1
|
Abstract
We describe the incorporation of gated ion channels into probes for scanning ion conductance microscopy (SICM) as a robust platform for collecting spatial information at interfaces. Specifically, a dual-barrel pipet is used, where one barrel controls the pipet position and the second barrel houses voltage-gated transient receptor potential vanilloid 1 (TRPV1) channels excised in a sniffer-patch configuration. Spatially resolved sensing with TRPV1 channels is demonstrated by imaging a porous membrane where a transmembrane potential across the membrane generates local electric field gradients at pores that activate TRPV1 channels when the probe is in the vicinity of the pore. The scanning routine and automated signal analysis demonstrated provide a generalizable approach to employing gated ion channels as sensors for imaging applications.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yunong Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wenqing Shi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Burmeister JJ, Price DA, Pomerleau F, Huettl P, Quintero JE, Gerhardt GA. Challenges of simultaneous measurements of brain extracellular GABA and glutamate in vivo using enzyme-coated microelectrode arrays. J Neurosci Methods 2020; 329:108435. [PMID: 31600528 PMCID: PMC6924626 DOI: 10.1016/j.jneumeth.2019.108435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although GABA is the major inhibitory neurotransmitter in the CNS, quantifying in vivo GABA levels has been challenging. The ability to co-monitor both GABA and the major excitatory neurotransmitter, glutamate, would be a powerful tool in both research and clinical settings. NEW METHOD Ceramic-based microelectrode arrays (MEAs) were used to quantify gamma-aminobutyric acid (GABA) by employing a dual-enzyme reaction scheme including GABase and glutamate oxidase (GluOx). Glutamate was simultaneously quantified on adjacent recording sites coated with GluOx alone. Endogenous glutamate was subtracted from the combined GABA and glutamate signal to yield a pure GABA concentration. RESULTS Electrode sensitivity to GABA in conventional, stirred in vitro calibrations at pH 7.4 did not match the in vivo sensitivity due to diffusional losses. Non-stirred calibrations in agarose or stirred calibrations at pH 8.6 were used to match the in vivo GABA sensitivity. In vivo data collected in the rat brain demonstrated feasibility of the GABA/glutamate MEA including uptake of locally applied GABA, KCl-evoked GABA release and modulation of endogenous GABA with vigabatrin. COMPARISON WITH EXISTING METHODS Implantable enzyme-coated microelectrode arrays have better temporal and spatial resolution than existing off-line methods. However, interpretation of results can be complicated due to the multiple recording site and dual enzyme approach. CONCLUSIONS The initial in vitro and in vivo studies supported that the new MEA configuration may be a viable platform for combined GABA and glutamate measures in the CNS extending the previous reports to in vivo GABA detection. The challenges of this approach are emphasized.
Collapse
Affiliation(s)
- Jason J Burmeister
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - David A Price
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - François Pomerleau
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Peter Huettl
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Jorge E Quintero
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Greg A Gerhardt
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, USA.
| |
Collapse
|
3
|
Farmer GE, Amune A, Bachelor ME, Duong P, Yuan JP, Cunningham JT. Sniffer cells for the detection of neural Angiotensin II in vitro. Sci Rep 2019; 9:8820. [PMID: 31217439 PMCID: PMC6584535 DOI: 10.1038/s41598-019-45262-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropeptide release in the brain has traditionally been difficult to observe. Existing methods lack temporal and spatial resolution that is consistent with the function and size of neurons. We use cultured "sniffer cells" to improve the temporal and spatial resolution of observing neuropeptide release. Sniffer cells were created by stably transfecting Chinese Hamster Ovary (CHO) cells with plasmids encoding the rat angiotensin type 1a receptor and a genetically encoded Ca2+ sensor. Isolated, cultured sniffer cells showed dose-dependent increases in fluorescence in response to exogenously applied angiotensin II and III, but not other common neurotransmitters. Sniffer cells placed on the median preoptic nucleus (a presumptive site of angiotensin release) displayed spontaneous activity and evoked responses to either electrical or optogenetic stimulation of the subfornical organ. Stable sniffer cell lines could be a viable method for detecting neuropeptide release in vitro, while still being able to distinguish differences in neuropeptide concentration.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Anna Amune
- Texas A&M University, College Station, TX, United States
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Phong Duong
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - Joseph P Yuan
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, United States.
