge Altay
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
17
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 PMCID: PMC11421650 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
18
|
Khodayi-Shahrak M, Khalaj-Kondori M, Hosseinpour Feizi MA, Talebi M. Insights into the mechanisms of non-coding RNAs' implication in the pathogenesis of Alzheimer's disease. EXCLI JOURNAL 2022; 21:921-940. [PMID: 36110561 PMCID: PMC9441681 DOI: 10.17179/excli2022-5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Non-coding RNAs including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are implicated in the regulation of gene expression at transcriptional, posttranscriptional, and epigenetic levels. Several studies in cell lines, animal models, and humans, have revealed that non-coding RNAs play crucial roles in the pathogenesis of Alzheimer's disease (AD). Detailed knowledge on their mechanism of implication in the AD pathogenesis can help to develop novel therapeutic and disease management strategies. The two main pathological hallmarks of AD are amyloid plaques resulting from the β-amyloid accumulation, and neurofibrillary tangles (NFT) due to the phosphorylated tau accumulation. Several lncRNAs and miRNAs play crucial roles in both these hallmarks of the AD pathogenesis and other AD-related pathological procedures such as neuronal and synaptic plasticity, neuroinflammation, neuronal differentiation and neuronal apoptosis. In this review, we outlined the non-coding RNAs and further discussed how they are implicated in these AD-related pathological procedures.
Collapse
Affiliation(s)
- Majid Khodayi-Shahrak
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran,*To whom correspondence should be addressed: Mohammad Khalaj-Kondori, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran, E-mail:
| | | | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Duly AMP, Kao FCL, Teo WS, Kavallaris M. βIII-Tubulin Gene Regulation in Health and Disease. Front Cell Dev Biol 2022; 10:851542. [PMID: 35573698 PMCID: PMC9096907 DOI: 10.3389/fcell.2022.851542] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule proteins form a dynamic component of the cytoskeleton, and play key roles in cellular processes, such as vesicular transport, cell motility and mitosis. Expression of microtubule proteins are often dysregulated in cancer. In particular, the microtubule protein βIII-tubulin, encoded by the TUBB3 gene, is aberrantly expressed in a range of epithelial tumours and is associated with drug resistance and aggressive disease. In normal cells, TUBB3 expression is tightly restricted, and is found almost exclusively in neuronal and testicular tissues. Understanding the mechanisms that control TUBB3 expression, both in cancer, mature and developing tissues will help to unravel the basic biology of the protein, its role in cancer, and may ultimately lead to the development of new therapeutic approaches to target this protein. This review is devoted to the transcriptional and posttranscriptional regulation of TUBB3 in normal and cancerous tissue.
Collapse
Affiliation(s)
- Alastair M. P. Duly
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
| | - Felicity C. L. Kao
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wee Siang Teo
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Martinez B, Peplow PV. MicroRNA expression in animal models of amyotrophic lateral sclerosis and potential therapeutic approaches. Neural Regen Res 2022; 17:728-740. [PMID: 34472458 PMCID: PMC8530133 DOI: 10.4103/1673-5374.322431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
A review of recent animal models of amyotrophic lateral sclerosis showed a large number of miRNAs had altered levels of expression in the brain and spinal cord, motor neurons of spinal cord and brainstem, and hypoglossal, facial, and red motor nuclei and were mostly upregulated. Among the miRNAs found to be upregulated in two of the studies were miR-21, miR-155, miR-125b, miR-146a, miR-124, miR-9, and miR-19b, while those downregulated in two of the studies included miR-146a, miR-29, miR-9, and miR-125b. A change of direction in miRNA expression occurred in some tissues when compared (e.g., miR-29b-3p in cerebellum and spinal cord of wobbler mice at 40 days), or at different disease stages (e.g., miR-200a in spinal cord of SOD1(G93A) mice at 95 days vs. 108 and 112 days). In the animal models, suppression of miR-129-5p resulted in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and tended to improve motor neuron survival in the SOD1(G93A) mouse model. Suppression of miR-155 was also associated with increased lifespan, while lowering of miR-29a tended to improve lifespan in males and increase muscle strength in SOD1(G93A) mice. Overexpression of members of miR-17~92 cluster improved motor neuron survival in SOD1(G93A) mice. Treatment with an artificial miRNA designed to target hSOD1 increased lifespan and improved muscle strength in SOD1(G93A) animals. Further studies with animal models of amyotrophic lateral sclerosis are warranted to validate these findings and identify specific miRNAs whose suppression or directed against hSOD1 results in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and improved motor neuron survival in SOD1(G93A) animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
22
|
Sun C, Liu J, Duan F, Cong L, Qi X. The role of the microRNA regulatory network in Alzheimer's disease: a bioinformatics analysis. Arch Med Sci 2022; 18:206-222. [PMID: 35154541 PMCID: PMC8826944 DOI: 10.5114/aoms/80619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease which presents with an earlier age of onset and increased symptom severity. The objective of this study was to evaluate the relationship between regulation of miRNAs and AD. MATERIAL AND METHODS We completed a bioinformatic analysis of miRNA-AD studies through multiple databases such as TargetScan, Database for Annotation, Visualization and Integrated Discovery (DAVID), FunRich and String and assessed which miRNAs are commonly elevated or decreased in brain tissues, cerebrospinal fluid (CSF) and blood of AD patients. All identified articles were assessed using specific inclusion and exclusion criteria. RESULTS MiRNAs related to AD of twenty-eight studies were assessed in this study. A wide range of miRNAs were up-regulated or down-regulated in tissues of AD patients' brain, blood and CSF. Twenty-seven differentially dysregulated miRNAs involved in amyloidogenesis, inflammation, tau phosphorylation, apoptosis, synaptogenesis, neurotrophism, neuron degradation, and activation of cell cycle entry were identified. Additionally, our bioinformatics analysis identified the top ten functions of common miRNAs in candidate studies. The functions of common up-regulated miRNAs primarily target the nucleus and common down-regulated miRNAs primarily target transcription, DNA-templated. CONCLUSIONS Comprehensive analysis of all miRNA studies reveals cooperation in miRNA signatures whether in brain tissues or in CSF and peripheral blood. More and more studies suggest that miRNAs may play crucial roles as diagnostic biomarkers and/or as new therapeutic targets in AD. According to biomarkers, we can identify the preclinical phase early, which provides an important time window for therapeutic intervention.
