1
|
Zhao ZH, Huang B, Fang ZH, Qi WH, He J, Wang LB, Zhang Y, Li X. Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation. Int Immunopharmacol 2025; 148:114109. [PMID: 39862634 DOI: 10.1016/j.intimp.2025.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation. In this study, we engineered a TGF-β lentivirus that specific incorporates TGF-β into HEVs and efficiently produces highly expressed TGF-β HEVs (HEVTs) through infection of HEK293 cells. Our data demonstrated that, compared to the LPS group, HEVTs internalized by immune cells significantly regulated pro-inflammatory cytokine expression in RAW 264.7 cells, such as IL-1β (p < 01), TNF-α (p < 001). Moreover, HEVTs were found to effectively reach the lesion area, compared to the LPS group, resulting in a remarkable inhibition in the activation of macrophages (p < 0.0001), dendritic cells (p < 0.0001), and neutrophils (p < 0.0001) in the peripheral immune system as well as microglia in the central nervous system of LPS-induced inflammation model mice. The utilization of this endogenous loading technique may present a promising strategy for the protein-based pharmacotherapy of inflammatory disorders.
Collapse
Affiliation(s)
- Zhuo-Hua Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bo Huang
- The Laboratory Animal Center, Shanxi Provincial People's Hospital, 030012, China
| | - Zi-Han Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wen-Hui Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Li-Bin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
2
|
Orian JM. A New Perspective on Mechanisms of Neurodegeneration in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis: the Early and Critical Role of Platelets in Neuro/Axonal Loss. J Neuroimmune Pharmacol 2025; 20:14. [PMID: 39904925 PMCID: PMC11794395 DOI: 10.1007/s11481-025-10182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disorder, with limited treatment options. This disease is characterized by differential pathophysiology between grey matter (GM) and white matter (WM). The predominant WM hallmark is the perivascular plaque, associated with blood brain barrier (BBB) loss of function, lymphocytic infiltration, microglial reactivity, demyelination and axonal injury and is adequately addressed with immunomodulatory drugs. By contrast, mechanisms underlying GM damage remain obscure, with consequences for neuroprotective strategies. Cortical GM pathology is already significant in early MS and characterized by reduced BBB disruption and lymphocytic infiltration relative to WM, but a highly inflammatory environment, microglial reactivity, demyelination and neuro/axonal loss. There is no satisfactory explanation for the occurrence of neurodegeneration without large-scale inflammatory cell influx in cortical GM. A candidate mechanism suggests that it results from soluble factors originating from meningeal inflammatory cell aggregates, which diffuse into the underlying cortical tissue and trigger microglial activation. However, the recent literature highlights the central role of platelets in inflammation, together with the relationship between coagulation factors, particularly fibrinogen, and tissue damage in MS. Using the experimental autoimmune encephalomyelitis (EAE) model, we identified platelets as drivers of neuroinflammation and platelet-neuron associations from the pre-symptomatic stage. We propose that fibrinogen leakage across the BBB is a signal for platelet infiltration and that platelets represent a major and early participant in neurodegeneration. This concept is compatible with the new appreciation of platelets as immune cells and of neuronal damage driven by inflammatory cells sequestered in the meninges.
Collapse
Affiliation(s)
- Jacqueline Monique Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Vic. 3086, Australia.
| |
Collapse
|
3
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
4
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Torres Iglesias G, López-Molina M, Botella L, Laso-García F, Chamorro B, Fernández-Fournier M, Puertas I, Bravo SB, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int J Mol Sci 2024; 25:10761. [PMID: 39409091 PMCID: PMC11477160 DOI: 10.3390/ijms251910761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS. In the patients who responded to treatment, T cell-derived EVs were enriched in LV151, a protein involved in the promotion of anti-inflammatory cytokines, whereas Bcell-derived EVs showed elevated PSMD6 and PTPRC, related to immunoproteasome function. Oligodendrocyte- and neuron-derived EVs showed upregulated CO6A1 and COEA1, involved in extracellular matrix reorganisation, as well as LAMA5, NonO, SPNT, and NCAM, which are critical for brain repair. In contrast, non-responders showed higher levels of PSMD7 and PRS10 from B cell-derived EVs, associated with DNA damage, and increased levels of PERM and PERL from T cell-derived EVs, linked to nuclear factor kappa B activation and drug-resistant proteins such as HS90A and RASK. These findings highlight a distinct panel of proteins in EVs that could serve as an early indicator of treatment efficacy in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Susana B. Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| |
Collapse
|
6
|
Zhu H, Wang N, Chang Y, Zhang Y, Jiang S, Ren X, Yuan M, Chang H, Jin WN. Extracellular vesicles bearing serum amyloid A1 exacerbate neuroinflammation after intracerebral haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003525. [PMID: 39357895 DOI: 10.1136/svn-2024-003525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Intracerebral haemorrhage (ICH) elicits a robust inflammatory response, which significantly contributes to secondary brain damage. Extracellular vesicles (EVs) play a pivotal role in intercellular communication by transporting immune-regulatory proteins. However, the precise contribution of these EV-carried proteins to neuroinflammation following ICH remains elusive. Here, we identified proteins dysregulated in EVs and further studied the EVs-enriched Serum amyloid A 1 (SAA1) to understand its role in neuroinflammation and ICH injury. METHODS We used mass spectrometry to analyse the EV protein cargo isolated from plasma samples of 30 ICH patients and 30 healthy controls. To validate the function of the dysregulated protein SAA1, an ICH mouse model was conducted to assess the effects of SAA1 neutralisation on brain oedema, neurological function and infiltration of peripheral leucocytes. RESULTS 49 upregulated proteins and 12 downregulated proteins were observed in EVs from ICH patients compared with controls. Notably, SAA1 demonstrated a significant increase in EVs associated with ICH. We observed that exogenous SAA1 stimulation led to an augmentation in the population of microglia and astrocytes, exacerbating neuroinflammation. Neutralising SAA1 with an anti-SAA1 monoclonal antibody (mAb) diminished the prevalence of proinflammatory microglia and the infiltration of peripheral leucocytes, which ameliorates brain oedema and neurological function in ICH mice. CONCLUSION Our findings provide compelling evidence implicating EVs and their cargo proteins in ICH pathogenesis. SAA1 emerges as a potential therapeutic target for mitigating neuroinjury and neuroinflammation following ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningning Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Shihe Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xiaoping Ren
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Meng Yuan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haoxiao Chang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
7
|
Wilkins JM, Mangalaparthi KK, Netzel BC, Sherman WA, Guo Y, Kalinowska-Lyszczarz A, Pandey A, Lucchinetti CF. Proteomics analysis of periplaque and chronic inactive multiple sclerosis lesions. Front Mol Neurosci 2024; 17:1448215. [PMID: 39234409 PMCID: PMC11371774 DOI: 10.3389/fnmol.2024.1448215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by increased inflammation and immune responses, oxidative injury, mitochondrial dysfunction, and iron dyshomeostasis leading to demyelination and axonal damage. In MS, incomplete remyelination results in chronically demyelinated axons and degeneration coinciding with disability. This suggests a failure in the ability to remyelinate in MS, however, the precise underlying mechanisms remain unclear. We aimed to identify proteins whose expression was altered in chronic inactive white matter lesions and periplaque white matter in MS tissue to reveal potential pathophysiological mechanisms. Methods Laser capture microdissection coupled to proteomics was used to interrogate spatially altered changes in formalin-fixed paraffin-embedded brain tissue from three chronic MS individuals and three controls with no apparent neurological complications. Histopathological maps guided the capture of inactive lesions, periplaque white matter, and cortex from chronic MS individuals along with corresponding white matter and cortex from control tissue. Label free quantitation by liquid chromatography tandem mass spectrometry was used to discover differentially expressed proteins between the various brain regions. Results In addition to confirming loss of several myelin-associated proteins known to be affected in MS, proteomics analysis of chronic inactive MS lesions revealed alterations in myelin assembly, metabolism, and cytoskeletal organization. The top altered proteins in MS inactive lesions compared to control white matter consisted of PPP1R14A, ERMN, SIRT2, CARNS1, and MBLAC2. Conclusion Our findings highlight proteome changes in chronic inactive MS white matter lesions and periplaque white matter, which may be crucial for proper myelinogenesis, bioenergetics, focal adhesions, and cellular function. This study highlights the importance and feasibility of spatial approaches such as laser capture microdissection-based proteomics analysis of pathologically distinct regions of MS brain tissue. Identification of spatially resolved changes in the proteome of MS brain tissue should aid in the understanding of pathophysiological mechanisms and the development of novel therapies.
