1
|
Cararo-Lopes MM, Sadovnik R, Fu A, Suresh S, Gandu S, Firestein BL. Overexpression of α-Klotho isoforms promotes distinct Effects on BDNF-Induced Alterations in Dendritic Morphology. Mol Neurobiol 2024; 61:9155-9170. [PMID: 38589756 PMCID: PMC11496329 DOI: 10.1007/s12035-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
α-Klotho (α-Kl) is a modulator of aging, neuroprotection, and cognition. Transcription of the Klotho gene produces two splice variants-a membrane protein (mKl), which can be cleaved and released into the extracellular milieu, and a truncated secreted form (sKl). Despite mounting evidence supporting a role for α-Kl in brain function, the specific roles of α-Kl isoforms in neuronal development remain elusive. Here, we examined α-Kl protein levels in rat brain and observed region-specific expression in the adult that differs between isoforms. In the developing hippocampus, levels of isoforms decrease after the third postnatal week, marking the end of the critical period for development. We overexpressed α-Kl isoforms in primary cultures of rat cortical neurons and evaluated effects on brain-derived neurotrophic factor (BDNF) signaling. Overexpression of either isoform attenuated BDNF-mediated signaling and reduced intracellular Ca2+ levels, with mKl promoting a greater effect. mKl or sKl overexpression in hippocampal neurons resulted in a partially overlapping reduction in secondary dendrite branching. Moreover, mKl overexpression increased primary dendrite number. BDNF treatment of neurons overexpressing sKl resulted in a dendrite branching phenotype similar to control neurons. In neurons overexpressing mKl, BDNF treatment restored branching of secondary and higher order dendrites close, but not distal, to the soma. Taken together, the data presented support the idea that sKl and mKl play distinct roles in neuronal development, and specifically, in dendrite morphogenesis.
Collapse
Affiliation(s)
- Marina Minto Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ratchell Sadovnik
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Allen Fu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shradha Suresh
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
O'Neill KM, Anderson ED, Mukherjee S, Gandu S, McEwan SA, Omelchenko A, Rodriguez AR, Losert W, Meaney DF, Babadi B, Firestein BL. Time-dependent homeostatic mechanisms underlie brain-derived neurotrophic factor action on neural circuitry. Commun Biol 2023; 6:1278. [PMID: 38110605 PMCID: PMC10728104 DOI: 10.1038/s42003-023-05638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.
Collapse
Affiliation(s)
- Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers University, Piscataway, NJ, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD, USA
- Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Speidell A, Bin Abid N, Yano H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington's Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023; 11:2275. [PMID: 37626771 PMCID: PMC10452871 DOI: 10.3390/biomedicines11082275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a major neurotrophin whose loss or interruption is well established to have numerous intersections with the pathogenesis of progressive neurological disorders. There is perhaps no greater example of disease pathogenesis resulting from the dysregulation of BDNF signaling than Huntington's disease (HD)-an inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive impairments associated with basal ganglia dysfunction and the ultimate death of striatal projection neurons. Investigation of the collection of mechanisms leading to BDNF loss in HD highlights this neurotrophin's importance to neuronal viability and calls attention to opportunities for therapeutic interventions. Using electronic database searches of existing and forthcoming research, we constructed a literature review with the overarching goal of exploring the diverse set of molecular events that trigger BDNF dysregulation within HD. We highlighted research that investigated these major mechanisms in preclinical models of HD and connected these studies to those evaluating similar endpoints in human HD subjects. We also included a special focus on the growing body of literature detailing key transcriptomic and epigenetic alterations that affect BDNF abundance in HD. Finally, we offer critical evaluation of proposed neurotrophin-directed therapies and assessed clinical trials seeking to correct BDNF expression in HD individuals.
Collapse
Affiliation(s)
- Andrew Speidell
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Noman Bin Abid
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.S.); (N.B.A.)
