1
|
Yin W, Jiang Y, Ma G, Mbituyimana B, Xu J, Shi Z, Yang G, Chen H. A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy. Bioact Mater 2025; 49:39-62. [PMID: 40124600 PMCID: PMC11928985 DOI: 10.1016/j.bioactmat.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Ischemic stroke (IS), a cerebrovascular disease, is the leading cause of physical disability and death worldwide. Tissue plasminogen activator (tPA) and thrombectomy are limited by a narrow therapeutic time window. Although strategies such as drug therapies and cellular therapies have been used in preclinical trials, some important issues in clinical translation have not been addressed: low stem cell survival and drug delivery limited by the blood-brain barrier (BBB). Among the therapeutic options currently sought, carrier-based hydrogels hold great promise for the repair and regeneration of neural tissue in the treatment of ischemic stroke. The advantage lies in the ability to deliver drugs and cells to designated parts of the brain in an injectable manner to enhance therapeutic efficacy. Here, this article provides an overview of the use of carrier-based hydrogels in ischemic stroke therapy and focuses on the use of hydrogel scaffolds containing bioactive molecules and stem cells. In addition to this, we provide a more in-depth summary of the composition, physicochemical properties and physiological functions of the materials themselves. Finally, we also outline the prospects and challenges for clinical translation of hydrogel therapy for IS.
Collapse
Affiliation(s)
- Wenqi Yin
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchi Jiang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Ma Y, Wang C, Li J, Xie P, Xiao L, Ramakrishna S, Chen N, Wang X, He L. CP/HA/HGF Conductive Composite Scaffolds with Synergistic Electrical Stimulation for Nerve Regeneration. Macromol Biosci 2025; 25:e2400265. [PMID: 39838598 DOI: 10.1002/mabi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/04/2025] [Indexed: 01/23/2025]
Abstract
The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
- Yahao Ma
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Cong Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - Jun Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Pengfei Xie
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Longyou Xiao
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Nuan Chen
- Department of Mechanical Engineering, College of Design and Engineering, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaoying Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Liumin He
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Taisescu O, Dinescu VC, Rotaru-Zavaleanu AD, Gresita A, Hadjiargyrou M. Hydrogels for Peripheral Nerve Repair: Emerging Materials and Therapeutic Applications. Gels 2025; 11:126. [PMID: 39996669 PMCID: PMC11855328 DOI: 10.3390/gels11020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries pose a significant clinical challenge due to the complex biological processes involved in nerve repair and their limited regenerative capacity. Despite advances in surgical techniques, conventional treatments, such as nerve autografts, are faced with limitations like donor site morbidity and inconsistent functional outcomes. As such, there is a growing interest in new, novel, and innovative strategies to enhance nerve regeneration. Tissue engineering/regenerative medicine and its use of biomaterials is an emerging example of an innovative strategy. Within the realm of tissue engineering, functionalized hydrogels have gained considerable attention due to their ability to mimic the extracellular matrix, support cell growth and differentiation, and even deliver bioactive molecules that can promote nerve repair. These hydrogels can be engineered to incorporate growth factors, bioactive peptides, and stem cells, creating a conducive microenvironment for cellular growth and axonal regeneration. Recent advancements in materials as well as cell biology have led to the development of sophisticated hydrogel systems, that not only provide structural support, but also actively modulate inflammation, promote cell recruitment, and stimulate neurogenesis. This review explores the potential of functionalized hydrogels for peripheral nerve repair, highlighting their composition, biofunctionalization, and mechanisms of action. A comprehensive analysis of preclinical studies provides insights into the efficacy of these hydrogels in promoting axonal growth, neuronal survival, nerve regeneration, and, ultimately, functional recovery. Thus, this review aims to illuminate the promise of functionalized hydrogels as a transformative tool in the field of peripheral nerve regeneration, bridging the gap between biological complexity and clinical feasibility.
Collapse
Affiliation(s)
- Oana Taisescu
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Alexandra Daniela Rotaru-Zavaleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
5
|
Takahara E, Kamizato K, Kakinohana M, Sunami H, Kise Y, Furukawa K, Ntege EH, Shimizu Y. Subpial transplantation of adipose-derived stem cells alleviates paraplegia in a rat model of aortic occlusion/reperfusion-induced spinal cord infarction. Regen Ther 2024; 26:611-619. [PMID: 39263357 PMCID: PMC11387535 DOI: 10.1016/j.reth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Thoracoabdominal periprocedural occlusion/reperfusion injury of the spinal cord (SCII/R) can lead to devastating paraplegia, underscoring the critical need for effective interventions. However, our knowledge of optimal medical strategies and their efficacy remains limited. Preclinical investigations have shown promise in harnessing adult stem cells, including pluripotent and multipotent stem cells such as mesenchymal stem cells (MSCs), to address SCII/R by enhancing neuro-inflammation, axonal growth, and myelination. Particularly, growth factors derived from adipose tissue-derived MSCs (ADSCs) have been proposed to facilitate recovery. Despite advancements, achieving complete recovery remains a formidable challenge. Therefore, gaining a more profound insight into the role of ADSCs in alleviating SCII/R-induced paraplegia, including optimizing the delivery systems for therapies, is imperative. Materials and methods In this study, we assessed the impact of subpial allogeneic rat adipose tissue-derived MSCs (rADSCs) transplantation on paraplegia using a rat SCII/R model induced by ephemeral aortic occlusion, known as the Taira-Marsala model. rADSCs were isolated from adipose tissue of male Sprague-Dawley rats, cultured, characterized, and cryopreserved. One week following the induction of paraplegia, rADSCs (n = 6) or physiological saline (n = 6) were transplanted. Hind limb motor function was evaluated before treatment and at 3-, 7-, and 14-days post-treatment using the Basso-Beattie-Bresnahan scoring system. Results The rADSC-treated group demonstrated a significant improvement in hind limb motor function compared to the saline-treated group (p < 0.05), with 5 out of 6 rats exhibiting enhanced motor function following treatment. Conclusions Our findings suggest that subpial rADSC engraftment may enhance SCII/R-induced paraplegia recovery. These initial results drive further research to validate this potential, understand the molecular mechanisms, and optimize therapies.