Collapse
Affiliation(s)
- Jordan M Wilkins
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Brian C Netzel
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
| | - William A Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Alicja Kalinowska-Lyszczarz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Claudia F Lucchinetti
- Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
9
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Otaegui D. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Transl Neurodegener 2024; 13:32. [PMID: 38898538 PMCID: PMC11186231 DOI: 10.1186/s40035-024-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Jone Karmele Arizaga-Echebarria
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
10
|
Mokhtarzadeh Khanghahi A, Rayatpour A, Baharvand H, Javan M. Neuroglial components of brain lesions may provide new therapeutic strategies for multiple sclerosis. Neurol Sci 2023; 44:3795-3807. [PMID: 37410268 DOI: 10.1007/s10072-023-06915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune and demyelinating disease of the central nervous system (CNS) which leads to focal demyelinated lesions in the brain and spinal cord. Failure of remyelination contributes to chronic disability in young adults. Characterization of events occurring during the demyelination and remyelination processes and those of which subsequently limit remyelination or contribute to demyelination can provide the possibility of new therapies development for MS. Most of the currently available therapies and investigations modulate immune responses and mediators. Since most therapeutic strategies have unsatisfied outcomes, developing new therapies that enhance brain lesion repair is a priority. A close look at cellular and chemical components of MS lesions will pave the way to a better understanding of lesions pathology and will provide possible opportunities for repair strategies and targeted pharmacotherapy. This review summarizes the lesion components and features, particularly the detrimental elements, and discusses the possibility of suggesting new potential targets as therapies for demyelinating diseases like MS.
Collapse
Affiliation(s)
- Akram Mokhtarzadeh Khanghahi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- International Collaboration on Repair Discoveries (ICORD), the University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Li B, Sun N, Yang F, Guo K, Wu L, Ma M, Shao H, Li X, Zhang X. Plasma-Derived Small Extracellular Vesicles From VKH Patients Suppress T Cell Proliferation Via MicroRNA-410-3p Modulation of CXCL5 Axis. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37672286 PMCID: PMC10484053 DOI: 10.1167/iovs.64.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Purpose Circulating exosomes regulate immune responses and induce immune tolerance in immune-mediated diseases. This study aimed to investigate the role of circulating small extracellular vesicles (sEVs) derived from patients with Vogt-Koyanagi-Harada (VKH) syndrome, in T-cell responses. Methods The sEVs were isolated from the plasma of healthy controls, patients with VKH, and other uveitis patients. The effects of autologous and allogeneic sEVs on the proliferation of circulating CD4+ T cells were evaluated. Microarray analysis of sEVs was performed to determine their differential miRNA expression profiles. The target genes of the candidate miRNA were predicted and verified. The role of both the candidate miRNA and target genes in T-cell proliferation was tested. Results Plasma-derived sEVs from patients with VKH inhibited the proliferation of autologous CD4+ T cells. Among all the miRNAs that might be associated with inflammatory activity, we found that miR-410-3p had the largest number of T-cell proliferation target genes. MiR-410-3p mimics inhibited the proliferation of Jurkat cells and CD4+ T cells. C-X-C motif chemokine ligand 5 (CXCL5) was confirmed to be a potential target gene of miR-410-3p, and siRNA-mediated CXCL5 knockdown inhibited cell proliferation. Conclusions Circulating sEVs exert an inhibitory effect on autologous CD4+ T cells mediated by miR-410-3p by targeting CXCL5, supporting the possibility of using autogenic sEVs to inhibit ocular inflammation.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nan Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Mingming Ma
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
12
|
Zamboni S, D'Ambrosio A, Margutti P. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2023; 71:104554. [PMID: 36842311 DOI: 10.1016/j.msard.2023.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous family of extracellular structures bounded by a phospholipid bilayer, released by all cell types in various biological fluids, such as blood and cerebrospinal fluid (CSF), playing important roles in intercellular communication, both locally and systemically. EVs carry and deliver a variety of bioactive molecules (proteins, nucleic acids, lipids and metabolites), conferring epigenetic and phenotypic changes to the recipient cells and thus resulting as important mediators of both homeostasis and pathogenesis. In neurological diseases, such as multiple sclerosis (MS), the EV ability to cross Blood-Brain Barrier (BBB), moving from central nervous system (CNS) to the peripheral circulation and vice versa, has increased the interest in EV study in the neurological field. In the present review, we will provide an overview of the recent advances made in understanding the pathogenic role of EVs regarding the immune response, the BBB dysfunction and the CNS inflammatory processes.
Collapse
Affiliation(s)
- Silvia Zamboni
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
13
|
Guo C, Lv H, Bai Y, Guo M, Li P, Tong S, He K. Circular RNAs in extracellular vesicles: Promising candidate biomarkers for schizophrenia. Front Genet 2023; 13:997322. [PMID: 36685830 PMCID: PMC9852742 DOI: 10.3389/fgene.2022.997322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
As one of common and severe mental illnesses, schizophrenia is difficult to be diagnosed exactly. Both its pathogenesis and the causes of its development are still uncertain because of its etiology complexity. At present, the diagnosis of schizophrenia is mainly based on the patient's symptoms and signs, lacking reliable biomarkers that can be used for diagnosis. Circular RNAs in extracellular vesicles (EV circRNAs) can be used as promising candidate biomarkers for schizophrenia and other diseases, for they are not only high stability and disease specificity, but also are rich in contents and easy to be detected. The review is to focus on the research progress of the correlation between circRNAs and schizophrenia, and then to explores the possibility of EV circRNAs as new biomarkers for the schizophrenia diagnosis.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Meng Guo
- Network Center, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shuping Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China,*Correspondence: Kuanjun He,
| |
Collapse
|
14
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
15
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
16
|
Soukup J, Kostelanská M, Kereïche S, Hujacová A, Pavelcová M, Petrák J, Kubala Havrdová E, Holada K. Flow Cytometry Analysis of Blood Large Extracellular Vesicles in Patients with Multiple Sclerosis Experiencing Relapse of the Disease. J Clin Med 2022; 11:jcm11102832. [PMID: 35628959 PMCID: PMC9145450 DOI: 10.3390/jcm11102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
The number of people living with multiple sclerosis (MS) in developed countries is increasing. The management of patients is hindered by the absence of reliable laboratory tests accurately reflecting the disease activity. Extracellular vesicles (EVs) of different cell origin were reportedly elevated in MS patients. We assessed the diagnostic potential, with flow cytometry analysis, of fresh large EVs (lEVs), which scattered more light than the 590 nm silica beads and were isolated from the blood plasma of relapsing remitting MS patients. Venous blood was collected from 15 patients and 16 healthy controls (HC). The lEVs were isolated from fresh platelet-free plasma by centrifugation, labelled with antibodies and the presence of platelet (CD41+, CD36+), endothelial (CD105+), erythrocyte (CD235a+), leukocyte (CD45+, CD19+, CD3+) and phosphatidylserine (Annexin V+) positive lEVs was analyzed using standard flow cytometry. Cryo-electron microscopy was used to verify the presence of EVs in the analyzed plasma fractions. MS patients experiencing acute relapse had slightly reduced relative levels (% of positive lEVs) of CD105+, CD45+, CD3+, CD45+CD3+ or CD19+ labelled lEVs in comparison to healthy controls. An analysis of other markers or a comparison of absolute lEV counts (count of lEVs/µL) did not yield any significant differences. Our data do not support the hypothesis that the exacerbation of the disease in RRMS patients leads to an increased numbers of circulating plasma lEVs which can be monitored by standard flow cytometry.
Collapse
Affiliation(s)
- Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
- Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Marie Kostelanská
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Andrea Hujacová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
| | - Miluše Pavelcová
- Department of Neurology and Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 21 Prague, Czech Republic; (M.P.); (E.K.H.)
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic;
| | - Eva Kubala Havrdová
- Department of Neurology and Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 21 Prague, Czech Republic; (M.P.); (E.K.H.)
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (J.S.); (M.K.); (A.H.)
- Correspondence:
| |
Collapse
|
17
|
Nafar S, Nouri N, Alipour M, Fallahi J, Zare F, Tabei SMB. Exosome as a target for cancer treatment. J Investig Med 2022; 70:1212-1218. [PMID: 35210328 DOI: 10.1136/jim-2021-002194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Exosomes are small vesicles covered by a lipid bilayer, ranging in size from 50 nm to 90 nm, secreted by different cell types in the body under normal and pathological conditions. They are surrounded by cell-segregated membrane complexes and play a role in the pathological and physiological environments of target cells by transfer of different molecules such as microRNA (miRNA). Exosomes have been detected in many body fluids, such as in the amniotic fluid, urine, breast milk, blood, saliva, ascites, semen, and bile. They include proteins, lipids, and nucleic acids such as DNA, RNA, and miRNA, which have many functions in target cells under pathological and physiological conditions. They participate in pathological processes such as tumor growth and survival, autoimmunity, neurodegenerative disorders, infectious diseases, inflammation conditions, and others. Biomarkers in exosomes isolated from body fluids have allowed for a more precise and consistent diagnostic method than previous approaches. Exosomes can be used in a variety of intracellular functions, and with advances in molecular techniques they can be used in the treatment and diagnosis of many diseases, including cancer. These vesicles play a significant role in various stages of cancer. Tumor-derived exosomes have an important role in tumor growth, survival, and metastasis. In contrast, the use of stem cells in cancer treatment is a relatively new scientific area. We hope to address targeted use of miRNA-carrying exosomes in cancer therapy in this review paper.