Collapse
Affiliation(s)
- Chenjing Sun
- Department of Neurology, PLA Navy General Hospital, Haidian District, Beijing, China
| | - Jianguo Liu
- Department of Neurology, PLA Navy General Hospital, Haidian District, Beijing, China
| | - Feng Duan
- Department of Neurology, PLA Navy General Hospital, Haidian District, Beijing, China
| | - Lin Cong
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Heping District, Shenyang City, Liaoning Province, China
| | - Xiaokun Qi
- Department of Neurology, PLA Navy General Hospital, Haidian District, Beijing, China
| |
Collapse
|
23
|
Jalali H, Golchin H, Sadri Z, Karimzadeh Bardei L, Nabiuni M. Selenium enhances the expression of miR-9, miR-124 and miR-29a during neural differentiation of bone marrow mesenchymal stem cells. J Trace Elem Med Biol 2022; 69:126898. [PMID: 34800856 DOI: 10.1016/j.jtemb.2021.126898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium (Se) is a trace element that plays important role in antioxidant defense in the brain. Sodium selenite (Na2SeO3) is an inorganic salt of Se which has an antioxidant function. In the present study, we investigated the effect of Sodium selenite on the expression of important neuronal microRNAs during neural differentiation of bone marrow-derived stem cells (BMSCs). METHODS Mesenchymal stem cells were collected from rat bone marrow and cultured in the Dulbecco's Modified Eagle Medium (DMEM) medium. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was conducted to determine the toxicity of Na2SeO3. For neural induction, BMSCs were divided into control, Na2SeO3 containing (10 ng/mL) and Na2SeO3 free groups and cultured in DMEM medium supplemented with Isobutyl-l-methylxanthine (IBMX), Fibroblast growth factor 2 (FGF2), B27, Retinoic acid, and brain derived neurotrophic factor (BDNF) for 14 days. At the end of the differentiation, immunostaining against Microtubule associated protein 2 (Map-2) and Choline acetyltransferase (ChAT) proteins was performed. Also, the total RNA is extracted from control and neural differentiated cells using a special kit, and the expression of miR-9, miR-124, and miR-29a was analyzed using real-time polymerase chain reaction (RT-PCR). RESULTS Increasing Na2SeO3 concentrations had increasing toxicity; therefore, the concentration of 10 ng/mL was used as a supplement during neural differentiation. Examination of the expression of Map-2 and ChAT proteins showed that Na2SeO3 increased the expression of them and consequently the neuronal differentiation of BMSCs. Na2SeO3 also significantly increased the expression of miR-9, miR-124, and miR-29a in BMSCs undergoing neuronal differentiation. CONCLUSIONS Our results suggest that the protective effect of selenium on neural differentiation of stem cells may be mediated through neuron specific microRNAs. This result further highlights the importance of selenium supplementation in preventing neuronal diseases.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Hasti Golchin
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Zahra Sadri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Latifeh Karimzadeh Bardei
- School of Biology, College of Science, University of Tehran, Engelab Ave., Tehran, 14155-6655, Iran.
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| |
Collapse
|
24
|
Gao Z, Zhang R, Jiang L, Zhou H, Wang Q, Ma Y, Zhang D, Qin Y, Tian P, Zhang N, Shi Z, Xu S. Administration of miR-195 Inhibitor Enhances Memory Function Through Improving Synaptic Degradation and Mitochondrial Dysfunction of the Hippocampal Neurons in SAMP8 Mice. J Alzheimers Dis 2021; 85:1495-1509. [PMID: 34924391 DOI: 10.3233/jad-215301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and miR-195 is involved in mitochondrial disorder through targeting MFN-2 protein in hippocampal neurons of AD. OBJECTIVE To clarify if administration of miR-195 inhibitor could enhance the memory deficits through improving hippocampal neuron mitochondrial dysfunction in SAMP8 mice. METHODS The expression of miR-195 was detected by RT-qPCR in primary hippocampal neurons and HT-22 cells treated with Aβ 1-42. Morris water maze (MWM) was used to assess the learning and memory function in SAMP8 mice administrated with antagomir-195. Transmission electron microscopy was employed to determine the morphological changes of synapses and mitochondria of hippocampus in SAMP8 mice. Mitochondrial respiration was measured using a high-resolution oxygraph. RESULTS The expression of miR-195 were upregulated in the primary hippocampal neurons and HT-22 cells induced by Aβ 1-42. Inhibition of miR-195 ameliorated the mitochondrial dysfunction in HT-22 cells induced by Aβ 1-42, including mitochondrial morphologic damages, mitochondrial membrane potential, respiration function, and ATP production. Administration of antagomir-195 by the third ventricle injection markedly ameliorated the cognitive function, postsynaptic density thickness, length of synaptic active area, mitochondrial aspect ratio, and area in hippocampus of SAMP8 mice. Finally, antagomir-195 was able to promote an increase in the activity of respiratory chain complex CI and II in SAMP8 mice. CONCLUSION This study demonstrated that miR-195 inhibitor ameliorated the cognitive impairment of AD mice by improving mitochondrial structure damages and dysfunction in the hippocampal neurons, which provide an experimental basis for further exploring the treatment strategy of AD.