Collapse
Affiliation(s)
- Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yuya Kise
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kojiro Furukawa
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
7
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
8
|
Rybachuk O, Nesterenko Y, Pinet É, Medvediev V, Yaminsky Y, Tsymbaliuk V. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord. Exp Neurol 2023; 368:114497. [PMID: 37517459 DOI: 10.1016/j.expneurol.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Currently, several therapeutic methods of treating the effects of spinal cord injury (SCI) are being considered. On the one hand, transplantation of stem cells (SCs), in particular, neural stem/progenitor cells (NSPCs), is promising, as these cells have the potential to differentiate into nervous tissue cells, able to enhance endogenous regeneration and prevent the development of inflammatory processes. On the other hand, it is quite promising to replace the damaged nervous tissue with synthetic matrices, in particular hydrogels, which can create artificial conditions for the regenerative growth of injured nerve fibers through the spinal cord injury area, i.e. stimulate and support axonal regeneration and myelination. In this work, we combined both of these novel approaches by populating (injecting or rehydrating) a heteroporous pHPMA hydrogel (NeuroGel) with murine hippocampal NSPCs. Being inside the hydrogel (10 days of cultivation), NSPCs were more differentiated into neurons: 19.48% ± 1.71% (the NSPCs injection into the hydrogel) and 36.49% ± 4.20% (the hydrogel rehydration in the NSPCs suspension); in control cultures, the level of differentiation in neurons was only 2.40% ± 0.31%. Differentiation of NSPCs into glial cells, in particular into oligodendrocyte progenitor cells, was also observed - 8.89% ± 2.15% and 6.21% ± 0.80% for injection and rehydration variants, respectively; in control - 28.75% ± 2.08%. In the control NSPCs culture, there was a small number of astrocytes - 2.11% ± 0.43%. Inside the hydrogel, NSPCs differentiation in astrocytes was not observed. In vitro data showed that the hydrogel promotes the differentiation of NSPCs into neurons, and inhibits the differentiation into glial cells. And in vivo showed post-traumatic recovery of rat spinal cord tissue after injury followed by implantation of the hydrogel+NSPCs complex (approximately 7 months after SCI). The implant area was closely connected with the recipient tissue, and the recipient cells freely grew into the implant itself. Inside the implant, a formed dense neuronal network was visible. In summary, the results are primarily an experimental ground for further studies of implants based on pHPMA hydrogel with populated different origin SCs, and the data also indicate the feasibility and efficiency of using an integrated approach to reduce possible negative side effects and facilitate the rehabilitation process after a SCI.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; State Institution National Scientific Center the M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv 03680, Ukraine.
| | - Yuliia Nesterenko
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine
| | | | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; Bogomolets National Medical University, Kyiv 01601, Ukraine
| | - Yurii Yaminsky
- State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| | - Vitaliy Tsymbaliuk
- Bogomolets National Medical University, Kyiv 01601, Ukraine; State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| |
Collapse
|
9
|
Kim JT, Cho SM, Youn DH, Hong EP, Park CH, Lee Y, Jung H, Jeon JP. Therapeutic Effect of a Hydrogel-based Neural Stem Cell Delivery Sheet for Mild Traumatic Brain Injury. Acta Biomater 2023:S1742-7061(23)00351-3. [PMID: 37356785 DOI: 10.1016/j.actbio.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE There are no effective clinically applicable treatments for neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated the therapeutic effect of a new delivery method of mouse neural stem cell (mNSC) spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after mild TBI. METHODS mNSCs were isolated from the subventricular zone and subgranular zone by a hydrogel-based culture system. GFP-transduced mNSCs were generated into spheroids and wrapped into a sheet for transplantation. Male C57BL/6J mice were randomly divided into four groups: sham operation, TBI, TBI with mNSC spheroids, and TBI with mNSC spheroid sheet transplantation covering the damaged cortex. Histopathological and immunohistochemical features and cognitive function were evaluated 7, 14, and 28 days after transplantation following TBI. RESULTS Hydrogel-based culture systems and mNSC isolation were successfully established from the adult mice. Essential transcription factors for NSCs, such as SOX2, PAX6, Olig2, nestin, and doublecortin (DCX), were highly expressed in the mNSCs. A transplanted hydrogel-based mNSC spheroid sheet showed good engraftment and survival ability, differentiated into