Collapse
Affiliation(s)
- Samira Nafar
- Department of Genetics, Shiraz University of Medical Science, Shiraz, Iran
| | - Negar Nouri
- Student Research Committee, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Maedeh Alipour
- MSc of Hematology and Blood Bank, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
18
|
Mazzucco M, Mannheim W, Shetty SV, Linden JR. CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis. Fluids Barriers CNS 2022; 19:13. [PMID: 35135557 PMCID: PMC8822708 DOI: 10.1186/s12987-021-00299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood–brain barrier (BBB) permeability. Currently, active disease is determined by physician confirmed relapse or detection of contrast enhancing lesions via MRI indicative of BBB permeability. However, clinical confirmation of active disease can be cumbersome. As such, disease monitoring in MS could benefit from identification of an easily accessible biomarker of active disease. We believe extracellular vesicles (EV) isolated from plasma are excellent candidates to fulfill this need. Because of the critical role BBB permeability plays in MS pathogenesis and identification of active disease, we sought to identify EV originating from central nervous system (CNS) endothelial as biomarkers of active MS. Because endothelial cells secrete more EV when stimulated or injured, we hypothesized that circulating concentrations of CNS endothelial derived EV will be increased in MS patients with active disease. Methods To test this, we developed a novel method to identify EV originating from CNS endothelial cells isolated from patient plasma using flow cytometry. Endothelial derived EV were identified by the absence of lymphocyte or platelet markers CD3 and CD41, respectively, and positive expression of pan-endothelial markers CD31, CD105, or CD144. To determine if endothelial derived EV originated from CNS endothelial cells, EV expressing CD31, CD105, or CD144 were evaluated for expression of the myelin and lymphocyte protein MAL, a protein specifically expressed by CNS endothelial cells compared to endothelial cells of peripheral organs. Results Quality control experiments indicate that EV detected using our flow cytometry method are 0.2 to 1 micron in size. Flow cytometry analysis of EV isolated from 20 healthy controls, 16 relapsing–remitting MS (RRMS) patients with active disease not receiving disease modifying therapy, 14 RRMS patients with stable disease not receiving disease modifying therapy, 17 relapsing-RRMS patients with stable disease receiving natalizumab, and 14 RRMS patients with stable disease receiving ocrelizumab revealed a significant increase in the plasma concentration of CNS endothelial derived EV in patients with active disease compared to all other groups (p = 0.001). Conclusions: For the first time, we have identified a method to identify CNS endothelial derived EV in circulation from human blood samples. Results from our pilot study indicate that increased levels of CNS endothelial derived EV may be a biomarker of BBB permeability and active disease in MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00299-4.
Collapse
Affiliation(s)
- Michael Mazzucco
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - William Mannheim
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Samantha V Shetty
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA
| | - Jennifer R Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Cuomo-Haymour N, Bergamini G, Russo G, Kulic L, Knuesel I, Martin R, Huss A, Tumani H, Otto M, Pryce CR. Differential Expression of Serum Extracellular Vesicle miRNAs in Multiple Sclerosis: Disease-Stage Specificity and Relevance to Pathophysiology. Int J Mol Sci 2022; 23:ijms23031664. [PMID: 35163583 PMCID: PMC8836256 DOI: 10.3390/ijms23031664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing–remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS–RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.
Collapse
Affiliation(s)
- Nagiua Cuomo-Haymour
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Luka Kulic
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Irene Knuesel
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, 8006 Zurich, Switzerland
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
20
|
Belkozhayev AM, Al-Yozbaki M, George A, Niyazova RY, Sharipov KO, Byrne LJ, Wilson CM. Extracellular Vesicles, Stem Cells and the Role of miRNAs in Neurodegeneration. Curr Neuropharmacol 2022; 20:1450-1478. [PMID: 34414870 PMCID: PMC9881087 DOI: 10.2174/1570159x19666210817150141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington's disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayaz M. Belkozhayev
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
- Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Raigul Ye Niyazova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
| | - Kamalidin O. Sharipov
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Lee J. Byrne
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M. Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| |
Collapse
|
21
|
Leroux É, Perbet R, Buée L, Colin M. [Extracellular vesicles in the central nervous system]. Med Sci (Paris) 2021; 37:1133-1138. [PMID: 34928217 DOI: 10.1051/medsci/2021205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular Vesicles (EVs) are released by a wide diversity of cells. They contain proteins, RNAs and lipids that will be exchanged between these cells. They represent therefore a major form of intercellular communication in both physiological and pathological conditions. This is particularly relevant in the nervous system where neurons and glial cells form a very dense network where billions of connections are made. In this review, the different roles played by the EVs in a healthy brain to maintain cerebral homeostasis during development, synaptic transmission or axonal myelination will be discussed. In addition, the pathological aspects of EVs presence will also be addressed. In recent years, the EVs have emerged as major players in the spread of neurodegenerative diseases, in neuroinflammation and in tumor development, although they may also be beneficial in some conditions.
Collapse
Affiliation(s)
- Élodie Leroux
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| |
Collapse
|
22
|
Iparraguirre L, Alberro A, Hansen TB, Castillo-Triviño T, Muñoz-Culla M, Otaegui D. Profiling of Plasma Extracellular Vesicle Transcriptome Reveals That circRNAs Are Prevalent and Differ between Multiple Sclerosis Patients and Healthy Controls. Biomedicines 2021; 9:biomedicines9121850. [PMID: 34944665 PMCID: PMC8698468 DOI: 10.3390/biomedicines9121850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
(1) Background: Extracellular vesicles (EVs) are released by most cell types and are implicated in several biological and pathological processes, including multiple sclerosis (MS). Differences in the number and cargo of plasma-derived EVs have been described in MS. In this work, we have characterised the EV RNA cargo of MS patients, with particular attention to circular RNAs (circRNAs), which have attracted increasing attention for their roles in physiology and disease and their biomarker potential. (2) Methods: Plasma-derived EVs were isolated by differential centrifugation (20 patients, 8 controls), and RNA-Sequencing was used to identify differentially expressed linear and circRNAs. (3) Results: We found differences in the RNA type distribution, circRNAs being enriched in EVs vs. leucocytes. We found a number of (corrected p-value < 0.05) circRNA significantly DE between the groups. Nevertheless, highly structured circRNAs are preferentially retained in leukocytes. Differential expression analysis reports significant differences in circRNA and linear RNA expression between MS patients and controls, as well as between different MS types. (4) Conclusions: Plasma derived EV RNA cargo is not a representation of leukocytes’ cytoplasm but a message worth studying. Moreover, our results reveal the interest of circRNAs as part of this message, highlighting the importance of further understanding RNA regulation in MS.
Collapse
Affiliation(s)
- Leire Iparraguirre
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Thomas B. Hansen
- Molecular Biology and Genetics Department, Aarhus University, 8000 Aarhus C, Denmark;
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Neurology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country, 20018 San Sebastián, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; (L.I.); (A.A.); (T.C.-T.)
- Spanish Network of Multiple Sclerosis, 08028 Barcelona, Spain
- Correspondence: (M.M.-C.); (D.O.); Tel.: +34-943-01-52-18 (M.M.-C.); +34-943-00-62-93 (D.O.)
| |
Collapse
|
23
|
Jiang G, Yun J, Kaplan HJ, Zhao Y, Sun D, Shao H. Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation. Clin Exp Ophthalmol 2021; 49:1069-1077. [PMID: 34455666 DOI: 10.1111/ceo.13990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including autoimmune development. The role of circulating exosomes in the development of autoimmune uveitis is unknown. In this study, using the rat model of experimental autoimmune uveitis, which has clinical and histological features of pan uveitis in man, we evaluated the immunoregulatory function of circulating exosomes. METHODS Experimental autoimmune uveitis was induced in Lewis rats either immunised with interphotoreceptor retinoid-binding protein R16 peptides or injected with activated R16-specific T cells. The disease incidence and severity were examined by indirect fundoscopy and flow cytometry. Circulating exosomes were isolated from peripheral blood of naïve and Day 14 R16 immunised Lewis rats. The effect of exosomes on specific T cells was evaluated by R16-specific T cell proliferation, cytokine production and recurrent uveitis induction. RESULTS Circulating exosomes derived from active immunised uveitis rats selectively inhibited immune responses of R16-specific T cells in vitro. Vaccination of naïve rats with these exosomes reduced the incidence of recurrent uveitis in an antigen-specific manner. Antigen-specific uveitogenic T cells reduced IFN-γ production and increased IL-10 after vaccination. CONCLUSIONS Circulating exosomes in autoimmune uveitis have the potential to be a novel treatment for recurrent autoimmune uveitis.