Collapse
Affiliation(s)
- Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Huimin Zhou
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China.,Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qian Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Yingxin Ma
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Zhongli Shi
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
25
|
Amyloid peptide exerts a rapid induction of Dicer1 protein in neuron via reducing phosphorylation. Neurochem Int 2021; 151:105210. [PMID: 34695450 DOI: 10.1016/j.neuint.2021.105210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022]
Abstract
A growing number of evidence suggests that altered microRNA network in the brain contributes to the risk of Alzheimer's disease(AD). Dicer1 is a type III riboendonuclease which cleaves pre-microRNA into functional microRNA. Reduction of Dicer1 or Dicer1 mutation has been involved in cancer, aging or age-related macular degeneration. Recently, we found a possible link between Dicer1 and AD. In particular, Dicer1 protein and Dicer1 mRNA is reduced in the hippocampus and the cortex of an animal model of AD and exposure to Aβ42 oligomer(AβO) longer than 6 h reduces the transcription of Dicer1 gene in neuron, via depletion of NF-E2-related factor-2. In this study, exposure to AβO at shorter time increased Dicer1 protein in neuron in a dose-dependent mode; but the mRNA level remained unaltered. Under this treatment regime,AβO reduced phosphorylation level of Dicer1 and of its binding partner, transactivation response element RNA-binding protein(TRBP). Addition of a JNK inhibitor,SP600125, or an ERK inhibitor,U0126, further increased Dicer1 protein compared to Aβo treatment alone, with simultaneaous reduction of phospho-Dicer1, but with different effects on phospho-TRBP. Finally, an inhibitor of calcineurin,FK506, further increased Dicer1 protein compared to Aβo treatment alone. Thus, phosphorylation of Dicer1 and TRBP was determined by mitogen activated protein kinases JNK,ERK, and protein phosphatase 2B(calcineurin) which together determined Dicer1 stability. In summary, reduced phosphorylation of Dicer1 accounted for the rapid induction of Dicer1 by AβO. This study highlights a novel way by which AβO regulates Dicer1.
Collapse
|
26
|
Cao J, Huang M, Guo L, Zhu L, Hou J, Zhang L, Pero A, Ng S, El Gaamouch F, Elder G, Sano M, Goate A, Tcw J, Haroutunian V, Zhang B, Cai D. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer's disease pathogenesis. Mol Psychiatry 2021; 26:4687-4701. [PMID: 32632205 PMCID: PMC7785685 DOI: 10.1038/s41380-020-0824-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Our recent findings link the apolipoprotein E4 (ApoE4)-specific changes in brain phosphoinositol biphosphate (PIP2) homeostasis to the susceptibility of developing Alzheimer's Disease (AD). In the present study, we have identified miR-195 as a top micro-RNA candidate involved in the ApoE/PIP2 pathway using miRNA profiles in human ROSMAP datasets and mouse microarray studies. Further validation studies have demonstrated that levels of miR-195 are significantly lower in human brain tissue of ApoE4+/- patients with clinical diagnosis of mild cognitive impairment (MCI) or early AD when compared to ApoE4-/- subjects. In addition, brain miR-195 levels are reduced along with disease progression from normal aging to early AD, and cerebrospinal fluid (CSF) miR-195 levels of MCI subjects are positively correlated with cognitive performances as measured by mini-mental status examination (MMSE) and negatively correlated with CSF tau levels, suggesting the involvement of miR-195 in early development of AD with a potential impact on cognition. Similar differences in miR-195 levels are seen in ApoE4+/+ mouse hippocampal brain tissue and cultured neurons when compared to ApoE3+/+ counterparts. Over-expressing miR-195 reduces expression levels of its top predicted target synaptojanin 1 (synj1), a brain PIP2-degrading enzyme. Furthermore, elevating miR-195 ameliorates cognitive deficits, amyloid plaque burden, and tau hyper-phosphorylation in ApoE4+/+ mice. In addition, elevating miR-195 rescues AD-related lysosomal defects in inducible pluripotent stem cells (iPSCs)-derived brain cells of ApoE4+/+ AD subjects while inhibiting miR-195 exacerbates these phenotypes. Together, our data uncover a novel regulatory mechanism of miR-195 targeted at ApoE4-associated brain PIP2 dyshomeostasis, cognitive deficits, and AD pathology.