| |
Collapse
|
4
|
Diverse Actions of Astrocytes in GABAergic Signaling. Int J Mol Sci 2019; 20:ijms20122964. [PMID: 31216630 PMCID: PMC6628243 DOI: 10.3390/ijms20122964] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
An imbalance of excitatory and inhibitory neurotransmission leading to over excitation plays a crucial role in generating seizures, while enhancing GABAergic mechanisms are critical in terminating seizures. In recent years, it has been reported in many studies that astrocytes are deeply involved in synaptic transmission. Astrocytes form a critical component of the “tripartite” synapses by wrapping around the pre- and post-synaptic elements. From this location, astrocytes are known to greatly influence the dynamics of ions and transmitters in the synaptic cleft. Despite recent extensive research on excitatory tripartite synapses, inhibitory tripartite synapses have received less attention, even though they influence inhibitory synaptic transmission by affecting chloride and GABA concentration dynamics. In this review, we will discuss the diverse actions of astrocytic chloride and GABA homeostasis at GABAergic tripartite synapses. We will then consider the pathophysiological impacts of disturbed GABA homeostasis at the tripartite synapse.
Collapse
|
5
|
Fischer AU, Müller NIC, Deller T, Del Turco D, Fisch JO, Griesemer D, Kattler K, Maraslioglu A, Roemer V, Xu‐Friedman MA, Walter J, Friauf E. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit. J Physiol 2019; 597:2269-2295. [PMID: 30776090 PMCID: PMC6462465 DOI: 10.1113/jp277566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The lateral superior olive (LSO), a brainstem hub involved in sound localization, integrates excitatory and inhibitory inputs from the ipsilateral and the contralateral ear, respectively. In gerbils and rats, inhibition to the LSO reportedly shifts from GABAergic to glycinergic within the first three postnatal weeks. Surprisingly, we found no evidence for synaptic GABA signalling during this time window in mouse LSO principal neurons. However, we found that presynaptic GABAB Rs modulate Ca2+ influx into medial nucleus of the trapezoid body axon terminals, resulting in reduced synaptic strength. Moreover, GABA elicited strong responses in LSO neurons that were mediated by extrasynaptic GABAA Rs. RNA sequencing revealed highly abundant δ subunits, which are characteristic of extrasynaptic receptors. Whereas GABA increased the excitability of neonatal LSO neurons, it reduced the excitability around hearing onset. Collectively, GABA appears to control the excitability of mouse LSO neurons via extrasynaptic and presynaptic signalling. Thus, GABA acts as a modulator, rather than as a classical transmitter. ABSTRACT GABA and glycine mediate fast inhibitory neurotransmission and are coreleased at several synapse types. Here we assessed the contribution of GABA and glycine in synaptic transmission between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), two nuclei involved in sound localization. Whole-cell patch-clamp experiments in acute mouse brainstem slices at postnatal days (P) 4 and 11 during pharmacological blockade of GABAA receptors (GABAA Rs) and/or glycine receptors demonstrated no GABAergic synaptic component on LSO principal neurons. A GABAergic component was absent in evoked inhibitory postsynaptic currents and miniature events. Coimmunofluorescence experiments revealed no codistribution of the presynaptic GABAergic marker GAD65/67 with gephyrin, a postsynaptic marker for GABAA Rs, corroborating the conclusion that GABA does not act synaptically in the mouse LSO. Imaging experiments revealed reduced Ca2+ influx into MNTB axon terminals following activation of presynaptic GABAB Rs. GABAB R activation reduced the synaptic strength at P4 and P11. GABA appears to act on extrasynaptic GABAA Rs as demonstrated by application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, a δ-subunit-specific GABAA R agonist. RNA sequencing showed high mRNA levels for the δ-subunit in the LSO. Moreover, GABA transporters GAT-1 and GAT-3 appear to control extracellular GABA. Finally, we show an age-dependent effect of GABA on the excitability of LSO neurons. Whereas tonic GABA increased the excitability at P4, leading to spike facilitation, it decreased the excitability at P11 via shunting inhibition through extrasynaptic GABAA Rs. Taken together, we demonstrate a modulatory role of GABA in the murine LSO, rather than a function as a classical synaptic transmitter.