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
5
|
Bales KL, Chacko AS, Nickerson JM, Boatright JH, Pardue MT. Treadmill exercise promotes retinal astrocyte plasticity and protects against retinal degeneration in a mouse model of light-induced retinal degeneration. J Neurosci Res 2022; 100:1695-1706. [PMID: 35582827 PMCID: PMC9746889 DOI: 10.1002/jnr.25063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Exercise is an effective neuroprotective intervention that preserves retinal function and structure in several animal models of retinal degeneration. However, the retinal cell types governing exercise-induced neuroprotection remain elusive. Previously, we found exercise-induced retinal neuroprotection was associated with increased levels of retinal brain-derived neurotrophic factor (BDNF) and required intact signal transduction with its high-affinity receptor, tropomyosin kinase B (TrkB). Brain studies have shown astrocytes express BDNF and TrkB and that decreased BDNF-TrkB signaling in astrocytes contributes to neurodegeneration. Additionally, exercise has been shown to alter astrocyte morphology. Using a light-induced retinal degeneration (LIRD) model, we investigated how exercise influences retinal astrocytes in adult male BALB/c mice. Treadmill exercise in dim control and LIRD groups had increased astrocyte density, GFAP labeling, branching, dendritic endpoints, and arborization. Meanwhile, inactive LIRD animals had significant reductions in all measured parameters. Additionally, exercised groups had increased astrocytic BDNF expression that was visualized using proximity ligase assay. Isolated retinal astrocytes from exercised LIRD groups had significantly increased expression of a specific isoform of TrkB associated with cell survival, TrkB.FL. Conversely, inactive LIRD isolated retinal astrocytes had significantly increased expression of TrkB.T1, which has been implicated in neuronal cell death. Our data indicate exercise not only alters retinal astrocyte morphology but also promotes specific BDNF-TrkB signaling associated with cell survival and protection during retinal degeneration. These findings provide novel insights into the effects of treadmill exercise on retinal astrocyte morphology and cellular expression, highlighting retinal astrocytes as a potential cell type involved in BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Katie L. Bales
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
| | - Alicia S. Chacko
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Jeffrey H. Boatright
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| | - Machelle T. Pardue
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Ophthalmology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Tong XK, Royea J, Hamel E. Simvastatin rescues memory and granule cell maturation through the Wnt/β-catenin signaling pathway in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:325. [PMID: 35397630 PMCID: PMC8994768 DOI: 10.1038/s41419-022-04784-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022]
Abstract
We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/β-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/β-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the β-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/β-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/β-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-β-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.
Collapse
Affiliation(s)
- Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.,Department of Biochemistry, Microbiology, Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, H3A 2B4, Montréal, QC, Canada.
| |
Collapse
|
7
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
8
|
Colliva A, Tongiorgi E. Distinct role of 5'UTR sequences in dendritic trafficking of BDNF mRNA: additional mechanisms for the BDNF splice variants spatial code. Mol Brain 2021; 14:10. [PMID: 33436052 PMCID: PMC7805101 DOI: 10.1186/s13041-020-00680-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
The neurotrophin Brain-derived neurotrophic factor (BDNF) is encoded by multiple bipartite transcripts. Each BDNF transcript is composed by one out of 11 alternatively spliced exons containing the 5'untranslated region (UTR), and one common exon encompassing the coding sequence (CDS) and the 3'UTR with two variants (short and long). In neurons, BDNF mRNA variants have a distinct subcellular distribution, constituting a "spatial code", with exon 1, 3, 5, 7 and 8 located in neuronal somata, exon 4 extending into proximal dendrites, and exon 2 and 6 reaching distal dendrites. We previously showed that the CDS encodes constitutive dendritic targeting signals (DTS) and that both the 3'UTR-short and the 3'UTR-long contain activity-dependent DTS. However, the role of individual 5'UTR exons in mRNA sorting remains unclear. Here, we tested the ability of each different BDNF 5'UTRs to affect the subcellular localization of the green fluorescent protein (GFP) reporter mRNA. We found that exon 2 splicing isoforms (2a, 2b, and 2c) induced a constitutive dendritic targeting of the GFP reporter mRNA towards distal dendritic segments. The other isoforms did not affect GFP-mRNA dendritic trafficking. Through a bioinformatic analysis, we identified five unique cis-elements in exon 2a, 2b, and 2c which might contribute to building a DTS. This study provides additional information on the mechanism regulating the cellular sorting of BDNF mRNA variants.
Collapse
Affiliation(s)
- Andrea Colliva
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| |
Collapse
|
9
|
Peregud D, Panchenko L, Gulyaeva N. Chronic morphine intoxication reduces binding of HuD to BDNF long 3'-UTR, while morphine withdrawal stimulates BDNF expression in the frontal cortex of male Wistar rats. Int J Neurosci 2020; 132:283-295. [PMID: 32783781 DOI: 10.1080/00207454.2020.1809395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) mediates opiate dependence phenomenon. In the brain of morphine dependent animals BDNF level is controlled transcriptionally, however, post-transcriptional mechanisms of BDNF regulation in this context remain unknown. Regulation of mRNA by binding of specific proteins to the 3'-untranslated region (3'-UTR) is one of such mechanisms. Among RNA-binding proteins neuronal Hu antigen D (HuD) is the best characterized positive regulator of BDNF, however its involvement in opiate dependence remains obscure. We suggested that HuD binding to the BDNF 3'-UTR may be linked to changes in BDNF expression induced by morphine. The aim of this study was to investigate potential association of HuD with BDNF 3'-UTR in relation to BDNF expression (Exon- and 3'-UTR-specific mRNA variants and protein level) in the frontal cortex and midbrain of male Wistar rats after chronic morphine intoxication and spontaneous withdrawal in dependent animals. RESULTS After chronic morphine intoxication but not during morphine withdrawal HuD binding to the long BDNF 3'-UTR in the frontal cortex decreased as compared with the corresponding control group, however after intoxication BDNF expression did not change. The level of BDNF Exon I as well as mature BDNF polypeptide increased in the frontal cortex upon morphine withdrawal, while no changes in HuD binding could be detected. CONCLUSION Thus, contrary to the assumption, HuD-BDNF 3'-UTR interaction and BDNF expression in the frontal cortex differentially change in a manner dependent on the context of morphine action.
