1
|
Naseri Alavi SA, Pourasghary S, Rezakhah A, Habibi MA, Kazempour A, Mahdkhah A, Kobets A. Assessment of the Sex Hormone Profile and Its Predictive Role in Consciousness Recovery Following Severe Traumatic Brain Injury. Life (Basel) 2025; 15:359. [PMID: 40141704 PMCID: PMC11943621 DOI: 10.3390/life15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) are conditions affecting brain function caused by blunt or penetrating forces to the head. Symptoms may include confusion, impaired consciousness, coma, seizures, and focal or sensory neurological motor injuries. OBJECTIVE This study evaluated sex hormone profiles and their predictive role in returning consciousness after severe traumatic brain injury. MATERIALS AND METHODS We included 120 patients with TBIs and collected comprehensive information about each patient, including the cause of the trauma, age, gender, Glasgow Coma Scale (GCS) score, Injury Severity Score (ISS), and neuroradiological imaging data. The ISS was used to assess the severity of the trauma. At the same time, the lowest GCS score was recorded either before sedation and intubation in the emergency room or by emergency medical services personnel. For female participants, samples were collected during the luteal phase of the menstrual cycle (days 18 to 23). RESULTS The mean age of male patients was 33.40 years, ranging from 23 to 45 years, while female patients had an average age of 34.25 years, ranging from 25 to 48 years. The primary cause of injury for both genders was motor vehicle accidents. In male patients, testosterone levels were significantly higher in those classified as responsive (RC) compared to those non-responsive (NRC), with levels of 2.56 ± 0.47 ng/mL versus 0.81 ± 0.41 ng/mL (p = 0.003). A cut-off point of 1.885 ng/mL for testosterone levels in males was established, achieving a sensitivity and specificity of 86.7% and 86.7%, respectively. In female patients, progesterone levels were elevated in those who regained consciousness, measuring 1.80 ± 0.31 ng/mL compared to 0.62 ± 0.31 ng/mL (p = 0.012). A cut-off point of 1.335 ng/mL for progesterone levels in females was determined, with a sensitivity and specificity of 93.3% and 86.7%, respectively. CONCLUSIONS We can conclude that sex hormone levels in the acute phase of TBIs can vary between males and females. Notably, serum testosterone levels in males and progesterone levels in females with TBIs are significant prognostic factors for assessing the likelihood of regaining consciousness after such injuries. These findings underscore the importance of considering sex hormone profiles in TBI recovery prognosis.
Collapse
Affiliation(s)
| | - Sajjad Pourasghary
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Amir Rezakhah
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1474833163, Iran;
| | - Aydin Kazempour
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Ata Mahdkhah
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran (A.R.); (A.K.); (A.M.)
| | - Andrew Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
2
|
Zhang S, Wang T, Feng Y, Li F, Qu A, Guan X, Wang H, Xu D. Pregnenolone 16α-carbonitrile negatively regulates hippocampal cytochrome P450 enzymes and ameliorates phenytoin-induced hippocampal neurotoxicity. J Pharm Anal 2023; 13:1510-1525. [PMID: 38223454 PMCID: PMC10785155 DOI: 10.1016/j.jpha.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
The central nervous system is susceptible to the modulation of various neurophysiological processes by the cytochrome P450 enzyme (CYP), which plays a crucial role in the metabolism of neurosteroids. The antiepileptic drug phenytoin (PHT) has been observed to induce neuronal side effects in patients, which could be attributed to its induction of CYP expression and testosterone (TES) metabolism in the hippocampus. While pregnane X receptor (PXR) is widely known for its regulatory function of CYPs in the liver, we have discovered that the treatment of mice with pregnenolone 16α-carbonitrile (PCN), a PXR agonist, has differential effects on CYP expression in the liver and hippocampus. Specifically, the PCN treatment resulted in the induction of cytochrome P450, family 3, subfamily a, polypeptide 11 (CYP3A11), and CYP2B10 expression in the liver, while suppressing their expression in the hippocampus. Functionally, the PCN treatment protected mice from PHT-induced hippocampal nerve injury, which was accompanied by the inhibition of TES metabolism in the hippocampus. Mechanistically, we found that the inhibition of hippocampal CYP expression and attenuation of PHT-induced neurotoxicity by PCN were glucocorticoid receptor dependent, rather than PXR independent, as demonstrated by genetic and pharmacological models. In conclusion, our study provides evidence that PCN can negatively regulate hippocampal CYP expression and attenuate PHT-induced hippocampal neurotoxicity independently of PXR. Our findings suggest that glucocorticoids may be a potential therapeutic strategy for managing the neuronal side effects of PHT.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100069, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Kretz PF, Wagner C, Mikhaleva A, Montillot C, Hugel S, Morella I, Kannan M, Fischer MC, Milhau M, Yalcin I, Brambilla R, Selloum M, Herault Y, Reymond A, Collins SC, Yalcin B. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein. Genome Biol 2023; 24:261. [PMID: 37968726 PMCID: PMC10647150 DOI: 10.1186/s13059-023-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.