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Min Huang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Zhu
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Larry Zhang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adriana Pero
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina Ng
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cornell University, Ithaca, NY, 14850, USA
| | - Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gregory Elder
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Sano
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alzheimer Disease Rsearch Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Julia Tcw
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alzheimer Disease Rsearch Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, MIRECC, Bronx, NY, 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alzheimer Disease Rsearch Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
28
|
Usman M, Priya K, Pandit S, Gupta P. Cancer risk and nullity of Glutathione-S-transferase mu and theta 1 in occupational pesticide workers. Curr Pharm Biotechnol 2021; 23:932-945. [PMID: 34375184 DOI: 10.2174/1389201022666210810092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/08/2022]
Abstract
Occupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells - that are devoid of GSTT1/GSTM1 - from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Piyush Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| |
Collapse
|
29
|
Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of Astrocytes and microRNA Dysregulation in Neurodegenerative Diseases: From Pathogenesis to Therapeutic Potential. Front Mol Neurosci 2021; 14:556215. [PMID: 33815055 PMCID: PMC8010124 DOI: 10.3389/fnmol.2021.556215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are the most widely distributed and abundant glial cells in the central nervous system (CNS). Neurodegenerative diseases (NDDs) are a class of diseases with a slow onset, progressive progression, and poor prognosis. Common clinical NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Although these diseases have different etiologies, they are all associated with neuronal loss and pathological dysfunction. Accumulating evidence indicates that neurotransmitters, neurotrophic factors, and toxic metabolites that are produced and released by activated astrocytes affect and regulate the function of neurons at the receptor, ion channel, antigen transfer, and gene transcription levels in the pathogenesis of NDDs. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a wide range of biological roles by regulating the transcription and post-transcriptional translation of target mRNAs to induce target gene expression and silencing. Recent studies have shown that miRNAs participate in the pathogenesis of NDDs by regulating astrocyte function through different mechanisms and may be potential targets for the treatment of NDDs. Here, we review studies of the role of astrocytes in the pathogenesis of NDDs and discuss possible mechanisms of miRNAs in the regulation of astrocyte function, suggesting that miRNAs may be targeted as a novel approach for the treatment of NDDs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lianhua Piao
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep 2021; 8:607-616. [PMID: 33816123 PMCID: PMC8010213 DOI: 10.1016/j.toxrep.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Essential metals including iron (Fe) and manganese (Mn) with known physiological functions in human body play an important role in cell homeostasis. Excessive exposure to these essential as well as non-essential metals including mercury (Hg) and Aluminum (Al) may contribute to pathological conditions, including PD. Each metal could be toxic through specific pathways. Epidemiological evidences from occupational and ecological studies besides various in vivo and in vitro studies have revealed the possible pathogenic role and neurotoxicity of different metals. Pesticides are substances that aim to mitigate the harm done by pests to plants and crops, and are extensively used to boost agricultural production. This review provides an outline of our current knowledge on the possible association between metals and PD. We have discussed the potential association between these two, furthermore the chemical properties, biological and toxicological aspects as well as possible mechanisms of Fe, Mn, Cu, Zn, Al, Ca, Pb, Hg and Zn in PD pathogenesis. In addition, we review recent evidence on deregulated microRNAs upon pesticide exposure and possible role of deregulated miRNA and pesticides to PD pathogenesis.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, China
| | - Yang Hai
- School of Pharmacy, Lanzhou University, China
| | | | | | - Xin Wang
- School of Pharmacy, Lanzhou University, China
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, China
- School of Pharmacy, Lanzhou University, China
| |
Collapse
|
31
|
Findeiss E, Schwarz SC, Evsyukov V, Rösler TW, Höllerhage M, Chakroun T, Nykänen NP, Shen Y, Wurst W, Kohl M, Tost J, Höglinger GU. Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes. Front Cell Dev Biol 2021; 9:561086. [PMID: 33748099 PMCID: PMC7969723 DOI: 10.3389/fcell.2021.561086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson’s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Elisabeth Findeiss
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid C Schwarz
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Valentin Evsyukov
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Niko-Petteri Nykänen
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Yimin Shen
- Laboratory for Epigenetics and Environment, Center National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Kohl
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Center National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
32
|
Shew M, Wichova H, Bur A, Koestler DC, St Peter M, Warnecke A, Staecker H. MicroRNA Profiling as a Methodology to Diagnose Ménière's Disease: Potential Application of Machine Learning. Otolaryngol Head Neck Surg 2021; 164:399-406. [PMID: 32663060 DOI: 10.1177/0194599820940649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Diagnosis and treatment of Ménière's disease remains a significant challenge because of our inability to understand what is occurring on a molecular level. MicroRNA (miRNA) perilymph profiling is a safe methodology and may serve as a "liquid biopsy" equivalent. We used machine learning (ML) to evaluate miRNA expression profiles of various inner ear pathologies to predict diagnosis of Ménière's disease. STUDY DESIGN Prospective cohort study. SETTING Tertiary academic hospital. SUBJECTS AND METHODS Perilymph was collected during labyrinthectomy (Ménière's disease, n = 5), stapedotomy (otosclerosis, n = 5), and cochlear implantation (sensorineural hearing loss [SNHL], n = 9). miRNA was isolated and analyzed with the Affymetrix miRNA 4.0 array. Various ML classification models were evaluated with an 80/20 train/test split and cross-validation. Permutation feature importance was performed to understand miRNAs that were critical to the classification models. RESULTS In terms of miRNA profiles for conductive hearing loss versus Ménière's, 4 models were able to differentiate and identify the 2 disease classes with 100% accuracy. The top-performing models used the same miRNAs in their decision classification model but with different weighted values. All candidate models for SNHL versus Ménière's performed significantly worse, with the best models achieving 66% accuracy. Ménière's models showed unique features distinct from SNHL. CONCLUSIONS We can use ML to build Ménière's-specific prediction models using miRNA profile alone. However, ML models were less accurate in predicting SNHL from Ménière's, likely from overlap of miRNA biomarkers. The power of this technique is that it identifies biomarkers without knowledge of the pathophysiology, potentially leading to identification of novel biomarkers and diagnostic tests.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Helena Wichova