TUJ1-positive neurons, promoted angiogenesis, and reduced neuronal degeneration. Also, TBI mice treated with mNSC spheroid sheet transplantation exhibited a significantly increased preference for a new object, suggesting improved cognitive function compared to the mNSC spheroids or no treatment groups. CONCLUSION Transplantation with a hydrogel-based mNSC spheroid sheet showed engraftment, migration, and stability of delivered cells in a hostile microenvironment after TBI, resulting in improved cognitive function via reconstruction of the damaged cortex. STATEMENT OF SIGNIFICANCE This study presents the therapeutic effect of a new delivery method of mouse neural stem cells spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after traumatic brain injury. Collagen/fibrin hydrogel allowed long-term survival and migratory ability of NSCs spheroids. Furthermore, transplanted hydrogel-based mNSCs spheroids sheet showed good engraftment, migration, and stability of delivered cells in a hostile microenvironment, resulting in reconstruction of the damaged cortex and improved cognitive function after TBI. Therefore, we suggest that a hydrogel-based mNSCs spheroids sheet could help to improve cognitive impairment after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
10
|
Correia C, Reis RL, Pashkuleva I, Alves NM. Adhesive and self-healing materials for central nervous system repair. BIOMATERIALS ADVANCES 2023; 151:213439. [PMID: 37146528 DOI: 10.1016/j.bioadv.2023.213439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The central nervous system (CNS) has a limited ability to regenerate after a traumatic injury or a disease due to the low capacity of the neurons to re-grow and the inhibitory environment formed in situ. Current therapies include the use of drugs and rehabilitation, which do not fully restore the CNS functions and only delay the pathology progression. Tissue engineering offers a simple and versatile solution for this problem through the use of bioconstructs that promote nerve tissue repair by bridging cavity spaces. In this approach, the choice of biomaterial is crucial. Herein, we present recent advances in the design and development of adhesive and self-healing materials that support CNS healing. The adhesive materials have the advantage of promoting recovery without the use of needles or sewing, while the self-healing materials have the capacity to restore the tissue integrity without the need for external intervention. These materials can be used alone or in combination with cells and/or bioactive agents to control the inflammation, formation of free radicals, and proteases activity. We discuss the advantages and drawbacks of different systems. The remaining challenges that can bring these materials to clinical reality are also briefly presented.
Collapse
Affiliation(s)
- Cátia Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Mobarakeh ZT, Hasanzadeh E, Farzin A, Goodarzi A, Farahani MS, Shirian S, Mahmoodi N, Zamani N, Karimi A, Ai J. Enhanced sciatic nerve regeneration with fibrin scaffold containing human endometrial stem cells and insulin encapsulated chitosan particles: An in vivo study. Injury 2023:S0020-1383(23)00082-7. [PMID: 36894467 DOI: 10.1016/j.injury.2023.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Based on recent advances in tissue engineering and stem cell therapy in nervous system diseases treatments, this study aimed to investigate sciatic nerve regeneration using human endometrial stem cells (hEnSCs) encapsulated fibrin gel containing chitosan nanoparticle loaded by insulin (Ins-CPs). Stem cells and also Insulin (Ins), which is a strong signaling molecule in peripheral nerve regeneration, play an important role in neural tissue engineering. METHODS The fibrin hydrogel scaffold containing insulin loaded chitosan particles was synthesized and characterized. Release profiles of insulin from hydrogel was determined through UV-visible spectroscopy. Also, human endometrial stem cells encapsulated in hydrogel and its cell biocompatibility were assigned. Furthermore, the sciatic nerve crush injury was carried out and prepared fibrin gel was injected at the crush injury site by an 18-gage needle. Eight and twelve weeks later, the recovery of motor and sensory function and histopathological evaluation were assessed. RESULTS The in vitro experiments showed that the insulin can promote hEnSCs proliferation within a certain concentration range. Animals' treatment confirmed that developed fibrin gel containing Ins-CPs and hEnSCs significantly improves motor function and sensory recovery. Hematoxylin and Eosin (H&E) images provided from cross-sectional and, longitudinal-sections of the harvested regenerative nerve showed that regenerative nerve fibers had been formed and accompanied with new blood vessels in the fibrin/insulin/hEnSCs group. CONCLUSION Our results demonstrated that the prepared hydrogel scaffolds containing insulin nanoparticles and hEnSCs could be considered as a potential biomaterial aimed at regeneration of sciatic nerves.