Collapse
Affiliation(s)
- Perrine F Kretz
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Christel Wagner
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Sylvain Hugel
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Ilaria Morella
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Meghna Kannan
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Marie-Christine Fischer
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Maxence Milhau
- Inserm UMR1231, Université de Bourgogne, 21000, Dijon, France
| | - Ipek Yalcin
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Riccardo Brambilla
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Mohammed Selloum
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Yann Herault
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Stephan C Collins
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France.
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France.
| |
Collapse
|
4
|
Ávila-González D, Romero-Morales I, Caro L, Martínez-Juárez A, Young LJ, Camacho-Barrios F, Martínez-Alarcón O, Castro AE, Paredes RG, Díaz NF, Portillo W. Increased proliferation and neuronal fate in prairie vole brain progenitor cells cultured in vitro: effects by social exposure and sexual dimorphism. Biol Sex Differ 2023; 14:77. [PMID: 37919790 PMCID: PMC10623709 DOI: 10.1186/s13293-023-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Italo Romero-Morales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lizette Caro
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, USA
| | - Francisco Camacho-Barrios
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Analía E Castro
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
5
|
Gan X, Liu Y, Wang X. Targeting androgen receptor in glioblastoma. Crit Rev Oncol Hematol 2023; 191:104142. [PMID: 37742885 DOI: 10.1016/j.critrevonc.2023.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Glioblastomas are primary brain tumors that originate from glial stem cells or progenitor cells. There is a large difference in the incidence of glioblastoma between males and females. Studies revealed that the gender differences in the tumor may be attributable to the androgen receptor signaling axis. The incidence rate of glioblastoma in men is higher than that in women. Aberrant activation of the androgen receptor signaling pathway, or interactions between the androgen receptor signaling axis and other signaling axes promote the development of glioblastoma. Therefore, targeting the androgen receptor holds promise as a therapeutic approach for glioblastoma. This review investigates the dynamics of drug research into the treatment of glioblastoma by targeting the androgen receptor. The first finding in line with expectations is that androgen receptor antagonists, represented by enzalutamide, have been studied and shown to have anti-glioblastoma effects. In addition, it was found that the combination of 5-alpha reductase inhibitors and androgen receptor antagonists resulted in better therapeutic outcomes than each of them alone. Similar results were obtained with the combination of an epidermal growth factor receptor inhibitor and an androgen receptor antagonist. In addition, four small molecule compounds have been shown to exert significant anti-glioblastoma effects by directly or indirectly targeting the androgen receptor. Expectantly, one of these small molecules, seviteronel, progressed to the phase II clinical trial stage. These findings suggest that targeting the androgen receptor for glioblastoma may be a promising therapeutic option.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Yonghong Liu
- Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| |
Collapse
|
6
|
Jiménez Peinado P, Urbach A. From Youthful Vigor to Aging Decline: Unravelling the Intrinsic and Extrinsic Determinants of Hippocampal Neural Stem Cell Aging. Cells 2023; 12:2086. [PMID: 37626896 PMCID: PMC10453598 DOI: 10.3390/cells12162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.