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Andres Bur
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Devin C Koestler
- Department of Biostatistics, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | | | - Athanasia Warnecke
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
33
|
Zhu J, Xu X, Liang Y, Zhu R. Downregulation of microRNA-15b-5p Targeting the Akt3-Mediated GSK-3 β/ β-Catenin Signaling Pathway Inhibits Cell Apoptosis in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8814862. [PMID: 33506036 PMCID: PMC7806375 DOI: 10.1155/2021/8814862] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an incurable progressive disorder resulting from neurodegeneration, and apoptosis is considered a dominant mechanism underlying the process of neurodegeneration. MicroRNAs (miRNAs), which are small and noncoding RNAs involved in many a biological process like apoptosis and regulation of gene expressions, have been found in postmortem brain samples of patients with PD, as well as in vitro and in vivo models of PD. To explore the impact of miR-15b-5p and Akt3 on apoptosis in the progression of PD, the method of quantitative reverse transcription polymerase chain reaction (qRT-PCR) was employed, and the analysis result showed upregulated expression of miR-15b-5p and downregulated expression of Akt3 in the serum of PD patients, MPP+-induced SH-SY5Y cells, and the brain tissues of MPTP-induced mice. Meanwhile, the dual-luciferase reporter assay was used to demonstrate the regulator-target interaction between miR-15b-5p and Akt3; flow cytometry and spectrophotometry revealed that transfection of miR-15b-5p mimic and si-Akt3 increased the rate of apoptosis and caspase-3 activity, whereas transfecting the miR-15b-5p inhibitor and Akt3-overexpression plasmid repressed the rate of apoptosis and caspase-3 activity in the MPP+-induced SH-SY5Y cell model and the MPTP-induced mouse model. Additionally, analysis of western blotting (WB) assays in vivo and in vitro revealed that proapoptosis proteins (Bax, caspase-3, GSK-3β, and β-catenin) showed markedly upregulated expression in the miR-15b-5p inhibitor and si-Akt3-overexpression groups, while the expression of an antiapoptosis gene (i.e., Bcl2) was downregulated. These analysis results indicate that downregulation of miR-15b-5p by targeting the Akt3-mediated GSK-3β/β-catenin signaling pathway would repress cell apoptosis in PD in vivo and in vitro. It is expected that the research findings would help find new therapeutic targets for treatment of PD.
Collapse
Affiliation(s)
- Jianzhong Zhu
- Department of Neurology, Longmen County People's Hospital, Huizhou 516800, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| | - Yingyin Liang
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| | - Ronglan Zhu
- Department of Neurology, The First Affiliated Hospital of Sun Yatsen University, Guangzhou 510080, China
| |
Collapse
|
34
|
Matsumura N, Kinoshita C, Aoyama K. [Mechanism of glutathione production in neurons]. Nihon Yakurigaku Zasshi 2021; 156:26-30. [PMID: 33390476 DOI: 10.1254/fpj.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine that acts as an important neuroprotective molecule in the central nervous system. In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, GSH levels in the brain would be decreased before the onset, and GSH dysregulation is considered to be involved in the development of these neurodegenerative diseases. Cysteine uptake into neurons is the rate-limiting step for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1), which is a glutamate/cysteine cotransporter, is responsible for the neuronal cysteine uptake, and EAAC1 dysfunction reduces GSH levels in the brain and has a significant influence on the process of neurodegeneration. Since miR-96-5p, which is one of microRNAs, suppresses EAAC1 expression, it is conceivable that miR-96-5p inhibitor suppresses the onset or slows the progression of neurodegenerative diseases by increasing EAAC1 levels leading to promoting neuronal GSH production.
Collapse
Affiliation(s)
- Nobuko Matsumura
- Department of Pharmacology, Teikyo University School of Medicine
| | | | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine
| |
Collapse
|
35
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
36
|
Aloizou AM, Siokas V, Sapouni EM, Sita N, Liampas I, Brotis AG, Rakitskii VN, Burykina TI, Aschner M, Bogdanos DP, Tsatsakis A, Hadjigeorgiou GM, Dardiotis E. Parkinson's disease and pesticides: Are microRNAs the missing link? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140591. [PMID: 32721662 DOI: 10.1016/j.scitotenv.2020.140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Efstathia-Maria Sapouni
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoleta Sita
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, School of Medicine, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Valerii N Rakitskii
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation
| | - Michael Aschner
- Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Aristidis Tsatsakis
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation; Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
37
|
Aloizou AM, Pateraki G, Siokas V, Mentis AFA, Liampas I, Lazopoulos G, Kovatsi L, Mitsias PD, Bogdanos DP, Paterakis K, Dardiotis E. The role of MiRNA-21 in gliomas: Hope for a novel therapeutic intervention? Toxicol Rep 2020; 7:1514-1530. [PMID: 33251119 PMCID: PMC7677650 DOI: 10.1016/j.toxrep.2020.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common primary brain tumors in adults. They are generally very resistant to treatment and are therefore associated with negative outcomes. MicroRNAs (miRNAs) are small, non-coding RNA molecules that affect many cellular processes by regulating gene expression and, post-transcriptionally, the translation of mRNAs. MiRNA-21 has been consistently shown to be upregulated in glioma and research has shown that it is involved in a wide variety of biological pathways, promoting tumor cell survival and invasiveness. Furthermore, it has been implicated in resistance to treatment, both against chemotherapy and radiotherapy. In this review, we gathered the existent data on miRNA-21 and gliomas, in terms of its expression levels, association with grade and prognosis, the pathways it involves and its targets in glioma, and finally how it leads to treatment resistance. Furthermore, we discuss how this knowledge could be applied in clinical practice in the years to come. To our knowledge, this is the first review to assess in extent and depth the role of miRNA-21 in gliomas.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A Mentis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panayiotis D Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
38
|
Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals (Basel) 2020; 13:ph13100314. [PMID: 33076502 PMCID: PMC7602608 DOI: 10.3390/ph13100314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of brain therapeutics is largely hampered by the presence of the blood–brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer’s disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.