Collapse
Affiliation(s)
- Zahra Taherian Mobarakeh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farzin
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Sagharjoghi Farahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Sharekord University, Shahrekord, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zamani
- Department of Obstetrics and Gynecology, Emam Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anita Karimi
- Chronic Respiratory Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
13
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Lainé A, Brot S, Gaillard A. Beneficial Effects of Hyaluronan-Based Hydrogel Implantation after Cortical Traumatic Injury. Cells 2022; 11:cells11233831. [PMID: 36497093 PMCID: PMC9735891 DOI: 10.3390/cells11233831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury (TBI) causes cell death mainly in the cerebral cortex. We have previously reported that transplantation of embryonic cortical neurons immediately after cortical injury allows the anatomical reconstruction of injured pathways and that a delay between cortical injury and cell transplantation can partially improve transplantation efficiency. Biomaterials supporting repair processes in combination with cell transplantation are in development. Hyaluronic acid (HA) hydrogel has attracted increasing interest in the field of tissue engineering due to its attractive biological properties. However, before combining the cell with the HA hydrogel for transplantation, it is important to know the effects of the implanted hydrogel alone. Here, we investigated the therapeutic effect of HA on host tissue after a cortical trauma. For this, we implanted HA hydrogel into the lesioned motor cortex of adult mice immediately or one week after a lesion. Our results show the vascularization of the implanted hydrogel. At one month after HA implantation, we observed a reduction in the glial scar around the lesion and the presence of the newly generated oligodendrocytes, immature and mature neurons within the hydrogel. Implanted hydrogel provides favorable environments for the survival and maturation of the newly generated neurons. Collectively, these results suggest a beneficial effect of biomaterial after a cortical traumatic injury.
Collapse
|
15
|
Idrisova KF, Zeinalova AK, Masgutova GA, Bogov AA, Allegrucci C, Syromiatnikova VY, Salafutdinov II, Garanina EE, Andreeva DI, Kadyrov AA, Rizvanov AA, Masgutov RF. Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury. Neural Regen Res 2022; 17:1240-1247. [PMID: 34782557 PMCID: PMC8643040 DOI: 10.4103/1673-5374.327329] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells. This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth, including neurotrophic factors and extracellular matrix proteins. Each growth factor plays its own specific angiotrophic or neurotrophic role. Currently, growth factors are widely studied as accelerators of nerve regeneration. Particularly noteworthy is synergy between various growth factors, that is essential for both angiogenesis and neurogenesis. Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects. At the same time, fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system. Taken together, their neurotrophic and angiogenic properties have positive effect on the regeneration process. In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves, thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Allegrucci
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | - Ruslan Faridovich Masgutov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
16
|
Yanev P, van Tilborg GA, van der Toorn A, Kong X, Stowe AM, Dijkhuizen RM. Prolonged release of VEGF and Ang1 from intralesionally implanted hydrogel promotes perilesional vascularization and functional recovery after experimental ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1033-1048. [PMID: 34986707 PMCID: PMC9125493 DOI: 10.1177/0271678x211069927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Injectable hydrogels can generate and support pro-repair environments in injured tissue. Here we used a slow-releasing drug carrying in situ-forming hydrogel to promote post-stroke recovery in a rat model. Release kinetics were measured in vitro and in vivo with MRI, using gadolinium-labeled albumin (Galbumin), which demonstrated prolonged release over multiple weeks. Subsequently, this hydrogel was used for long-term delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) (Gel VEGF + Ang1, n = 14), in a photothrombotically induced cortical stroke lesion in rats. Control stroke animals were intralesionally injected with saline (Saline, n = 10), non-loaded gel (Gel, n = 10), or a single bolus of VEGF + Ang1 in saline (Saline VEGF + Ang1, n = 10). MRI was executed to guide hydrogel injection. Functional recovery was assessed with sensorimotor function tests, while tissue status and vascularization were monitored by serial in vivo MRI. Significant recovery from sensorimotor deficits from day 28 onwards was only measured in the Gel VEGF + Ang1 group. This was accompanied by significantly increased vascularization in the perilesional cortex. Histology confirmed (re)vascularization and neuronal sparing in perilesional areas. In conclusion, intralesional injection of in situ-forming hydrogel loaded with pro-angiogenic factors can support prolonged brain tissue regeneration and promote functional recovery in the chronic phase post-stroke.
Collapse
Affiliation(s)
- Pavel Yanev
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda Af van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Xiangmei Kong
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
18
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
19
|
European Mistletoe ( Viscum album) Extract Is Cytotoxic to Canine High-Grade Astrocytoma Cells In Vitro and Has Additive Effects with Mebendazole. Vet Sci 2022; 9:vetsci9010031. [PMID: 35051115 PMCID: PMC8782024 DOI: 10.3390/vetsci9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Malignant gliomas are associated with extremely poor clinical outcomes in both humans and dogs, and novel therapies are needed. Glioma-bearing canine patients may serve as promising preclinical models for human therapies, including complementary medicine. The objective of this study was to evaluate the effects of mistletoe extract (Viscum album) alone and in combination with mebendazole in an in vitro model of canine high-grade astrocytoma using the cell line SDT-3G. SDT-3G cells were exposed to a range of concentrations of mistletoe extract alone to obtain an IC50. In separate experiments, cells were exposed to mebendazole at a previously determined IC50 (0.03 µM) alone or in conjunction with varying concentrations of mistletoe extract to determine the additive effects. The IC50 for mistletoe alone was 5.644 ± 0.09 SD μg/mL. The addition of mistletoe at 5 μg/mL to mebendazole at 0.03 µM led to increased cell death compared to what would be expected for each drug separately. The cytotoxicity of mistletoe in vitro and its additive effect with mebendazole support future expanded in vitro and in vivo studies in dogs and supply early evidence that this may be a useful adjunct therapeutic agent for use in glioma-bearing dogs. To the authors’ knowledge, this is the first published report of Viscum album extract in canine glioma.