Collapse
Affiliation(s)
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, 07747 Jena, Germany
- Aging Research Center Jena, Leibniz Institute on Aging, 07745 Jena, Germany
| |
Collapse
|
7
|
Alex AM, Ruvio T, Xia K, Jha SC, Girault JB, Wang L, Li G, Shen D, Cornea E, Styner MA, Gilmore JH, Knickmeyer RC. Influence of gonadal steroids on cortical surface area in infancy. Cereb Cortex 2022; 32:3206-3223. [PMID: 34952542 PMCID: PMC9340392 DOI: 10.1093/cercor/bhab410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Sex differences in the human brain emerge as early as mid-gestation and have been linked to sex hormones, particularly testosterone. Here, we analyzed the influence of markers of early sex hormone exposure (polygenic risk score (PRS) for testosterone, salivary testosterone, number of CAG repeats, digit ratios, and PRS for estradiol) on the growth pattern of cortical surface area in a longitudinal cohort of 722 infants. We found PRS for testosterone and right-hand digit ratio to be significantly associated with surface area, but only in females. PRS for testosterone at the most stringent P value threshold was positively associated with surface area development over time. Higher right-hand digit ratio, which is indicative of low prenatal testosterone levels, was negatively related to surface area in females. The current work suggests that variation in testosterone levels during both the prenatal and postnatal period may contribute to cortical surface area development in female infants.
Collapse
Affiliation(s)
- Ann Mary Alex
- Neuroengineering Division, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tom Ruvio
- Neuroengineering Division, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shaili C Jha
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
- Department of Artificial Intelligence, Korea University, Seoul 02841, Republic of Korea
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Knickmeyer
- Neuroengineering Division, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Zhao N, Wang F, Ahmed S, Liu K, Zhang C, Cathcart SJ, DiMaio DJ, Punsoni M, Guan B, Zhou P, Wang S, Batra SK, Bronich T, Hei TK, Lin C, Zhang C. Androgen Receptor, Although Not a Specific Marker For, Is a Novel Target to Suppress Glioma Stem Cells as a Therapeutic Strategy for Glioblastoma. Front Oncol 2021; 11:616625. [PMID: 34094902 PMCID: PMC8175980 DOI: 10.3389/fonc.2021.616625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Targeting androgen receptor (AR) has been shown to be promising in treating glioblastoma (GBM) in cell culture and flank implant models but the mechanisms remain unclear. AR antagonists including enzalutamide are available for treating prostate cancer patients in clinic and can pass the blood-brain barrier, thus are potentially good candidates for GBM treatment but have not been tested in GBM orthotopically. Our current studies confirmed that in patients, a majority of GBM tumors overexpress AR in both genders. Enzalutamide inhibited the proliferation of GBM cells both in vitro and in vivo. Although confocal microscopy demonstrated that AR is expressed but not specifically in glioma cancer stem cells (CSCs) (CD133+), enzalutamide treatment significantly decreased CSC population in cultured monolayer cells and spheroids, suppressed tumor sphere-forming capacity of GBM cells, and downregulated CSC gene expression at mRNA and protein levels in a dose- and time-dependent manner. We have, for the first time, demonstrated that enzalutamide treatment decreased the density of CSCs in vivo and improved survival in an orthotopic GBM mouse model. We conclude that AR antagonists potently target glioma CSCs in addition to suppressing the overall proliferation of GBM cells as a mechanism supporting their repurposing for clinical applications treating GBM.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fei Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shaheen Ahmed
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kan Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sahara J Cathcart
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael Punsoni
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bingjie Guan
- Department of Radiation Oncology, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuo Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tatiana Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tom K Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Zhang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
9
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
10
|
Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model. Neuroscience 2020; 454:15-39. [PMID: 31930958 PMCID: PMC7839971 DOI: 10.1016/j.neuroscience.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Human hippocampal progenitor cells (HPCs) and tissue express classical sex hormone receptors. Prolactin does not impact human HPCs maintained in a proliferative state. Prolactin increases neuronal differentiation of human HPCs only in the short term. Estradiol and testosterone both increase the cell density of proliferating HPCs. Estradiol and testosterone have no observed effect on differentiating HPCs.