Collapse
|
39
|
Reichenstein I, Eitan C, Diaz-Garcia S, Haim G, Magen I, Siany A, Hoye ML, Rivkin N, Olender T, Toth B, Ravid R, Mandelbaum AD, Yanowski E, Liang J, Rymer JK, Levy R, Beck G, Ainbinder E, Farhan SMK, Lennox KA, Bode NM, Behlke MA, Möller T, Saxena S, Moreno CAM, Costaguta G, van Eijk KR, Phatnani H, Al-Chalabi A, Başak AN, van den Berg LH, Hardiman O, Landers JE, Mora JS, Morrison KE, Shaw PJ, Veldink JH, Pfaff SL, Yizhar O, Gross C, Brown RH, Ravits JM, Harms MB, Miller TM, Hornstein E. Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 2020; 11:11/523/eaav5264. [PMID: 31852800 DOI: 10.1126/scitranslmed.aav5264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
Collapse
Affiliation(s)
- Irit Reichenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Project MinE ALS Sequencing Consortium
| | | | - Guy Haim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mariah L Hoye
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natali Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jing Liang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Beck
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly A Lennox
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Nicole M Bode
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 16, CH-3010 Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Murtenstrasse 40, CH-3008 Bern, Switzerland
| | | | - Giancarlo Costaguta
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristel R van Eijk
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease (CGND) and New York Genome Center (NYGC) ALS Consortium, New York, NY 10013, USA
| | - Ammar Al-Chalabi
- Project MinE ALS Sequencing Consortium.,Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, Department of Basic and Clinical Neuroscience, Department of Neurology, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - A Nazli Başak
- Project MinE ALS Sequencing Consortium.,Koç University Translational Medicine Research Center, NDAL, Istanbul 34010, Turkey
| | - Leonard H van den Berg
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Orla Hardiman
- Project MinE ALS Sequencing Consortium.,Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin 2, Republic of Ireland
| | - John E Landers
- Project MinE ALS Sequencing Consortium.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jesus S Mora
- Project MinE ALS Sequencing Consortium.,ALS Unit, Hospital San Rafael, Madrid 28016, Spain
| | - Karen E Morrison
- Project MinE ALS Sequencing Consortium.,Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Project MinE ALS Sequencing Consortium.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Jan H Veldink
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Ravits
- Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| | - Matthew B Harms
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. .,Project MinE ALS Sequencing Consortium
| |
Collapse
|
40
|
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y, Li H. MicroRNAs in Alzheimer's Disease: Function and Potential Applications as Diagnostic Biomarkers. Front Mol Neurosci 2020; 13:160. [PMID: 32973449 PMCID: PMC7471745 DOI: 10.3389/fnmol.2020.00160] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although the incidence of AD is high, the rates of diagnosis and treatment are relatively low. Moreover, effective means for the diagnosis and treatment of AD are still lacking. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play regulatory roles by targeting mRNAs. The expression of miRNAs is conserved, temporal, and tissue-specific. Impairment of microRNA function is closely related to AD pathogenesis, including the beta-amyloid and tau hallmarks of AD, and there is evidence that the expression of some microRNAs differs significantly between healthy people and AD patients. These properties of miRNAs endow them with potential diagnostic and therapeutic value in the treatment of this debilitating disease. This review provides comprehensive information about the regulatory function of miRNAs in AD, as well as potential applications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Wei Wei
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Yong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Na Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting-Ting Zhang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Li C, Chen Y, Chen X, Wei Q, Ou R, Gu X, Cao B, Shang H. MicroRNA-183-5p is stress-inducible and protects neurons against cell death in amyotrophic lateral sclerosis. J Cell Mol Med 2020; 24:8614-8622. [PMID: 32558113 PMCID: PMC7412410 DOI: 10.1111/jcmm.15490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons. A fundamental pathogenesis of ALS is the prolonged cell stress in neurons, which is caused by either accumulation of protein aggregates or reactive oxygen species. However, the mechanistic link between stress sensing and cell death is unsettled. Here, we identify that miR-183-5p, a neuron-enriched miRNA, couples stress sensing and cell death programming in ALS. miR-183-5p is immediately induced by hydrogen peroxide, tunicamycin or TNF-α in neurons. The overexpression of miR-183-5p increases neuron survival under stress conditions, whereas its knockdown causes neuron death. miR-183-5p coordinates apoptosis and necroptosis pathways by directly targeting PDCD4 and RIPK3, and thus protects neurons against cell death under stress conditions. The consistent reduction of miR-183-5p in ALS patients and mouse models enhances the notion that miR-183-5p is a central regulator of motor neuron survival under stress conditions. Our study supplements current understanding of the mechanistic link between cell stress and death/survival, and provides novel targets for clinical interventions of ALS.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Gu
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
MicroRNA-665-3p attenuates oxygen-glucose deprivation-evoked microglial cell apoptosis and inflammatory response by inhibiting NF-κB signaling via targeting TRIM8. Int Immunopharmacol 2020; 85:106650. [PMID: 32512270 DOI: 10.1016/j.intimp.2020.106650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Microglial inflammation induced by ischemic stroke aggravates brain damage. MicroRNAs (miRNAs) have emerged as pivotal regulators in ischemic stroke-induced inflammation in microglial cells. miR-665-3p has been reported as a critical inflammation-associated miRNA. However, whether miR-665-3p participates in regulating microglial inflammation during ischemic stroke is underdetermined. This study investigated the potential role of miR-665-3p in stroke-induced inflammation in microglial cells using a cellular model of oxygen-glucose deprivation (OGD)-stimulated microglial cells in vitro. We found that miR-665-3p expression was decreased in microglial cells exposed to OGD treatment. Functional experiments demonstrated that the overexpression of miR-665-3p attenuated OGD-induced apoptosis and inflammation in microglial cells. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-665-3p. TRIM8 expression was induced by OGD treatment in microglial cells and the knockdown of TRIM8 protected microglial cells from OGD -induced cytotoxicity and inflammation. Moreover, TRIM8 knockdown or miR-665-3p overexpression blocked OGD-induced activation of nuclear factor (NF)-κB signaling in microglial cells. In addition, TRIM8 overexpression partially reversed the miR-665-3p overexpression-mediated inhibitory effect on OGD-induced inflammation in microglial cells. Taken together, these results indicate that miR-665-3p up-regulation protects microglial cells from OGD-induced apoptosis and inflammatory response by targeting TRIM8 to inhibit NF-κB signaling.