Collapse
Affiliation(s)
- Guomin Jiang
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| | - Juan Yun
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
- Department of Ophthalmology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Yuan Zhao
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas, USA
| | - Deming Sun
- Doheny Eye Institute and Department. Ophthalmology, David Geffen School of Medicine/UCLA, Los Angeles, California, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
24
|
Manu MS, Hohjoh H, Yamamura T. Extracellular Vesicles as Pro- and Anti-inflammatory Mediators, Biomarkers and Potential Therapeutic Agents in Multiple Sclerosis. Aging Dis 2021; 12:1451-1461. [PMID: 34527421 PMCID: PMC8407883 DOI: 10.14336/ad.2021.0513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease of the central nervous system (CNS) characterized by multiple demyelinating lesions in the spinal cord and brain. Neuronal disruption caused by myelin loss or demyelination, which may accompany axonal changes, leads to multiple neurological symptoms. They may transiently appear for weeks during periods of disease worsening (relapse) in relapsing-remitting form of MS (RRMS). Although a number of genetic, metabolic and environmental factors influencing the development of MS have been identified, the precise mechanisms involved in the CNS tissue damage in MS are still poorly understood. Recent studies have revealed a significant role of circulating extracellular vesicles (EVs) in many diseases. EVs are known to serve as a cellular communication tool between two cell types either in close proximity or in different parts of the body. During the recent development in understanding of the pathogenesis of MS, studies have revealed the possible role of EVs in MS. Furthermore, circulating EVs can be used as a biomarker for monitoring disease progression and activity of MS, and they can also be therapeutic reagents or targets of therapy. In this review we overview and discuss in detail about generation of EVs and their diversified roles in MS.
Collapse
Affiliation(s)
- Mallahalli S Manu
- 1Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502 Japan
| | - Hirohiko Hohjoh
- 2Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502 Japan
| | - Takashi Yamamura
- 1Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502 Japan
| |
Collapse
|
25
|
Gutiérrez-Fernández M, de la Cuesta F, Tallón A, Cuesta I, Fernández-Fournier M, Laso-García F, Gómez-de Frutos MC, Díez-Tejedor E, Otero-Ortega L. Potential Roles of Extracellular Vesicles as Biomarkers and a Novel Treatment Approach in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22169011. [PMID: 34445717 PMCID: PMC8396540 DOI: 10.3390/ijms22169011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of bilayer membrane-wrapped molecules that play an important role in cell-to-cell communication, participating in many physiological processes and in the pathogenesis of several diseases, including multiple sclerosis (MS). In recent years, many studies have focused on EVs, with promising results indicating their potential role as biomarkers in MS and helping us better understand the pathogenesis of the disease. Recent evidence suggests that there are novel subpopulations of EVs according to cell origin, with those derived from cells belonging to the nervous and immune systems providing information regarding inflammation, demyelination, axonal damage, astrocyte and microglia reaction, blood–brain barrier permeability, leukocyte transendothelial migration, and ultimately synaptic loss and neuronal death in MS. These biomarkers can also provide insight into disease activity and progression and can differentiate patients’ disease phenotype. This information can enable new pathways for therapeutic target discovery, and consequently the development of novel treatments. Recent evidence also suggests that current disease modifying treatments (DMTs) for MS modify the levels and content of circulating EVs. EVs might also serve as biomarkers to help monitor the response to DMTs, which could improve medical decisions concerning DMT initiation, choice, escalation, and withdrawal. Furthermore, EVs could act not only as biomarkers but also as treatment for brain repair and immunomodulation in MS. EVs are considered excellent delivery vehicles. Studies in progress show that EVs containing myelin antigens could play a pivotal role in inducing antigen-specific tolerance of autoreactive T cells as a novel strategy for the treatment as “EV-based vaccines” for MS. This review explores the breakthrough role of nervous and immune system cell-derived EVs as markers of pathological disease mechanisms and potential biomarkers of treatment response in MS. In addition, this review explores the novel role of EVs as vehicles for antigen delivery as a therapeutic vaccine to restore immune tolerance in MS autoimmunity.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, 28046 Madrid, Spain;
| | - Antonio Tallón
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Inmaculada Cuesta
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
- Correspondence: (E.D.-T.); (L.O.-O.); Tel.: +34-91-207-1028 (L.O.-O.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; (M.G.-F.); (A.T.); (I.C.); (M.F.-F.); (F.L.-G.); (M.C.G.-d.F.)
- Correspondence: (E.D.-T.); (L.O.-O.); Tel.: +34-91-207-1028 (L.O.-O.)
| |
Collapse
|
26
|
Olivero G, Cisani F, Marimpietri D, Di Paolo D, Gagliani MC, Podestà M, Cortese K, Pittaluga A. The Depolarization-Evoked, Ca 2+-Dependent Release of Exosomes From Mouse Cortical Nerve Endings: New Insights Into Synaptic Transmission. Front Pharmacol 2021; 12:670158. [PMID: 34366842 PMCID: PMC8339587 DOI: 10.3389/fphar.2021.670158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023] Open
Abstract
Whether exosomes can be actively released from presynaptic nerve terminals is a matter of debate. To address the point, mouse cortical synaptosomes were incubated under basal and depolarizing (25 mM KCl-enriched medium) conditions, and extracellular vesicles were isolated from the synaptosomal supernatants to be characterized by dynamic light scattering, transmission electron microscopy, Western blot, and flow cytometry analyses. The structural and biochemical analysis unveiled that supernatants contain vesicles that have the size and the shape of exosomes, which were immunopositive for the exosomal markers TSG101, flotillin-1, CD63, and CD9. The marker content increased upon the exposure of nerve terminals to the high-KCl stimulus, consistent with an active release of the exosomes from the depolarized synaptosomes. High KCl-induced depolarization elicits the Ca2+-dependent exocytosis of glutamate. Interestingly, the depolarization-evoked release of exosomes from cortical synaptosomes also occurred in a Ca2+-dependent fashion, since the TSG101, CD63, and CD9 contents in the exosomal fraction isolated from supernatants of depolarized synaptosomes were significantly reduced when omitting external Ca2+ ions. Differently, (±)-baclofen (10 µM), which significantly reduced the glutamate exocytosis, did not affect the amount of exosomal markers, suggesting that the GABAB-mediated mechanism does not control the exosome release. Our findings suggest that the exposure of synaptosomes to a depolarizing stimulus elicits a presynaptic release of exosomes that occurs in a Ca2+-dependent fashion. The insensitivity to the presynaptic GABAB receptors, however, leaves open the question on whether the release of exosomes could be a druggable target for new therapeutic intervention for the cure of synaptopathies.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Francesca Cisani
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Cristina Gagliani
- Department of Experimental Medicine, DIMES, Human Anatomy Section, University of Genoa, Genoa, Italy
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, DIMES, Human Anatomy Section, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, Centre of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
27
|
Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools. Cells 2021; 10:cells10071733. [PMID: 34359903 PMCID: PMC8303489 DOI: 10.3390/cells10071733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Although extracellular vesicles (EVs) were initially relegated to a waste disposal role, nowadays, they have gained multiple fundamental functions working as messengers in intercellular communication as well as exerting active roles in physiological and pathological processes. Accumulating evidence proves the involvement of EVs in many diseases, including those of the central nervous system (CNS), such as multiple sclerosis (MS). Indeed, these membrane-bound particles, produced in any type of cell, carry and release a vast range of bioactive molecules (nucleic acids, proteins, and lipids), conferring genotypic and phenotypic changes to the recipient cell. This means that not only EVs per se but their content, especially, could reveal new candidate disease biomarkers and/or therapeutic agents. This review is intended to provide an overview regarding current knowledge about EVs’ involvement in MS, analyzing the potential versatility of EVs as a new therapeutic tool and source of biomarkers.