Previous studies have indicated that sex hormones such as prolactin, estradiol and testosterone may play a role in the modulation of adult hippocampal neurogenesis (AHN) in rodents and non-human primates, but so far there has been no investigation of their impact on human hippocampal neurogenesis. Here, we quantify the expression levels of the relevant receptors in human post-mortem hippocampal tissue and a human hippocampal progenitor cell (HPC) line. Secondly, we investigate how these hormones modulate hippocampal neurogenesis using a human in vitro cellular model. Human female HPCs were cultured with biologically relevant concentrations of either prolactin, estradiol or testosterone. Bromodeoxyuridine (BrdU) incorporation, immunocytochemistry (ICC) and high-throughput analyses were used to quantify markers determining cell fate after HPCs were either maintained in a proliferative state or allowed to differentiate in the presence of these hormones. In proliferating cells, estrogen and testosterone increased cell density but had no clear effect on markers of proliferation or cell death to account for this. In differentiating cells, a 3-day treatment of prolactin elicited a transient effect, whereby it increased the proportion of microtubule-associated protein 2 (MAP2)-positive and Doublecortin (DCX)-positive cells, but this effect was not apparent after 7-days. At this timepoint we instead observe a decrease in proliferation. Overall, our study demonstrates relatively minor, and possibly short-term effects of sex hormones on hippocampal neurogenesis in human cells. Further work will be needed to understand if our results differ to previous animal research due to species-specific differences, or whether it relates to limitations of our in vitro model.
Collapse
|
11
|
Smeeth DM, Dima D, Jones L, Jones I, Craddock N, Owen MJ, Rietschel M, Maier W, Korszun A, Rice JP, Mors O, Preisig M, Uher R, Lewis CM, Thuret S, Powell TR. Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility. Psychoneuroendocrinology 2019; 106:284-292. [PMID: 31039525 PMCID: PMC6597945 DOI: 10.1016/j.psyneuen.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Altered reproductive hormone levels have been associated with the pathophysiology of depressive disorders and this risk may be imparted by their modulatory effect upon hippocampal structure and function. Currently it is unclear whether altered levels of reproductive hormones are causally associated with hippocampal volume reductions and the risk of depressive disorders. Here, we utilize genome-wide association study (GWAS) summary statistics from a GWAS focusing on reproductive hormones, consisting of 2913 individuals. Using this data, we generated polygenic risk scores (PRS) for estradiol, progesterone, prolactin and testosterone in the European RADIANT cohort consisting of 176 postpartum depression (PPD) cases (100% female, mean age: 41.6 years old), 2772 major depressive disorder (MDD) cases (68.6% female, mean age: 46.9 years old) and 1588 control participants (62.5% female, mean age: 42.4 years old), for which there was also a neuroimaging subset of 111 individuals (60.4% female, mean age: 50.0 years old). Only the best-fit PRS for estradiol showed a significant negative association with hippocampal volume, as well as many of its individual subfields; including the molecular layer and granule cell layer of the dentate gyrus, subiculum, CA1, CA2/3 and CA4 regions. Interestingly, several of these subfields are implicated in adult hippocampal neurogenesis. When we tested the same estradiol PRS for association with case-control status for PPD or MDD there was no significant relationship observed. Here, we provide evidence that genetic risk for higher plasma estradiol is negatively associated with hippocampal volume, but this does not translate into an increased risk of MDD or PPD. This work suggests that the relationship between reproductive hormones, the hippocampus, and depression is complex, and that there may not be a clear-cut pathway for etiology or risk moderation.
Collapse
Affiliation(s)
- Demelza M Smeeth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lisa Jones
- Institute of Health & Society, University of Worcester, Worcester, UK
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Nick Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Marcella Rietschel
- Department of Psychiatry, University of Bonn, Bonn, Germany; Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Ania Korszun
- Barts and The London Medical School, Queen Mary University of London, London, UK
| | - John P Rice
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Martin Preisig
- University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
12
|
Sex steroid hormone modulation of neural stem cells: a critical review. Biol Sex Differ 2019; 10:28. [PMID: 31146782 PMCID: PMC6543604 DOI: 10.1186/s13293-019-0242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
While numerous in vivo experiments have sought to explore the effects of sex chromosome composition and sex steroid hormones on cellular proliferation and differentiation within the mammalian brain, far fewer studies as reviewed here, have explored these factors using a direct in vitro approach. Generally speaking, in vivo studies provide the gold standard to demonstrate applicable findings in regards to the role hormones play in development. However, in the case of neural stem cell (NSC) biology, there remain many unknown factors that likely contribute to observations made within the developed brain, specifically in regions where there are abundant sex steroid hormone receptors. For these reasons, using a NSC in vitro model may provide a more controlled and refined system to explore the direct effects of sex and hormone response, limiting the vast array of other influences on NSCs occurring during development and within adult cellular niches. These specific cellular models may have the ability to greatly improve the mechanistic understanding of changes occurring within the developing brain during the hormonal organization process, in addition to other modifications that may contribute to neuro-psychiatric sex-biased diseases.