Collapse
|
43
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
44
|
De Luna N, Turon-Sans J, Cortes-Vicente E, Carrasco-Rozas A, Illán-Gala I, Dols-Icardo O, Clarimón J, Lleó A, Gallardo E, Illa I, Rojas-García R. Downregulation of miR-335-5P in Amyotrophic Lateral Sclerosis Can Contribute to Neuronal Mitochondrial Dysfunction and Apoptosis. Sci Rep 2020; 10:4308. [PMID: 32152380 PMCID: PMC7062873 DOI: 10.1038/s41598-020-61246-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/17/2020] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which the pathophysiological mechanisms of motor neuron loss are not precisely clarified. Environmental and epigenetic mechanisms such as microRNAs (miRNAs) could have a role in disease progression. We studied the expression pattern of miRNAs in ALS serum from 60 patients and 29 healthy controls. We also analyzed how deregulated miRNAs found in serum affected cellular pathways such as apoptosis, autophagy and mitochondrial physiology in SH-SY5Y cells. We found that miR-335-5p was downregulated in ALS serum. SH-SY5Y cells were transfected with a specific inhibitor of miR-335-5p and showed abnormal mitochondrial morphology, with an increment of reactive species of oxygen and superoxide dismutase activity. Pro-apoptotic caspases-3 and 7 also showed an increased activity in transfected cells. The downregulation of miR-335-5p, which has an effect on mitophagy, autophagy and apoptosis in SH-SY5Y neuronal cells could have a role in the motor neuron loss observed in ALS.
Collapse
Affiliation(s)
- Noemi De Luna
- Neuromuscular Diseases Laboratory - Biomedical Research Institute SantPau, Universitat Autónoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Joana Turon-Sans
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Elena Cortes-Vicente
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Laboratory - Biomedical Research Institute SantPau, Universitat Autónoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jordi Clarimón
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Laboratory - Biomedical Research Institute SantPau, Universitat Autónoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Isabel Illa
- Neuromuscular Diseases Laboratory - Biomedical Research Institute SantPau, Universitat Autónoma de Barcelona, Barcelona, Spain
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ricardo Rojas-García
- Neuromuscular Diseases Laboratory - Biomedical Research Institute SantPau, Universitat Autónoma de Barcelona, Barcelona, Spain.
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
45
|
Souza VC, Morais GS, Henriques AD, Machado-Silva W, Perez DIV, Brito CJ, Camargos EF, Moraes CF, Nóbrega OT. Whole-Blood Levels of MicroRNA-9 Are Decreased in Patients With Late-Onset Alzheimer Disease. Am J Alzheimers Dis Other Demen 2020; 35:1533317520911573. [PMID: 32301334 PMCID: PMC10623914 DOI: 10.1177/1533317520911573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests changes in circulating microRNA levels may be promising biomarkers for the clinical diagnosis of Alzheimer disease (AD). We hypothesized that whole-blood microRNAs may be useful to identify individuals with established AD. For this purpose, a sample of community-dwelling women (≥55 years old) carrying the ApoE ∊4 allele were clinically evaluated using the American Psychiatric Association/Diagnostic and Statistical Manual of Mental Disorders, Fourth edition and the Alzheimer Disease Assessment Scale-Cognitive Subscale criteria to diagnose probable AD, and the Clinical Dementia Rating scale to stage the dementia. A set of 25 mature microRNAs was rationally selected for evaluation based on experimental evidence of interaction with genes linked to the late-onset AD neuropathology. Whole-blood concentrations were determined by quantitative real-time polymerase chain reaction. Compared to patients without dementia, a median 3-fold decrease in miR-9 levels was found among patients with AD (P = .001). Our findings support blood-borne miR-9 as a candidate biomarker for probable AD, embodied by evidence from the literature of its implication in amyloidogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ciro José Brito
- Physical Education Department, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Clayton Franco Moraes
- Medical Faculty, University of Brasília, Brasília, Federal District, Brazil
- Gerontology Program, Catholic University of Brasília, Brasília, Federal District, Brazil
| | | |
Collapse
|
46
|
Pisani G, Baron B. Nuclear paraspeckles function in mediating gene regulatory and apoptotic pathways. Noncoding RNA Res 2019; 4:128-134. [PMID: 32072080 PMCID: PMC7012776 DOI: 10.1016/j.ncrna.2019.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
The nucleus is an essential hub for the regulation of gene expression in both spatial and temporal contexts. The complexity required to manage such a feat has resulted in the evolution of multiple sub-structures in the nucleus such as the nucleolus, small cajal bodies and nuclear stress bodies. The paraspeckle is another membraneless structure composed of RNA elements, primarily the long non-coding RNA (lncRNA) Nuclear Enriched Abundant Transcript 1 (NEAT1), associated with RNA binding proteins (RBPs). The paraspeckle is showing signs of being involved in various aspects of gene regulation and its role in many pathologies from cancer to viral infection is beginning to be addressed. Research into paraspeckle-directed gene regulation highlights the increase in the appreciation of the biological significance of non-coding RNA (ncRNA). This review will thus cover the basis of how a structure as large as a paraspeckle forms along with its functions. It will also explore how it effects pathological conditions and can be used in clinical intervention, with special emphasis on the multitude of methods utilised by paraspeckles for apoptotic regulation.