Collapse
|
28
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
29
|
Grieco GE, Fignani D, Formichi C, Nigi L, Licata G, Maccora C, Brusco N, Sebastiani G, Dotta F. Extracellular Vesicles in Immune System Regulation and Type 1 Diabetes: Cell-to-Cell Communication Mediators, Disease Biomarkers, and Promising Therapeutic Tools. Front Immunol 2021; 12:682948. [PMID: 34177928 PMCID: PMC8219977 DOI: 10.3389/fimmu.2021.682948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic β cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic β cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Carla Maccora
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
30
|
Sun H, Su X, Li S, Mu D, Qu Y. Roles of glia-derived extracellular vesicles in central nervous system diseases: an update. Rev Neurosci 2021; 32:833-849. [PMID: 33792214 DOI: 10.1515/revneuro-2020-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous vesicles secreted by various cells in the extracellular space. Accumulating evidence shows that EVs regulate cell-to-cell communication and signaling in the pathological processes of various diseases by carrying proteins, lipids, and nucleic acids to recipient cells. Glia-derived EVs act as a double-edged sword in the pathogenesis of central nervous system (CNS) diseases. They may be vectors for the spread of diseases or act as effective clearance systems to protect tissues. In this review, we summarize recent studies on glia-derived EVs with a focus on their relationships with CNS diseases.
Collapse
Affiliation(s)
- Hao Sun
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Xiaojuan Su
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
31
|
Orian JM, D'Souza CS, Kocovski P, Krippner G, Hale MW, Wang X, Peter K. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Front Immunol 2021; 12:620963. [PMID: 33679764 PMCID: PMC7933211 DOI: 10.3389/fimmu.2021.620963] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Platelets are clearly central to thrombosis and hemostasis. In addition, more recently, evidence has emerged for non-hemostatic roles of platelets including inflammatory and immune reactions/responses. Platelets express immunologically relevant ligands and receptors, demonstrate adhesive interactions with endothelial cells, monocytes and neutrophils, and toll-like receptor (TLR) mediated responses. These properties make platelets central to innate and adaptive immunity and potential candidate key mediators of autoimmune disorders. Multiple sclerosis (MS) is the most common chronic autoimmune central nervous system (CNS) disease. An association between platelets and MS was first indicated by the increased adhesion of platelets to endothelial cells. This was followed by reports identifying structural and functional changes of platelets, their chronic activation in the peripheral blood of MS patients, platelet presence in MS lesions and the more recent revelation that these structural and functional abnormalities are associated with all MS forms and stages. Investigations based on the murine experimental autoimmune encephalomyelitis (EAE) MS model first revealed a contribution to EAE pathogenesis by exacerbation of CNS inflammation and an early role for platelets in EAE development via platelet-neuron and platelet-astrocyte associations, through sialated gangliosides in lipid rafts. Our own studies refined and extended these findings by identifying the critical timing of platelet accumulation in pre-clinical EAE and establishing an initiating and central rather than merely exacerbating role for platelets in disease development. Furthermore, we demonstrated platelet-neuron associations in EAE, coincident with behavioral changes, but preceding the earliest detectable autoreactive T cell accumulation. In combination, these findings establish a new paradigm by asserting that platelets play a neurodegenerative as well as a neuroinflammatory role in MS and therefore, that these two pathological processes are causally linked. This review will discuss the implications of these findings for our understanding of MS, for future applications for imaging toward early detection of MS, and for novel strategies for platelet-targeted treatment of MS.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Pece Kocovski
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Guy Krippner
- Medicinal Chemistry, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
33
|
Marostica G, Gelibter S, Gironi M, Nigro A, Furlan R. Extracellular Vesicles in Neuroinflammation. Front Cell Dev Biol 2021; 8:623039. [PMID: 33553161 PMCID: PMC7858658 DOI: 10.3389/fcell.2020.623039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-bound particles that play a pivotal role in cell–cell communication, not only participating in many physiological processes, but also contributing to the pathogenesis of several diseases. The term EVs defines many and different vesicles based on their biogenesis and release pathway, including exosomes, microvesicles (MVs), and apoptotic bodies. However, their classification, biological function as well as protocols for isolation and detection are still under investigation. Recent evidences suggest the existence of novel subpopulations of EVs, increasing the degree of heterogeneity between EV types and subtypes. EVs have been shown to have roles in the CNS as biomarkers and vehicles of drugs and other therapeutic molecules. They are known to cross the blood brain barrier, allowing CNS EVs to be detectable in peripheral fluids, and their cargo may give information on parental cells and the pathological process they are involved in. In this review, we summarize the knowledge on the function of EVs in the pathogenesis of multiple sclerosis (MS) and discuss recent evidences for their potential applications as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giulia Marostica
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Gelibter
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Maira Gironi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Nigro
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Du Z, Wu T, Liu L, Luo B, Wei C. Extracellular vesicles-derived miR-150-5p secreted by adipose-derived mesenchymal stem cells inhibits CXCL1 expression to attenuate hepatic fibrosis. J Cell Mol Med 2020; 25:701-715. [PMID: 33342075 PMCID: PMC7812282 DOI: 10.1111/jcmm.16119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis (HF) is involved in aggravated wound‐healing response as chronic liver injury. Extracellular vesicles (EVs) carrying microRNA (miR) have been reported as therapeutic targets for liver diseases. In this study, we set out to explore whether adipose‐derived mesenchymal stem cells (ADMSCs)‐derived EVs containing miR‐150‐5p affect the progression of HF. Carbon tetrachloride (CCl4) was firstly used to induce HF mouse models in C57BL/6J mice, and activation of hepatic stellate cells (HSCs) was achieved using transforming growth factor β (TGF‐β). EVs were then isolated from ADMSCs and co‐cultured with HSCs. The relationship between miR‐150‐5p and CXCL1 was identified using dual luciferase gene reporter assay. Following loss‐ and gain‐function experimentation, HSC proliferation was examined by MTT assay, and levels of fibrosis‐, HSC activation‐ and apoptosis‐related genes were determined in vitro. Additionally, pathological scores, collagen volume fraction (CVF) as well as levels of inflammation‐ and hepatic injury‐associated genes were determined in in vivo. Down‐regulated miR‐150‐5p and elevated CXCL1 expression levels were detected in HF tissues. ADMSCs‐derived EVs transferred miR‐150‐5p to HSCs. CXCL1 was further verified as the downstream target gene of miR‐150‐5p. Moreover, ADMSCs‐EVs containing miR‐150‐5p markedly inhibited HSC proliferation and activation in vitro. Meanwhile, in vivo experiments also concurred with the aforementioned results as demonstrated by inhibited CVF, reduced inflammatory factor levels and hepatic injury‐associated indicators. Both experiments results were could be reversed by CXCL1 over‐expression. Collectively, our findings indicate that ADMSCs‐derived EVs containing miR‐150‐5p attenuate HF by inhibiting the CXCL1 expression.
Collapse
Affiliation(s)
- Zhiyong Du
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Tianchong Wu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Linsen Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Biwei Luo
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Cuifeng Wei
- Department of Endocrinology, Jingmen First People's Hospital, Jingmen, China
| |
Collapse
|
35
|
The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21239111. [PMID: 33266211 PMCID: PMC7729475 DOI: 10.3390/ijms21239111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is being increasingly demonstrated that extracellular vesicles (EVs) are deeply involved in the physiology of the central nervous system (CNS). Processes such as synaptic activity, neuron-glia communication, myelination and immune response are modulated by EVs. Likewise, these vesicles may participate in many pathological processes, both as triggers of disease or, on the contrary, as mechanisms of repair. EVs play relevant roles in neurodegenerative disorders such as Alzheimer’s or Parkinson’s diseases, in viral infections of the CNS and in demyelinating pathologies such as multiple sclerosis (MS). This review describes the involvement of these membrane vesicles in major demyelinating diseases, including MS, neuromyelitis optica, progressive multifocal leukoencephalopathy and demyelination associated to herpesviruses.
Collapse
|
36
|
Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, Zhao X. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Med Sci Monit 2020; 26:e924023. [PMID: 33245712 PMCID: PMC7706139 DOI: 10.12659/msm.924023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors associated with a low survival rate. Even after surgery, radiotherapy, and chemotherapy, gliomas still have a poor prognosis. Extracellular vesicles are a heterogeneous group of cell-derived membranous structures. Exosomes are a type of extracellular vesicles, their size ranges from 30 nm to 100 nm. Recent studies have proved that glioma cells could release numerous exosomes; therefore, exosomes have gained increasing attention in glioma-related research. Recent studies have confirmed the importance of extracellular vesicles, particularly exosomes, in the development of brain tumors, including gliomas. Exosomes mediate intercellular communication in the tumor microenvironment by transporting biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid); thereby playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can traverse the blood-brain barrier and promote tumor progression by modifying the tumor microenvironment. Based on their structural and functional characteristics, exosomes are demonstrating their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting glioma cells. Therefore, exosomes are a promising therapeutic target for the diagnosis, prognosis, and treatment of malignant gliomas. More research will be needed before exosomes can be used in clinical applications. Here, we describe the exosomes, their morphology, and their roles in the diagnosis and progression of gliomas. In addition, we discuss the potential of exosomes as a therapeutic target/drug delivery system for patients with gliomas.