Collapse
|
13
|
Zhong YH, Wu HY, He RH, Zheng BE, Fan JZ. Sex Differences in Sex Hormone Profiles and Prediction of Consciousness Recovery After Severe Traumatic Brain Injury. Front Endocrinol (Lausanne) 2019; 10:261. [PMID: 31080439 PMCID: PMC6497747 DOI: 10.3389/fendo.2019.00261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: The clinical course of unconsciousness after traumatic brain injury (TBI) is commonly unpredictable and it remains a challenge with limited therapeutic options. The aim of this study was to evaluate the early changes in serum sex hormone levels after severe TBI (sTBI) and the use of these hormones to predict recovery from unconsciousness with regard to sex. Methods: We performed a retrospective study including patients with sTBI. A statistical of analysis of serum sex hormone levels and recovery of consciousness at 6 months was made to identify the effective prognostic indicators. Results: Fifty-five male patients gained recovery of consciousness, and 37 did not. Of the female patients, 22 out of 32 patients regained consciousness. Male patients (n = 92) with sTBI, compared with healthy subjects (n = 60), had significantly lower levels of follicular stimulating hormone (FSH), testosterone and progesterone and higher levels of prolactin. Female patients (n = 32) with sTBI, compared with controls (n = 60), had significantly lower levels of estradiol, progesterone, and testosterone and significantly higher levels of FSH and prolactin. Testosterone significantly predicted consciousness recovery in male patients. Normal or elevated testosterone levels in the serum were associated with a reduced risk of the unconscious state in male patients with sTBI. For women patients with sTBI, sex hormone levels did not contribute to the prediction of consciousness recovery. Conclusion: These findings indicate that TBI differentially affects the levels of sex-steroid hormones in men and women patients. Plasma levels of testosterone could be a good candidate blood marker to predict recovery from unconsciousness after sTBI for male patients.
Collapse
|
14
|
Neural-derived estradiol regulates brain plasticity. J Chem Neuroanat 2018; 89:53-59. [DOI: 10.1016/j.jchemneu.2017.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023]
|
15
|
Tosetti V, Sassone J, Ferri ALM, Taiana M, Bedini G, Nava S, Brenna G, Di Resta C, Pareyson D, Di Giulio AM, Carelli S, Parati EA, Gorio A. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis. PLoS One 2017; 12:e0180579. [PMID: 28704421 PMCID: PMC5507538 DOI: 10.1371/journal.pone.0180579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.
Collapse
Affiliation(s)
- Valentina Tosetti
- Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Jenny Sassone
- Vita-Salute University and San Raffaele Scientific Institute, Division of Neuroscience, Milan, Italy
| | - Anna L. M. Ferri
- Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Michela Taiana
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gloria Bedini
- Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Greta Brenna
- Biostatistician Service Clinical Research—Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Di Resta
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Pareyson
- Neurological Rare Diseases of Adulthood Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Maria Di Giulio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center Fondazione Romeo e Enrica Invernizzi, University of Milan, Milan, Italy
| | - Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Eugenio A. Parati
- Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Horizontal alignment of 5' -> 3' intergene distance segment tropy with respect to the gene as the conserved basis for DNA transcription. Future Sci OA 2017; 3:FSO160. [PMID: 28344824 PMCID: PMC5351715 DOI: 10.4155/fsoa-2016-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023] Open
Abstract
AIM To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. METHODS The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients (prpTQs) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient (esebssiwaagoTQ). RESULTS The final 5' -> 3' esebssiwaagoTQ classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene (esebssiwaagoTQ ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene (esebssiwaagoTQ < 0.25) (100% sensitivity; 100% specificity). CONCLUSION Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
Collapse
|
17
|
Abdyazdani N, Nourazarian A, Nozad Charoudeh H, Kazemi M, Feizy N, Akbarzade M, Mehdizadeh A, Rezaie J, Rahbarghazi R. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties. Neurosci Lett 2017; 636:205-212. [PMID: 27845244 DOI: 10.1016/j.neulet.2016.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
Abstract
A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis.
Collapse
Affiliation(s)
- Nima Abdyazdani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Masoumeh Kazemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Feizy
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzade
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Rep 2016; 6:36916. [PMID: 27845378 PMCID: PMC5109279 DOI: 10.1038/srep36916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
Collapse
|