Collapse
Affiliation(s)
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
47
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Cai Z, Zheng F, Ding Y, Zhan Y, Gong R, Li J, Aschner M, Zhang Q, Wu S, Li H. Nrf2-regulated miR-380-3p Blocks the Translation of Sp3 Protein and Its Mediation of Paraquat-Induced Toxicity in Mouse Neuroblastoma N2a Cells. Toxicol Sci 2019; 171:515-529. [PMID: 31368498 PMCID: PMC6760285 DOI: 10.1093/toxsci/kfz162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Laboratorial and epidemiological research has established a relationship between paraquat (PQ) exposure and a risk for Parkinson's disease. Previously, we have investigated the effects of nuclear factor erythroid 2 related factor 2 (Nrf2) and microRNAs in PQ-induced neurotoxicity, addressing the function of miR-380-3p, a microRNA dysregulated by PQ, as well as Nrf2 deficiency. Nrf2 is known to mediate the expression of a variety of genes, including noncoding genes. By chromatin immunoprecipitation, we identified the relationship between Nrf2 and miR-380-3p in transcriptional regulation. qRT-PCR, Western blots, and dual-luciferase reporter gene assay showed that miR-380-3p blocked the translation of the transcription factor specificity protein-3 (Sp3) in the absence of degradation of Sp3 mRNA. Results based on cell counting analysis, annexin v-fluorescein isothiocyanate/propidium iodide double-staining assay, and propidium iodide staining showed that overexpression of miR-380-3p inhibited cell proliferation, increased the apoptotic rate, induced cell cycle arrest, and intensified the toxicity of PQ in mouse neuroblastoma (N2a [Neuro2a]) cells. Knockdown of Sp3 inhibited cell proliferation and eclipsed the alterations induced by miR-380-3p in cell proliferation. Two mediators of apoptosis and cell cycle identified in previous studies as Sp3-regulated, namely cyclin-dependent kinase inhibitor 1 (p21) and calmodulin (CaM), were dysregulated by PQ, but not Sp3 deficiency. In conclusion, Nrf2-regulated miR-380-3p inhibited cell proliferation and enhanced the PQ-induced toxicity in N2a cells potentially by blocking the translation Sp3 mRNA. We conclude that CaM and p21 were involved in PQ-induced toxicity.
Collapse
Affiliation(s)
- Zhipeng Cai
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Center for Drug Non-Clinical Evaluation
- Research of Guangdong Institute of Applied Bio-resources, Guangzhou 510000, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yan Ding
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yanting Zhan
- Department of Management, Fujian Health College, Fuzhou 350101, China
| | - Ruijie Gong
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
| | - Jing Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky 40202
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
49
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Ho G, Takamatsu Y, Waragai M, Wada R, Sugama S, Takenouchi T, Fujita M, Ali A, Hsieh MHI, Hashimoto M. Current and future clinical utilities of Parkinson's disease and dementia biomarkers: can they help us conquer the disease? Expert Rev Neurother 2019; 19:1149-1161. [PMID: 31359797 DOI: 10.1080/14737175.2019.1649141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Biomarkers for Parkinson's disease and Alzheimer's disease are essential, not only for disease detection, but also provide insight into potential disease relationships leading to better detection and therapy. As metabolic disease is known to increase neurodegeneration risk, such mechanisms may reveal such novel targets for PD and AD. Moreover, metabolic disease, including insulin resistance, offer novel biomarker and therapeutic targets for neurodegeneration, including glucagon-like-peptide-1, dipeptidyl peptidase-4 and adiponectin. Areas covered: The authors reviewed PubMed-listed research articles, including ours, on a number of putative PD, AD and neurodegenerative disease targets of interest, focusing on the relevance of metabolic syndrome and insulin resistance mechanisms, especially type II diabetes, to PD and AD. We highlighted various issues surrounding the current state of knowledge and propose avenues for future development. Expert opinion: Biomarkers for PD and AD are indispensable for disease diagnosis, prognostication and tracking disease severity, especially for clinical therapy trials. Although no validated PD biomarkers exist, their potential utility has generated tremendous interest. Combining insulin-resistance biomarkers with other core biomarkers or using them to predict non-motor symptoms of PD may be clinically useful. Collectively, although still unclear, potential biomarkers and therapies can aid in shedding new light on novel aspects of both PD and AD.
Collapse
Affiliation(s)
- Gilbert Ho
- PCND Neuroscience Research Institute , Poway , CA , USA
| | | | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School , Tokyo , Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization , Tsukuba , Japan
| | - Masayo Fujita
- Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Alysha Ali
- PCND Neuroscience Research Institute , Poway , CA , USA
| | | | | |
Collapse
|