Collapse
Affiliation(s)
- Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuanyuan Hao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xi Zhao
- Department of Anesthesia, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
37
|
Das J, Sharrack B, Snowden JA. Autologous hematopoietic stem-cell transplantation in neurological disorders: current approach and future directions. Expert Rev Neurother 2020; 20:1299-1313. [PMID: 32893698 DOI: 10.1080/14737175.2020.1820325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autologous hematopoietic stem-cell transplantation (AHSCT) has become increasingly popular in recent years as an effective treatment of immune-mediated neurological diseases. Treatment-related mortality has significantly reduced primarily through better patient selection, optimization of transplant technique, and increased center experience. AREA COVERED Multiple sclerosis is the main indication, but people with neuromyelitis optica spectrum disorder, stiff-person spectrum disorder, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and other immune-mediated neurological disorders also have been treated. The review herein discusses the use of AHSCT in these neurological disorders, the importance of patient selection and transplant technique optimization and future directions. EXPERT OPINION Phase II and III clinical trials have confirmed the safety and efficacy of AHSCT in multiple sclerosis and recent phase II clinical trials have also suggested its safety and efficacy in chronic inflammatory demyelinating polyneuropathy and neuromyelitis optica spectrum disorder, with the evidence in other neurological disorders limited to individual case reports, small case series, and registry data. Therefore, further randomized controlled clinical trials are required to assess its safety and efficacy in other neurological conditions. However, in rare neurological conditions, pragmatic treatment trials or registry-based studies may be more realistic options for gathering efficacy and safety data.
Collapse
Affiliation(s)
- Joyutpal Das
- Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust , Salford, UK.,Cardiovascular medicine, University of Manchester , Manchester, UK.,Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - John A Snowden
- Department of Hematology, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| |
Collapse
|
38
|
Chen X, Guo J, Huang Y, Liu S, Huang Y, Zhang Z, Zhang F, Lu Z, Li F, Zheng JC, Ding W. Urban airborne PM 2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114716. [PMID: 32559876 PMCID: PMC7364855 DOI: 10.1016/j.envpol.2020.114716] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Emerging evidence has showed that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is associated with neurodegeneration. Our previous studies in vitro found that PM2.5 exposure causes primary neurons damage through activating microglia. However, the molecular mechanism of microglia-mediated neurotoxicity remains to elucidate. In this study, five groups (N = 13 or 10) of six-week-old male C57BL/6 mice were daily exposed to PM2.5 (0.1 or 1 mg/kg/day body weight), Chelex-treated PM2.5 (1 mg/kg/day body weight), PM2.5 (1 mg/kg/day body weight) plus CB-839 (glutaminase inhibitor), or deionized water by intranasal instillation for 28 days, respectively. Compared with the control groups, We found that PM2.5 triggered reactive oxygen species (ROS) generation and microglia activation evidenced by significant increase of ionized calcium binding adaptor molecule-1 (IBa-1) staining in the mouse olfactory bulbs (OB). Data from transmission electron microscope (TEM) images and Western blot analysis showed that PM2.5 significantly increased extracellular vesicles (EVs) release from OB or murine microglial line BV2 cells, and glutaminase C (GAC) expression and glutamate generation in isolated OB and BV2 cells. However, treatment with N-acetylcysteine (NAC) or CB-839 significantly diminished the number of EVs and the expression of GAC and abolished PM2.5-induced neurotoxicity. These findings provide new insights that PM2.5 induces oxidative stress and microglia activation through its metal contents and glutaminase-containing EVs in OBs, which may serve as a potential pathway/mechanism of excessive glutamate generation in PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jing Guo
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Shan Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ying Huang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
39
|
Walker SA, Aguilar Díaz De león JS, Busatto S, Wurtz GA, Zubair AC, Borges CR, Wolfram J. Glycan Node Analysis of Plasma-Derived Extracellular Vesicles. Cells 2020; 9:cells9091946. [PMID: 32842648 PMCID: PMC7563425 DOI: 10.3390/cells9091946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Blood plasma is a readily accessible source of extracellular vesicles (EVs), i.e., cell-secreted nanosized carriers that contain various biomolecules, including glycans. Previous studies have demonstrated that glycans play a major role in physiological and pathological processes, and certain plasma glycans have been associated with disease conditions. However, glycome studies have been limited by a lack of analytical techniques with the throughput capacity necessary to study hundreds of clinical samples. This study is the first to characterize the EV plasma glycome based on all major glycan classes. The results based on glycan node analysis revealed, as expected, that plasma-derived EVs have distinct glycan features from donor-matched whole plasma. Specifically, glycan nodes corresponding to those observed in chondroitin sulfate, dermatan sulfate, type I keratan sulfate, and type II keratan sulfate were enriched on EVs. The identification of specific differences in glycan features in plasma vs. plasma-derived EVs is relevant for understanding the physiological role of EVs and as a reference for future diagnostic studies. Additionally, the results indicate that EV glycan nodes do not substantially differ among a small set of healthy donors. These results lay the framework for the further evaluation of all EV glycan classes as diagnostic markers, therapeutic targets, and biologically active components in health and disease.
Collapse
Affiliation(s)
- Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; (S.A.W.); (S.B.)
| | - Jesús S. Aguilar Díaz De león
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA;
| | - Sara Busatto
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; (S.A.W.); (S.B.)
| | - Gregory A. Wurtz
- Department of Physics, University of North Florida, Jacksonville, FL 32224, USA;
| | - Abba C. Zubair
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Chad R. Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA;
- Correspondence: (C.R.B.); (J.W.)
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; (S.A.W.); (S.B.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: (C.R.B.); (J.W.)
| |
Collapse
|
40
|
Groen K, Maltby VE, Scott RJ, Tajouri L, Lechner-Scott J. Concentrations of plasma-borne extracellular particles differ between multiple sclerosis disease courses and compared to healthy controls. Mult Scler Relat Disord 2020; 45:102446. [PMID: 32805479 DOI: 10.1016/j.msard.2020.102446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Multiple sclerosis is a neurodegenerative, autoimmune disease of the central nervous system. Both peripheral blood and central nervous system facets play a role in the pathophysiology. Extracellular vesicles are small membrane-bound vesicles that are released by most cells in response to stress, activation, or pathology. As extracellular vesicles can cross the blood-brain barrier, they have the ability to link peripheral blood inflammation to central nervous system pathology in multiple sclerosis. The aim of this study was to obtain a comprehensive picture of the cellular origins of plasma-borne extracellular particles in multiple sclerosis. METHODS Platelet-free plasma was obtained from 39 multiple sclerosis patients and 27 healthy controls via a series of centrifugation steps and assessed by flow cytometry. Plasma samples were stained with antibodies against CD4, CD8, CD14, CD20, CD41b, CD45, CD146, and CD235a. Gates were set using size-reference beads and extracellular particles were enumerated using commercial counting beads at known concentrations. RESULTS In relapsing patients (n = 13) erythrocyte-derived (CD235a) extracellular particles were increased, while platelet-derived (CD41b), leukocyte-derived (CD45), and CD4+T cell-derived (CD4) extracellular particles were decreased compared to both healthy controls (n = 27) (p<0.05) and secondary progressive multiple sclerosis patients (n = 9) (p < 0.05). Endothelium-derived extracellular particles (CD146) were increased in stable relapsing-remitting multiple sclerosis patients (n = 17) compared to healthy controls (p < 0.05). Extracellular particles from several different cells of origin correlated with each other and clinical parameters (e.g. disease duration, number of relapses, EDSS), though clinical correlations did not withstand corrections for multiple comparisons. CONCLUSIONS Concentrations of erythrocyte-, leukocyte-, and platelet-derived extracellular particles were altered in relapsing multiple sclerosis patients and endothelium-derived extracellular particles were increased in stable relapsing-remitting patients compared to healthy controls. Extracellular particles may provide insights into altered the crosstalk between peripheral blood cells in multiple sclerosis, which may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public Health, University of Newcastle, Callaghan NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton Heights NSW 2305, Australia.
| | - Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Callaghan NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton Heights NSW 2305, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights NSW 2305, Australia.
| | - Rodney J Scott
- Cancer, Hunter Medical Research Institute, New Lambton Heights NSW 2305, Australia; Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton Heights NSW 2305, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Robina QLD 4229, Australia; Dubai Police Scientific Council and Dubai Future Council on Community Security, Dubai, United Arab Emirates.
