1
|
Sanjida I, Alesa N, Chenyang L, Jiangyang Z, Bianca DM, Ana V, Shaun S, Avner M, Kirk M, Aimee C, Jie H, Ricardo MA, Jane M, Galit P. Volumetric and Diffusion Tensor Imaging Abnormalities Are Associated With Behavioral Changes Post-Concussion in a Youth Pig Model of Mild Traumatic Brain Injury. NMR IN BIOMEDICINE 2025; 38:e70074. [PMID: 40491182 DOI: 10.1002/nbm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/05/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
Mild traumatic brain injury (mTBI) caused by sports-related incidents in children and youth often leads to prolonged cognitive impairments but remains difficult to diagnose. In order to identify clinically relevant imaging and behavioral biomarkers associated concussion, a closed-head mTBI was induced in adolescent pigs. Twelve (n = 4 male and n = 8 female), 16-week old Yucatan pigs were tested; n = 6 received mTBI and n = 6 received a sham procedure. T1-weighted imaging was used to assess volumetric alterations in different regions of the brain and diffusion tensor imaging (DTI) to examine microstructural damage in white matter. The pigs were imaged at 1- and 3-month post-injury. Neuropsychological screening for executive function and anxiety were performed before and in the months after the injury. The volumetric analysis showed significant longitudinal changes in pigs with mTBI compared with sham, which may be attributed to swelling and neuroinflammation. Fractional anisotropy (FA) values derived from DTI images demonstrated a 21% increase in corpus callosum from 1 to 3 months in mTBI pigs, which is significantly higher than in sham pigs (4.8%). Additionally, comparisons of the left and right internal capsules revealed a decrease in FA in the right internal capsule for mTBI pigs, which may indicate demyelination. The neuroimaging results suggest that the injury had disrupted the maturation of white and gray matter in the developing brain. Behavioral testing showed that compare to sham pigs, mTBI pigs exhibited 23% increased activity in open field tests, 35% incraesed escape attempts, along with a 65% decrease in interaction with the novel object, suggesting possible memory impairments and cognitive deficits. The correlation analysis showed an associations between volumetric features and behavioral metrics. Furthermore, a machine learning model, which integrated FA, volumetric features and behavioral test metrics, achieved 67% accuracy, indicating its potential to differentiate the two groups. Thus, the imaging biomarkers were indicative of long-term behavioral impairments and could be crucial to the clinical management of concussion in youth.
Collapse
Affiliation(s)
- Islam Sanjida
- Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Netzley Alesa
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Li Chenyang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Zhang Jiangyang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Vazquez Ana
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Institute of Quantitative Health, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Subbaiah Shaun
- Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Meoded Avner
- Department of Radiology, Children's Mercy Hospital, Kansas City, Missouri, USA
- Department of Radiology, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Munoz Kirk
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, USA
| | - Colbath Aimee
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | - Huang Jie
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | | | - Manfredi Jane
- Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, Michigan, USA
| | - Pelled Galit
- Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Exline JE, Volyanyuk M, Lotesto KM, Segismundo AB, Byram SC, Foecking EM. Progressive hippocampal senescence and persistent memory deficits in traumatic brain Injury: A role of delayed testosterone. Brain Res 2025; 1857:149611. [PMID: 40174853 DOI: 10.1016/j.brainres.2025.149611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Cellular senescence is a stable, pro-inflammatory cell cycle arrest that has been recently implicated in the persistent memory deficits experienced with repetitive mild traumatic brain injury (rmTBI). Testosterone (T) treatment immediately following traumatic brain injury (TBI) mitigates cognitive deficits and cellular dysfunction known to induce cellular senescence. However, it has yet to be elucidated whether the therapeutic window for T treatment can be extended to a subacute time post-injury. This study examined the progression of hippocampal cellular senescence after rmTBI and evaluated the effects of subacute T on persistent memory deficits and cellular senescence post-injury. Changes in senescence-associated markers in the hippocampus were quantified at 5- and 9-weeks post-injury (WPI). An age-independent progressive increase in senescence-associated gene expression was observed for Cdkn2a, Cdkn1a, and p53 protein levels, along with a decrease in Sirt1 gene expression. Acute and persistent cognitive deficits were observed in the rmTBI rats as compared to sham rats. Serum T levels were significantly decreased at 4 WPI. Testosterone administration at 5 WPI ameliorated these persistent memory deficits. Moreover, subacute T treatment reduced rmTBI-induced levels of Cdkn2a 4 weeks post-treatment. This study indicates that rmTBI results in a progressive cellular senescence pathology that may contribute to the underlying mechanisms of persistent cognitive symptoms. Therapeutically targeting cellular senescence within this extended temporal window holds implications for patients dealing with the chronic cognitive ramifications of rmTBI.