Collapse
|
20
|
Xue Y, Yang F, Li J, Zuo X, Pan B, Li M, Quinto L, Mehta J, Stiefel L, Kimmey C, Eshed Y, Zussman E, Simon M, Rafailovich M. Synthesis of an Effective Flame-Retardant Hydrogel for Skin Protection Using Xanthan Gum and Resorcinol Bis(diphenyl phosphate)-Coated Starch. Biomacromolecules 2021; 22:4535-4543. [PMID: 34609837 DOI: 10.1021/acs.biomac.1c00804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the production of a flame-resistant xanthan gum (XG)-based hydrogel formulation, which could be directly applied onto the skin for protection against burning projectiles. The hydrogel cream represents an efficient use of XG and starch, both of which are biodegradable, reusable natural materials and are also GRAS-certified. The flame-retardant agent resorcinol bis(diphenyl phosphate) (RDP) was shown to be nontoxic to cells in vitro when adsorbed directly onto the starch delivery vehicle. Three hydrogel formulations were studied, the pure XG hydrogel, commercial FireIce hydrogel, and RDP-XG/RDP-starch hydrogel. After application of a direct flame for 150 s, the RDP-XG/RDP-starch hydrogel produced a thick char layer, which was easily removed, showing undamaged chicken skin and tissue underneath. In contrast, complete burning of skin and tissue was observed on untreated control samples and those covered with FireIce and pure XG hydrogels. The thermal protective performance test was also performed, where the heat transfer was measured as a function of time for all three hydrogels. The RDP-XG/RDP-starch hydrogel was able to prolong the protection time before obtaining a second-degree burn for 103 s, which is double that for FireIce and triple that for the pure XG hydrogel. The model proposed involves endothermic reactions, producing char and burning "cold", as opposed to simply relying on the adsorbed water in the hydrogel for burn protection.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,ThINC Facility at Stony Brook University, Stony Brook, New York 11794, United States
| | - Fan Yang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Juyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xianghao Zuo
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Bole Pan
- Columbia College, Columbia University, New York, New York 10027, United States
| | - Mingkang Li
- The School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lisa Quinto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jalaj Mehta
- Hauppauge High School, Hauppauge, New York 11788, United States
| | - Lauren Stiefel
- Yeshiva University High School for Girls, Holliswood, New York 11423, United States
| | - Conor Kimmey
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yuval Eshed
- Department of Mechanical Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Eyal Zussman
- Department of Mechanical Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcia Simon
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miriam Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
21
|
Fu X, Zhou G, Zhuang J, Xu C, Zhou H, Peng Y, Cao Y, Zeng H, Li J, Yan F, Wang L, Chen G. White Matter Injury After Intracerebral Hemorrhage. Front Neurol 2021; 12:562090. [PMID: 34177751 PMCID: PMC8222731 DOI: 10.3389/fneur.2021.562090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
23
|
Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021; 147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, Wales, UK.
| |
Collapse
|
24
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Maiolo L, Guarino V, Saracino E, Convertino A, Melucci M, Muccini M, Ambrosio L, Zamboni R, Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv Healthc Mater 2021; 10:e2001268. [PMID: 33103375 DOI: 10.1002/adhm.202001268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Research over the past four decades has highlighted the importance of certain brain cells, called glial cells, and has moved the neurocentric vision of structure, function, and pathology of the nervous system toward a more holistic perspective. In this view, the demand for technologies that are able to target and both selectively monitor and control glial cells is emerging as a challenge across neuroscience, engineering, chemistry, and material science. Frequently neglected or marginally considered as a barrier to be overcome between neural implants and neuronal targets, glial cells, and in particular astrocytes, are increasingly considered as active players in determining the outcomes of device implantation. This review provides a concise overview not only of the previously established but also of the emerging physiological and pathological roles of astrocytes. It also critically discusses the most recent advances in biomaterial interfaces and devices that interact with glial cells and thus have enabled scientists to reach unprecedented insights into the role of astroglial cells in brain function and dysfunction. This work proposes glial interfaces and glial engineering as multidisciplinary fields that have the potential to enable significant advancement of knowledge surrounding cognitive function and acute and chronic neuropathologies.