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton Heights NSW 2305, Australia; Department of Neurology, John Hunter Hospital, New Lambton Heights NSW 2305, Australia.
| |
Collapse
|
41
|
Duffy CP, McCoy CE. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells 2020; 9:cells9071711. [PMID: 32708794 PMCID: PMC7408558 DOI: 10.3390/cells9071711] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterised by demyelination of central nervous system neurons with subsequent damage, cell death and disability. While mechanisms exist in the CNS to repair this damage, they are disrupted in MS and currently there are no treatments to address this deficit. In recent years, increasing attention has been paid to the influence of the small, non-coding RNA molecules, microRNAs (miRNAs), in autoimmune disorders, including MS. In this review, we examine the role of miRNAs in remyelination in the different cell types that contribute to MS. We focus on key miRNAs that have a central role in mediating the repair process, along with several more that play either secondary or inhibitory roles in one or more aspects. Finally, we consider the current state of miRNAs as therapeutic targets in MS, acknowledging current challenges and potential strategies to overcome them in developing effective novel therapeutics to enhance repair mechanisms in MS.
Collapse
|
42
|
Maione F, Cappellano G, Bellan M, Raineri D, Chiocchetti A. Chicken-or-egg question: Which came first, extracellular vesicles or autoimmune diseases? J Leukoc Biol 2020; 108:601-616. [PMID: 32108378 PMCID: PMC7496139 DOI: 10.1002/jlb.3mr0120-232r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have attracted great interest as contributors to autoimmune disease (AD) pathogenesis, owing to their immunomodulatory potential; they may also play a role in triggering tolerance disruption, by delivering auto‐antigens. EVs are released by almost all cell types, and afford paracrine or distal cell communication, functioning as biological carriers of active molecules including lipids, proteins, and nucleic acids. Depending on stimuli from the external microenvironment or on their cargo, EVs can promote or suppress immune responses. ADs are triggered by inappropriate immune‐system activation against the self, but their precise etiology is still poorly understood. Accumulating evidence indicates that lifestyle and diet have a strong impact on their clinical onset and development. However, to date the mechanisms underlying AD pathogenesis are not fully clarified, and reliable markers, which would provide early prediction and disease progression monitoring, are lacking. In this connection, EVs have recently been indicated as a promising source of AD biomarkers. Although EV isolation is currently based on differential centrifugation or density‐gradient ultracentrifugation, the resulting co‐isolation of contaminants (i.e., protein aggregates), and the pooling of all EVs in one sample, limit this approach to abundantly‐expressed EVs. Flow cytometry is one of the most promising methods for detecting EVs as biomarkers, and may have diagnostic applications. Furthermore, very recent findings describe a new method for identifying and sorting EVs by flow cytometry from freshly collected body fluids, based on specific EV surface markers.
Collapse
Affiliation(s)
- Federica Maione
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide Raineri
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy.,Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
43
|
Groen K, Maltby VE, Scott RJ, Tajouri L, Lechner‐Scott J. Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes. Clin Transl Med 2020; 10:74-90. [PMID: 32508012 PMCID: PMC7240864 DOI: 10.1002/ctm2.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a demyelinating autoimmune disease, for which there is no blood-borne biomarker. Erythrocytes may provide a source of such biomarkers as they contain microRNAs. MicroRNAs regulate protein translation through complementary binding to messenger RNA. As erythrocytes are transcriptionally inactive, their microRNA profiles may be less susceptible to variation. The aim of this study was to assess the biomarker potential of erythrocyte microRNAs for multiple sclerosis and assess the potential contribution of erythrocyte-derived extracellular vesicle microRNAs to pathology. METHODS Erythrocytes were isolated from whole blood by density gradient centrifugation. Erythrocyte microRNAs of a discovery cohort (23 multiple sclerosis patients and 22 healthy controls) were sequenced. Increased expression of miR-183 cluster microRNAs (hsa-miR-96-5p, hsa-miR-182-5p and hsa-miR-183-5p) was validated in an independent cohort of 42 patients and 45 healthy and pathological (migraine) controls. Erythrocyte-derived extracellular vesicles were created ex vivo and their microRNAs were sequenced. Targets of microRNAs were predicted using miRDIP. RESULTS Hsa-miR-182-5p and hsa-miR-183-5p were able to discriminate relapsing multiple sclerosis patients from migraine patients and/or healthy controls with 89-94% accuracy and around 90% specificity. Hsa-miR-182-5p and hsa-miR-183-5p expression correlated with measures of physical disability and hsa-miR-96-5p expression correlated with measures of cognitive disability in multiple sclerosis. Erythrocytes were found to selectively package microRNAs into extracellular vesicles and 34 microRNAs were found to be differentially packaged between healthy controls and multiple sclerosis patients. Several gene targets of differentially expressed and packaged erythrocyte microRNAs overlapped with multiple sclerosis susceptibility genes. Gene enrichment analysis indicated involvement in nervous system development and histone H3-K27 demethylation. CONCLUSIONS Erythrocyte miR-183 cluster members may be developed into specific multiple sclerosis biomarkers that could assist with diagnosis and disability monitoring. Erythrocyte and their extracellular microRNAs were shown to target multiple sclerosis susceptibility genes and may be contributing to the pathophysiology via previously identified routes.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Vicki E. Maltby
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Rodney J. Scott
- CancerHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Division of Molecular MedicinePathology NorthJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Lotti Tajouri
- Faculty of Health Sciences and MedicineBond UniversityRobinaQueenslandAustralia
- Dubai Police Scientific CouncilDubaiUnited Arab Emirates
| | - Jeannette Lechner‐Scott
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
44
|
Guha D, Lorenz DR, Misra V, Chettimada S, Morgello S, Gabuzda D. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation 2019; 16:254. [PMID: 31805958 PMCID: PMC6896665 DOI: 10.1186/s12974-019-1617-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are nano-sized particles present in most body fluids including cerebrospinal fluid (CSF). Little is known about CSF EV proteins in HIV+ individuals. Here, we characterize the CSF EV proteome in HIV+ subjects and its relationship to neuroinflammation, stress responses, and HIV-associated neurocognitive disorders (HAND). METHODS CSF EVs isolated from 20 HIV+ subjects with (n = 10) or without (n = 10) cognitive impairment were characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting, and untargeted LC/MS/MS mass spectrometry. Functional annotation was performed by gene ontology (GO) mapping and expression annotation using Biobase Transfac and PANTHER software. Cultured astrocytic U87 cells were treated with hydrogen peroxide for 4 h to induce oxidative stress and EVs isolated by ultracentrifugation. Selected markers of astrocytes (GFAP, GLUL), inflammation (CRP), and stress responses (PRDX2, PARK7, HSP70) were evaluated in EVs released by U87 cells following induction of oxidative stress and in CSF EVs from HIV+ patients by immunoblotting. RESULTS Mass spectrometry identified 2727 and 1626 proteins in EV fractions and EV-depleted CSF samples, respectively. CSF EV fractions were enriched with exosomal markers including Alix, syntenin, tetraspanins, and heat-shock proteins and a subset of neuronal, astrocyte, oligodendrocyte, and choroid plexus markers, in comparison to EV-depleted CSF. Proteins related to synapses, immune/inflammatory responses, stress responses, metabolic processes, mitochondrial functions, and blood-brain barrier were also identified in CSF EV fractions by GO mapping. HAND subjects had higher abundance of CSF EVs and proteins mapping to GO terms for synapses, glial cells, inflammation, and stress responses compared to those without HAND. GFAP, GLUL, CRP, PRDX2, PARK7, and HSP70 were confirmed by immunoblotting of CSF EVs from subjects with HAND and were also detected in EVs released by U87 cells under oxidative stress. CONCLUSIONS These findings suggest that CSF EVs derived from neurons, glial cells, and choroid plexus carry synaptic, immune/inflammation-related, and stress response proteins in HIV+ individuals with cognitive impairment, representing a valuable source for biomarker discovery.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience and Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Pieragostino D, Lanuti P, Cicalini I, Cufaro MC, Ciccocioppo F, Ronci M, Simeone P, Onofrj M, van der Pol E, Fontana A, Marchisio M, Del Boccio P. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteomics 2019; 204:103403. [DOI: 10.1016/j.jprot.2019.103403] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
|
46
|
Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:10488-10493. [PMID: 31068461 PMCID: PMC6535008 DOI: 10.1073/pnas.1816911116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this report, we show that fibrinogen, identified by proteomics to be present in blood plasma extracellular vesicles (EVs), is sufficient and required for autoimmune-mediated spontaneous relapsing disease activity in a murine model of multiple sclerosis (MS). Unique to this model is that plasma EVs induced CD8-mediated disease. Analysis of human plasma EVs identified fibrinogen in MS patient samples, thereby providing a compelling translational association between our experimental findings and the perpetuation of CD8-mediated autoimmunity in human MS. Hence, these findings provide evidence for EVs as means by which to model an important aspect of spontaneous CD8+ T cell development related to autoimmunity in MS. Extracellular vesicles (EVs) are emerging as potent mediators of intercellular communication with roles in inflammation and disease. In this study, we examined the role of EVs from blood plasma (pEVs) in an experimental autoimmune encephalomyelitis mouse model of central nervous system demyelination. We determined that pEVs induced a spontaneous relapsing−remitting disease phenotype in MOG35–55-immunized C57BL/6 mice. This modified disease phenotype was found to be driven by CD8+ T cells and required fibrinogen in pEVs. Analysis of pEVs from relapsing−remitting multiple sclerosis patients also identified fibrinogen as a significant portion of pEV cargo. Together, these data suggest that fibrinogen in pEVs contributes to the perpetuation of neuroinflammation and relapses in disease.