Collapse
Affiliation(s)
- Alexander U. Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Nicolas I. C. Müller
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe‐University Frankfurt, Theodor‐Stern‐Kai 7D‐60590Frankfurt am MainGermany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe‐University Frankfurt, Theodor‐Stern‐Kai 7D‐60590Frankfurt am MainGermany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Désirée Griesemer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Kathrin Kattler
- Genetics/Epigenetic Group, Department of Biological SciencesSaarland UniversityD‐66123Saarbrücken
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Vera Roemer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Matthew A. Xu‐Friedman
- Department of Biological SciencesUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Jörn Walter
- Genetics/Epigenetic Group, Department of Biological SciencesSaarland UniversityD‐66123Saarbrücken
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
6
|
Christensen RK, Delgado-Lezama R, Russo RE, Lind BL, Alcocer EL, Rath MF, Fabbiani G, Schmitt N, Lauritzen M, Petersen AV, Carlsen EM, Perrier JF. Spinal dorsal horn astrocytes release GABA in response to synaptic activation. J Physiol 2018; 596:4983-4994. [PMID: 30079574 DOI: 10.1113/jp276562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS GABA is an essential molecule for sensory information processing. It is usually assumed to be released by neurons. Here we show that in the dorsal horn of the spinal cord, astrocytes respond to glutamate by releasing GABA. Our findings suggest a novel role for astrocytes in somatosensory information processing. ABSTRACT Astrocytes participate in neuronal signalling by releasing gliotransmitters in response to neurotransmitters. We investigated if astrocytes from the dorsal horn of the spinal cord of adult red-eared turtles (Trachemys scripta elegans) release GABA in response to glutamatergic receptor activation. For this, we developed a GABA sensor consisting of HEK cells expressing GABAA receptors. By positioning the sensor recorded in the whole-cell patch-clamp configuration within the dorsal horn of a spinal cord slice, we could detect GABA in the extracellular space. Puff application of glutamate induced GABA release events with time courses that exceeded the duration of inhibitory postsynaptic currents by one order of magnitude. Because the events were neither affected by extracellular addition of nickel, cadmium and tetrodotoxin nor by removal of Ca2+ , we concluded that they originated from non-neuronal cells. Immunohistochemical staining allowed the detection of GABA in a fraction of dorsal horn astrocytes. The selective stimulation of A∂ and C fibres in a dorsal root filament induced a Ca2+ increase in astrocytes loaded with Oregon Green BAPTA. Finally, chelating Ca2+ in a single astrocyte was sufficient to prevent the GABA release evoked by glutamate. Our results indicate that glutamate triggers the release of GABA from dorsal horn astrocytes with a time course compatible with the integration of sensory inputs.
Collapse
Affiliation(s)
- Rasmus Kordt Christensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Avenida IPN 2508, Col. Zacatenco México City, CP, 07300, Mexico
| | - Raúl E Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Barbara Lykke Lind
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Emanuel Loeza Alcocer
- Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Avenida IPN 2508, Col. Zacatenco México City, CP, 07300, Mexico
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Gabriela Fabbiani
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Victor Petersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Eva Meier Carlsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
7
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
8
|
Gilliham M, Tyerman SD. Linking Metabolism to Membrane Signaling: The GABA-Malate Connection. TRENDS IN PLANT SCIENCE 2016; 21:295-301. [PMID: 26723562 DOI: 10.1016/j.tplants.2015.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 05/05/2023]
Abstract
γ-Aminobutyric acid (GABA) concentration increases rapidly in tissues when plants encounter abiotic or biotic stress, and GABA manipulation affects growth. This, coupled to GABA's well-described role as a neurotransmitter in mammals, led to over a decade of speculation that GABA is a signal in plants. The discovery of GABA-regulated anion channels in plants provides compelling mechanistic proof that GABA is a legitimate plant-signaling molecule. Here we examine research avenues unlocked by this finding and propose that these plant 'GABA receptors' possess novel properties ideally suited to translating changes in metabolic status into physiological responses. Specifically, we suggest they have a role in signaling altered cycling of tricarboxylic acid (TCA) intermediates during stress via eliciting changes in electrical potential differences across membranes.
Collapse
Affiliation(s)
- Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Precinct, PMB1, Glen Osmond, SA 5064, Australia.
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Precinct, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
9
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|