Collapse
Affiliation(s)
- Luca Maiolo
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Vincenzo Guarino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche Istituto per la Studio dei Materiali Nanostrutturati via P. Gobetti 101 Bologna 40129 Italy
| | - Luigi Ambrosio
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| |
Collapse
|
26
|
Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020; 6:6490-6509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating health condition that may lead to permanent disabilities and death. Understanding the pathophysiological perspectives of traumatic SCI is essential to define mechanisms that can help in designing recovery strategies. Since central nervous system tissues are notorious for their deficient ability to heal, efforts have been made to identify solutions to aid in restoration of the spinal cord tissues and thus its function. The two main approaches proposed to address this issue are neuroprotection and neuro-regeneration. Neuroprotection involves administering drugs to restore the injured microenvironment to normal after SCI. As for the neuro-regeneration approach, it focuses on axonal sprouting for functional recovery of the injured neural tissues and damaged axons. Despite the progress made in the field, neural regeneration treatment after SCI is still unsatisfactory owing to the disorganized way of axonal growth and extension. Nanomedicine and tissue engineering are considered promising therapeutic approaches that enhance axonal growth and directionality through implanting or injecting of the biomaterial scaffolds. One of these recent approaches is nanofibrous scaffolds that are used to provide physical support to maintain directional axonal growth in the lesion site. Furthermore, these preferable tissue-engineered substrates can afford axonal regeneration by mimicking the extracellular matrix of the neural tissues in terms of biological, chemical, and architectural characteristics. In this review, we discuss the regenerative approach using nanofibrous scaffolds with a focus on their fabrication methods and their properties that define their functionality performed to heal the neural tissue efficiently.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar El-Naggar
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Wessam A Abass
- Center of Sustainable Development, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim H Abdullah
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basem I Awad
- Mansoura Experimental Research Center (MERC), Department of Neurological Surgery, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
27
|
Song H, Wu D, Mazunin D, Liu SM, Sato Y, Broguiere N, Zenobi‐Wong M, Bode JW. Post‐Assembly Photomasking of Potassium Acyltrifluoroborates (KATs) for Two‐Photon 3D Patterning of PEG‐Hydrogels. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haewon Song
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Dino Wu
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Dimitry Mazunin
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Sizhou M. Liu
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules Nagoya University Nagoya Aichi 464-8601 Japan
| | - Nicolas Broguiere
- Tissue Engineering and Biofabrication Laboratory Department of Health Sciences & Technology, ETH Zürich CH-8093 Zürich Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering and Biofabrication Laboratory Department of Health Sciences & Technology, ETH Zürich CH-8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
- Institute of Transformative Bio-Molecules Nagoya University Nagoya Aichi 464-8601 Japan
| |
Collapse
|
28
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|
29
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|
30
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
31
|
Qiu S, Rao Z, He F, Wang T, Xu Y, Du Z, Yao Z, Lin T, Yan L, Quan D, Zhu Q, Liu X. Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med 2020; 14:931-943. [PMID: 32336045 DOI: 10.1002/term.3050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Nerve defects are challenging to address clinically without satisfactory treatments. As a reliable alternative to autografts, decellularized nerve matrix scaffolds (DNM-S) have been widely used in clinics for surgical nerve repair. However, DNM-S remain inferior to autografts in their ability to support nerve regeneration for long nerve defects. In this study, we systematically and clearly presented the nano-architecture of nerve-specific structures, including the endoneurium, basement membrane and perineurium/epineurium in DNM-S. Furthermore, we modified the DNM-S by supplementing decellularized nerve matrix hydrogel (DNMG) and glial-derived neurotrophic factor (GDNF) and then bridged a 50-mm sciatic nerve defect in a beagle model. Fifteen beagles were randomly divided into three groups (five per group): an autograft group, DNM-S group and GDNF-DNMG-modified DNM-S (DNM-S/GDNF@DNMG) group. DNM-S/GDNF@DNMG, as optimized nerve grafts, were used to bridge nerve defects in the same manner as in the DNM-S group. The repair outcome was evaluated by behavioural observations, electrophysiological assessments, regenerated nerve tissue histology and reinnervated target muscle examinations. Compared with the DNM-S group, limb function, electrophysiological responses and histological findings were improved in the DNM-S/GDNF@DNMG group 6 months after grafting, reflecting a narrower gap between the effects of DNM-S and autografts. In conclusion, modification of DNM-S with DNMG and GDNF enhanced nerve regeneration and functional recovery, indicating that noncellular modification of DNM-S is a promising method for treating long nerve defects.
Collapse
Affiliation(s)
- Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Fulin He
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Xu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyi Du
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhi Yao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Lin
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liwei Yan
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China.,GD Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.,PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China
| | - Xiaolin Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China
| |
Collapse
|
32
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
33
|
Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury. Methods Mol Biol 2020; 2036:205-219. [PMID: 31410799 DOI: 10.1007/978-1-4939-9670-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biomaterials-based hydrogels are attractive drug-eluting vehicles in the context of RNA therapeutics, such as those utilizing antisense oligonucleotide or RNA interference based drugs, as they can potentially reduce systemic toxicity and enhance in vivo efficacy by increasing in situ concentrations. Here we describe the preparation of antisense oligonucleotide-loaded fibrin hydrogels exploring their applications in the context of the nervous system utilizing an organotypic dorsal root ganglion explant in vitro system and an in vivo model of spinal cord injury.