Collapse
|
47
|
Delpech JC, Herron S, Botros MB, Ikezu T. Neuroimmune Crosstalk through Extracellular Vesicles in Health and Disease. Trends Neurosci 2019; 42:361-372. [PMID: 30926143 DOI: 10.1016/j.tins.2019.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The dynamics of CNS function rely upon omnidirectional communication among CNS cell types. Extracellular vesicles (EVs) have emerged as key mediators of this communication and are actively involved in response to CNS injury, mediating inflammatory response and inflammation-related neuroprotection as they display dual beneficial and detrimental roles. Neuroimmune interactions include communication between neurons and microglia, the resident macrophages within the CNS, and these interactions are a critical mediator of healthy brain functions, mounting an inflammatory response, and disease pathogenesis. This review aims to organize recent research highlighting the role of EVs in health and neurodegenerative disorders, with a specific focus on neuroimmune interactions between neurons and glia in Alzheimer's disease.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mina B Botros
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
48
|
Osorio-Querejeta I, Alberro A, Muñoz-Culla M, Mäger I, Otaegui D. Therapeutic Potential of Extracellular Vesicles for Demyelinating Diseases; Challenges and Opportunities. Front Mol Neurosci 2018; 11:434. [PMID: 30532691 PMCID: PMC6265410 DOI: 10.3389/fnmol.2018.00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis is a demyelinating disease of the central nervous system for which no remyelination therapy is available and alternative strategies are being tested. Extracellular vesicles (EVs) have emerged as players in physiological and pathological processes and are being proposed as therapeutic targets and mediators. More concretely, EVs have shown to be involved in myelination related processes such as axon-oligodendrocyte communication or oligodendrocyte precursor cell migration. In addition, EVs have been shown to carry genetic material and small compounds, and to be able to cross the Blood Brain Barrier. This scenario led scientists to test the ability of EVs as myelin regeneration promoters in demyelinating diseases. In this review we will address the use of EVs as remyelination promoters and the challenges and opportunities of this therapy will be discussed.
Collapse
Affiliation(s)
- Iñaki Osorio-Querejeta
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| |
Collapse
|
49
|
Geraci F, Ragonese P, Barreca MM, Aliotta E, Mazzola MA, Realmuto S, Vazzoler G, Savettieri G, Sconzo G, Salemi G. Differences in Intercellular Communication During Clinical Relapse and Gadolinium-Enhanced MRI in Patients With Relapsing Remitting Multiple Sclerosis: A Study of the Composition of Extracellular Vesicles in Cerebrospinal Fluid. Front Cell Neurosci 2018; 12:418. [PMID: 30498433 PMCID: PMC6249419 DOI: 10.3389/fncel.2018.00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
This study was designed based on the hypothesis that changes in both the levels and surface marker expression of extracellular vesicles (EVs) isolated from the cerebrospinal fluid (CSF) may be associated with the clinical form, disease activity, and severity of multiple sclerosis (MS). The analyzes were performed on subjects affected by MS or other neurological disorders. EVs, which were isolated by ultracentrifugation of CSF samples, were characterized by flow cytometry. A panel of fluorescent antibodies was used to identify the EV origin: CD4, CCR3, CCR5, CD19, and CD200, as well as isolectin IB4. The Mann-Whitney U-test and Kruskal-Wallis test were used for statistical analyzes. EVs isolated from the CSF were more abundant in patients with progressive MS and in those with a clinically isolated syndrome than in all the other groups examined. Furthermore, an important change in the number of EVs and in their surface marker expression occurred during active phases of MS [i.e., clinical relapses and the presence of enhancing lesions on magnetic resonance imaging (MRI)]. In particular, the number of CSF-EVs increased in patients affected by MS during clinical relapse; this finding was associated with a decrease in the number of CD19+/CD200+ (naïve B cells) EVs. These markers are expressed by immature and naïve B lymphocytes, and to the best of our knowledge, this double staining has never been associated with MS, but their reduction has been observed in patients with another type of Th1 cell-mediated autoimmune disease. In contrast, the presence of lesions in the brain and spine on gadolinium-enhanced MRI was associated with an increase in the numbers of CCR3+/CCR5+ (subset of CD8 memory T cells), CD4+/CCR3+ (Th2 cells), and CD4+/CCR5+ (Th1 cells) CSF-EVs. Two points are worth emphasizing: (i) the data obtained in this study confirm that CSF-EVs represent a potentially promising tool to identify biomarkers specific for different phases of MS; and (ii) Considering the role of EVs in intercellular communication, our results provide some insights that improve our understanding of the relationships among some of the cell types that are mainly involved in MS pathogenesis (e.g., lymphocytes, glia, and neurons).
Collapse
Affiliation(s)
- Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Paolo Ragonese
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Maria Magdalena Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Emanuele Aliotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Maria Antonietta Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Sabrina Realmuto
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giulia Vazzoler
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giovanni Savettieri
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| |
Collapse
|
50
|
Sáenz-Cuesta M, Alberro A, Muñoz-Culla M, Osorio-Querejeta I, Fernandez-Mercado M, Lopetegui I, Tainta M, Prada Á, Castillo-Triviño T, Falcón-Pérez JM, Olascoaga J, Otaegui D. The First Dose of Fingolimod Affects Circulating Extracellular Vesicles in Multiple Sclerosis Patients. Int J Mol Sci 2018; 19:ijms19082448. [PMID: 30126230 PMCID: PMC6121302 DOI: 10.3390/ijms19082448] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles involved in intercellular communication. They carry proteins, lipids, and nucleotides such as microRNAs (miRNAs) from the secreting cell that can modulate target cells. We and others have previously described the presence of EVs in peripheral blood of multiple sclerosis (MS) patients and postulated them as novel biomarkers. However, their immune function in MS pathogenesis and the effect during the onset of new immunomodulatory therapies on EVs remain elusive. Here, we isolated plasma EVs from fingolimod-treated MS patients in order to assess whether EVs are affected by the first dose of the treatment. We quantified EVs, analyzed their miRNA cargo, and checked their immune regulatory function. Results showed an elevated EV concentration with a dramatic change in their miRNA cargo 5 h after the first dose of fingolimod. Besides, EVs obtained prior to fingolimod treatment showed an increased immune regulatory activity compared to EVs obtained 5 h post-treatment. This work suggests that EVs are implicated in the mechanism of action of immunomodulatory treatments from the initial hours and opens a new avenue to explore a potential use of EVs for early treatment monitoring.
Collapse
Affiliation(s)
- Matías Sáenz-Cuesta
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
| | - Iñaki Osorio-Querejeta
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
| | - Marta Fernandez-Mercado
- Oncology Area, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Itziar Lopetegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
- Department of Neurology, Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Mikel Tainta
- Department of Neurology, Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Álvaro Prada
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
- Laboratory of Immunology, Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
- Department of Neurology, Donostia University Hospital, 20014 San Sebastian, Spain.
| | - Juan Manuel Falcón-Pérez
- IKERBASQUE, Basque Foundation for Science, 48015 Bilbao, Spain.
- Exosomes Lab., CIC bioGUNE, CIBERehd, 48980 Derio, Spain.
| | - Javier Olascoaga
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
- Department of Neurology, Donostia University Hospital, 20014 San Sebastian, Spain.
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute-Donostia University Hospital, 20014 San Sebastian, Spain.
- Spanish Network on Multiple Sclerosis, 08028 Barcelona, Spain.
| |
Collapse
|