Collapse
Affiliation(s)
- Danil Peregud
- Federal State Budgetary Institution "V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Panchenko
- Federal State Budgetary Institution "V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Natalia Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
10
|
Omelchenko A, Menon H, Donofrio SG, Kumar G, Chapman HM, Roshal J, Martinez-Montes ER, Wang TL, Spaller MR, Firestein BL. Interaction Between CRIPT and PSD-95 Is Required for Proper Dendritic Arborization in Hippocampal Neurons. Mol Neurobiol 2020; 57:2479-2493. [PMID: 32157575 PMCID: PMC7176523 DOI: 10.1007/s12035-020-01895-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
CRIPT, the cysteine-rich PDZ-binding protein, binds to the third PDZ domain of PSD-95 (postsynaptic density protein 95) family proteins and directly binds microtubules, linking PSD-95 family proteins to the neuronal cytoskeleton. Here, we show that overexpression of a full-length CRIPT leads to a modest decrease, and knockdown of CRIPT leads to an increase in dendritic branching in cultured rat hippocampal neurons. Overexpression of truncated CRIPT lacking the PDZ domain-binding motif, which does not bind to PSD-95, significantly decreases dendritic arborization. Conversely, overexpression of a full-length CRIPT significantly increases the number of immature and mature dendritic spines, and this effect is not observed when CRIPT∆PDZ is overexpressed. Competitive inhibition of CRIPT binding to the third PDZ domain of PSD-95 with PDZ3-binding peptides resulted in differential effects on dendritic arborization based on the origin of respective peptide sequence. These results highlight multifunctional roles of CRIPT during development and underscore the significance of the interaction between CRIPT and the third PDZ domain of PSD-95.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Harita Menon
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Sarah G Donofrio
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Gaurav Kumar
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Heidi M Chapman
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Joshua Roshal
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Eduardo R Martinez-Montes
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Tiffany L Wang
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Mark R Spaller
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
11
|
Yuan F, Hankey W, Wagner EJ, Li W, Wang Q. Alternative polyadenylation of mRNA and its role in cancer. Genes Dis 2019; 8:61-72. [PMID: 33569514 PMCID: PMC7859462 DOI: 10.1016/j.gendis.2019.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3′ end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3′UTR) and changes the length and content of these non-coding sequences. APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy.
Collapse
Affiliation(s)
- Fuwen Yuan
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
12
|
Juárez I, Morales-Medina JC, Flores-Tochihuitl J, Juárez GS, Flores G, Oseki HC. Tooth pulp injury induces sex-dependent neuronal reshaping in the ventral posterolateral nucleus of the rat thalamus. J Chem Neuroanat 2018; 96:16-21. [PMID: 30391473 DOI: 10.1016/j.jchemneu.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
Abstract
Orofacial injuries often result in persistent pain and are therefore considered a common health problem worldwide. Considerable evidence suggests that peripheral sensory nerve injury results in diverse plastic changes in the central nervous system (CNS). Tooth pulp is innervated by trigeminal afferents which extend to the trigeminal brainstem sensory nuclear complex and send input to higher level neurons in the CNS, including the ventral posterolateral nucleus of the thalamus (VPL). In the present study, we examined the long term effects of pulpal injury on neuronal arborization in the VPL using morphological analysis via Golgi-Cox staining. In addition, we examined these effects in both male and female rats due to the major prevalence of oral pain in women. Quantitative morphological analysis revealed that pulpal injury induced neuronal hypertrophy in VPL neurons of female rats. In clear contrast, pulpal injury increased arborization close to the soma and reduced arborization distal to the soma without modification of total dendritic length in male rats. As a result, we show, for the first time, sex-dependent morphological alterations in VPL neurons after orofacial peripheral injury. Since dental injuries are readily reproducible in rat dental molars and closely mimic the clinical setting in humans, this model represents a useful tool to further understand mechanisms of orofacial pain.
Collapse
Affiliation(s)
- Ismael Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, AP 62, 90000, Mexico
| | - Julia Flores-Tochihuitl
- Laboratorio Multidisciplinario, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gamaliel Santiago Juárez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Gonzalo Flores
- Laboratorio Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Hortencia Chávez Oseki
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| |
Collapse
|