Collapse
|
34
|
Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. Int J Biol Macromol 2020; 148:248-257. [DOI: 10.1016/j.ijbiomac.2020.01.147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/24/2023]
|
35
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
36
|
Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110354. [DOI: 10.1016/j.msec.2019.110354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 12/28/2022]
|
37
|
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3524-3539. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system is known as a crucial part of the body and derangement in this system can cause potentially lethal consequences or serious side effects. Unfortunately, the nervous system is unable to rehabilitate damaged regions following seriously debilitating disorders such as stroke, spinal cord injury and brain trauma which, in turn, lead to the reduction of quality of life for the patient. Major challenges in restoring the damaged nervous system are low regenerative capacity and the complexity of physiology system. Synthetic polymeric biomaterials with outstanding properties such as excellent biocompatibility and non-immunogenicity find a wide range of applications in biomedical fields especially neural implants and nerve tissue engineering scaffolds. Despite these advancements, tailoring polymeric biomaterials for design of a desired scaffold is fundamental issue that needs tremendous attention to promote the therapeutic benefits and minimize adverse effects. This review aims to (i) describe the nervous system and related injuries. Then, (ii) nerve tissue engineering strategies are discussed and (iii) physiochemical properties of synthetic polymeric biomaterials systematically highlighted. Moreover, tailoring synthetic polymeric biomaterials for nerve tissue engineering is reviewed.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science , Tehran , Iran
| | - Hanif Kazerooni
- Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute , Tehran , Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
38
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Madhusudanan P, Raju G, Shankarappa S. Hydrogel systems and their role in neural tissue engineering. J R Soc Interface 2020; 17:20190505. [PMID: 31910776 PMCID: PMC7014813 DOI: 10.1098/rsif.2019.0505] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Neural tissue engineering (NTE) is a rapidly progressing field that promises to address several serious neurological conditions that are currently difficult to treat. Selecting the right scaffolding material to promote neural and non-neural cell differentiation as well as axonal growth is essential for the overall design strategy for NTE. Among the varieties of scaffolds, hydrogels have proved to be excellent candidates for culturing and differentiating cells of neural origin. Considering the intrinsic resistance of the nervous system against regeneration, hydrogels have been abundantly used in applications that involve the release of neurotrophic factors, antagonists of neural growth inhibitors and other neural growth-promoting agents. Recent developments in the field include the utilization of encapsulating hydrogels in neural cell therapy for providing localized trophic support and shielding neural cells from immune activity. In this review, we categorize and discuss the various hydrogel-based strategies that have been examined for neural-specific applications and also highlight their strengths and weaknesses. We also discuss future prospects and challenges ahead for the utilization of hydrogels in NTE.
Collapse
Affiliation(s)
| | | | - Sahadev Shankarappa
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
40
|
Self-Healing Collagen-Based Hydrogel for Brain Injury Therapy. SELF-HEALING AND SELF-RECOVERING HYDROGELS 2020. [DOI: 10.1007/12_2019_57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Sällström N, Capel A, Lewis MP, Engstrøm DS, Martin S. 3D-printable zwitterionic nano-composite hydrogel system for biomedical applications. J Tissue Eng 2020; 11:2041731420967294. [PMID: 33194170 PMCID: PMC7604982 DOI: 10.1177/2041731420967294] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022] Open
Abstract
Herein, the cytotoxicity of a novel zwitterionic sulfobetaine hydrogel system with a nano-clay crosslinker has been investigated. We demonstrate that careful selection of the composition of the system (monomer to Laponite content) allows the material to be formed into controlled shapes using an extrusion based additive manufacturing technique with the ability to tune the mechanical properties of the product. Moreover, the printed structures can support their own weight without requiring curing during printing which enables the use of a printing-then-curing approach. Cell culture experiments were conducted to evaluate the neural cytotoxicity of the developed hydrogel system. Cytotoxicity evaluations were conducted on three different conditions; a control condition, an indirect condition (where the culture medium used had been in contact with the hydrogel to investigate leaching) and a direct condition (cells growing directly on the hydrogel). The result showed no significant difference in cell viability between the different conditions and cells were also found to be growing on the hydrogel surface with extended neurites present.
Collapse
Affiliation(s)
- Nathalie Sällström
- Wolfson School of Mechanical Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, UK
| | - Daniel S Engstrøm
- Wolfson School of Mechanical Electrical & Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Simon Martin
- Department of Materials, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
42
|
Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V. Current Limitations in the Treatment of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Future Perspective of Polymeric Carriers. Curr Med Chem 2019; 25:5755-5771. [PMID: 29473493 DOI: 10.2174/0929867325666180221125759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
Alzheimer's and Parkinson's diseases are the most common neurodegenerative diseases worldwide and their incidence is increasing due to the aging population. At the moment, the available therapies are not disease modifying and have several limitations, some of which are discussed in this review. One of the main limitations of these treatments is the low concentration that drugs reach in the central nervous system after systemic administration. Indeed, the presence of biological barriers, particularly the blood-brain barrier (BBB), hinders the effective drug delivery to the brain, reducing the potential benefit coming from the administration of the medication. In this review, the mechanisms of transport across the BBB and new methods to improve drug passage across the BBB are discussed. These methods include non-invasive solutions such as intranasal and intravitreal administration, and the use of nanotechnology solutions based on polymeric carriers when the drug is intravenously injected, orally taken for intestine adsorption or delivered through the dermal mucosa. Also, it provides an analysis of more invasive solutions that include intracranially injected hydrogels and implanted devices for local drug delivery. Efforts in finding new therapeutic drugs blocking neurodegenerative disease progression or reverting their course should be coupled with efforts addressed to efficient drug delivery systems. Hence, new pharmacology discoveries together with advancements in nanotechnologies and biomaterials for regenerative medicine are required to effectively counteract neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Nicola Origlia
- CNR, Neuroscience Institute Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Alice Accorroni
- CNR, Neuroscience Institute Via G. Moruzzi 1, 56124 Pisa, Italy.,Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
43
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
44
|
Salehi M, Bagher Z, Kamrava SK, Ehterami A, Alizadeh R, Farhadi M, Falah M, Komeili A. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. J Cell Physiol 2019; 234:15357-15368. [PMID: 30701533 DOI: 10.1002/jcp.28183] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Regeneration and functional recovery after peripheral nerve damage still remain a significant clinical problem. In this study, alginate/chitosan (alg/chit) hydrogel was used for the transplantation of olfactory ectomesenchymal stem cells (OE-MSCs) to promote peripheral nerve regeneration. The OE-MSCs were isolated from olfactory mucosa biopsies and evaluated by different cell surface markers and differentiation capacity. After creating sciatic nerve injury in a rat model, OE-MSCs were transplanted to the injured area with alg/chit hydrogel which was prepared and well-characterized. The prepared hydrogel had the porosity of 91.3 ± 1.27%, the swelling ratio of 379% after 240 min, weight loss percentages of 80 ± 5.56% after 14 days, and good blood compatibility. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 4',6-diamidino-2-phenylindole, and LIVE/DEAD staining were done to assay the behavior of OE-MSCs on alg/chit hydrogel and the results confirmed that the hydrogel can provide a suitable substrate for cell survival. For functional analysis, alg/chit hydrogel with and without OE- MSCs was injected into a 3-mm sciatic nerve defect of Wistar rats. The results of the sciatic functional index, hot plate latency, electrophysiological assessment, weight-loss percentage of wet gastrocnemius muscle, and histopathological examination using hematoxylin-eosin and Luxol fast blue staining showed that utilizing alg/chit hydrogel with OE-MSCs to the sciatic nerve defect enhance regeneration compared to the control group and hydrogel without cells.
Collapse
Affiliation(s)
- Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Komeili
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
46
|
Morad TI, Hendler RM, Weiss OE, Canji EA, Merfeld I, Dubinsky Z, Minnes R, Francis YI, Baranes D. Gliosis of astrocytes cultivated on coral skeleton is regulated by the matrix surface topography. Biomed Mater 2019; 14:045005. [DOI: 10.1088/1748-605x/ab0d69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Liu Y, Yu S, Gu X, Cao R, Cui S. Tissue-engineered nerve grafts using a scaffold-independent and injectable drug delivery system: a novel design with translational advantages. J Neural Eng 2019; 16:036030. [PMID: 30965290 DOI: 10.1088/1741-2552/ab17a0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Currently commercially available nerve conduits have demonstrated suboptimal clinical efficacy in repairing peripheral nerve defects. Although tissue-engineered nerve grafts (TENGs) with sustained release of neurotrophic factors (NTFs) are experimentally proved to be more effective than these blank conduits, there remains a lack of clinical translation. NTFs are typically immobilized onto scaffold materials of the conduit via adsorption, specific binding or other incorporation techniques. These scaffold-based delivery strategies increase complexity and cost of conduit fabrication and lack flexibility in choosing different drugs. Therefore, to facilitate clinical translation and commercialization, we construct a TENG using a scaffold-independent drug delivery system (DDS). APPROACH This study adopted a scaffold-independent DDS based on methoxy-poly (ethylene glycol)-b-poly(γ-ethyl-L-glutamate) (mPEG-PELG) thermosensitive hydrogels that undergo sol-to-gel transition at body temperature. In addition, TENG, a chitosan scaffold filled with nerve growth factor (NGF)-loaded mPEG-PELG that gel in the lumen upon injection during surgery and function as a drug-releasing conduit-filler, was designed. Subsequently, the efficacy of DDS and therapeutic effects of TENG were assessed. MAIN RESULTS The results demonstrated that NGF-loaded mPEG-PELG controllably and sustainably released bioactive NGF for 28 d. When bridging a 10 mm rat sciatic nerve gap, the morphological, electrophysiological, and functional analyses revealed that NGF-releasing TENG (Scaffold + NGF/mPEG-PELG) achieved superior regenerative outcomes compared to plain scaffolds and those combined with systemic delivery of NGF (daily intramuscular injection (IM)), and its effects were relatively similar to autografts. SIGNIFICANCE This study has proposed a TENG using thermosensitive hydrogels as an injectable implant to controllably release NGF, which has promising therapeutic potential and translatability. Such TENGs obviate the need for conduit modification, complex preloading or binding mediators, therefore they allow the ease of drug switching in clinical practice and greatly simplify the manufacturing process due to the independent preparation of drug delivery system.
Collapse
Affiliation(s)
- Yanxi Liu
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front Neurosci 2019; 12:953. [PMID: 30697140 PMCID: PMC6341218 DOI: 10.3389/fnins.2018.00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
| | - Michele Giugliano
- Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Nanoinnovation Lab, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Rossana Rauti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
49
|
Ai A, Behforouz A, Ehterami A, Sadeghvaziri N, Jalali S, Farzamfar S, Yousefbeigi A, Ai A, goodarzi A, Salehi M, Ai J. Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1534114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Armin Ai
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Aria Behforouz
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nooshin Sadeghvaziri
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Samar Jalali
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aylar Yousefbeigi
- Dental Student of Scientific Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ai
- School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash goodarzi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|