Collapse
Affiliation(s)
- Jacob E Exline
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Michael Volyanyuk
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Krista M Lotesto
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago, Burn and Shock Trauma Research Institute, 2160 South 1st Avenue, Maywood, IL 60153, USA.
| | - Arthur B Segismundo
- Loyola University Chicago, Neuroscience Graduate Program, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Susanna C Byram
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago Medical Center, Stritch School of Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA; Edward Hines Jr. VA Hospital, Surgical Services, 5000 5th Avenue, Hines, IL 60141, USA.
| | - Eileen M Foecking
- Edward Hines Jr. VA Research and Development Service, 5000 5th Avenue, Hines, IL 60141, USA; Loyola University Chicago, Burn and Shock Trauma Research Institute, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago, Department of Molecular Pharmacology and Neuroscience, 2160 South 1st Avenue, Maywood, IL 60153, USA; Loyola University Chicago Medical Center, Department of Otolaryngology, Head and Neck Surgery, 2160 South 1st Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
3
|
Radabaugh HL, Harris NG, Wanner IB, Burns MP, McCabe JT, Korotcov AV, Dardzinski BJ, Zhou J, Koehler RC, Wan J, Allende Labastida J, Moghadas B, Bibic A, Febo M, Kobeissy FH, Zhu J, Rubenstein R, Hou J, Bose PK, Apiliogullari S, Beattie MS, Bresnahan JC, Rosi S, Huie JR, Ferguson AR, Wang KKW. Translational Outcomes Project in Neurotrauma (TOP-NT) Pre-Clinical Consortium Study: A Synopsis. J Neurotrauma 2025; 42:898-912. [PMID: 39841551 DOI: 10.1089/neu.2023.0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury (TBI) has long been a leading cause of death and disability, yet research has failed to successfully translate findings from the pre-clinical, animal setting into the clinic. One factor that contributes significantly to this struggle is the heterogeneity observed in the clinical setting where patients present with injuries of varying types, severities, and comorbidities. Modeling this highly varied population in the laboratory remains challenging. Given feasibility constraints, individual laboratories often focus on single injury types and are limited to an abridged set of outcome measures. Furthermore, laboratories tend to use different injury or outcome methodologies from one another, making it difficult to compare studies and identify which pre-clinical findings may be best suited for clinical translation. The NINDS-funded Translational Outcomes Project in Neurotrauma (TOP-NT) is a multi-site consortium designed to address the reproducibility, rigor, and transparency of pre-clinical development and validation of clinically relevant biomarkers for TBI. The current overview article provides a detailed description of the infrastructure and strategic approach undertaken by the consortium. We outline the TOP-NT strategy to address three goals: (1) selection and cross-center validation of biomarker tools, (2) development and population of a data infrastructure to allow for the sharing and reuse of pre-clinical, animal research following findable, accessible, interoperable, and reusable data guidelines, and (3) demonstration of feasibility, reproducibility, and transparency in conducting a multi-center, pre-clinical research trial for TBI biomarker development. The synthesized scientific analysis and results of the TOP-NT efforts will be the topic of future articles.
Collapse
Affiliation(s)
| | - Neil G Harris
- University of California Los Angeles, Los Angeles, California, USA
| | - Ina B Wanner
- University of California Los Angeles, Los Angeles, California, USA
| | | | - Joseph T McCabe
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | - Jinyuan Zhou
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jieru Wan
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Adnan Bibic
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Marcelo Febo
- University of Florida, Gainesville, Florida, USA
| | | | - Jiepei Zhu
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | | | - Jiamei Hou
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Prodip K Bose
- University of Florida and Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | | | - Michael S Beattie
- University of California San Francisco, San Francisco, California, USA
| | | | - Susanna Rosi
- University of California San Francisco, San Francisco, California, USA
- Altos Labs, Redwood City, California, USA
| | - J Russell Huie
- University of California San Francisco, San Francisco, California, USA
| | - Adam R Ferguson
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
4
|
Sugahara C, Kin K, Sasaki T, Sasada S, Kawauchi S, Yabuno S, Nagase T, Hirayama T, Masai K, Hosomoto K, Okazaki Y, Kawai K, Tanimoto S, Hirata Y, Miyake H, Naito H, Yasuhara T, Borlongan CV, Date I, Tanaka S. Repeated non-hemorrhagic and non-contusional mild traumatic brain injury in rats elicits behavioral impairment with microglial activation, astrogliosis, and tauopathy: Reproducible and quantitative model of chronic traumatic encephalopathy. Brain Res 2025; 1850:149412. [PMID: 39743034 DOI: 10.1016/j.brainres.2024.149412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Chronic traumatic encephalopathy (CTE) has attracted attention due to sports-related head trauma or repetitive mild traumatic brain injury (mTBI). However, the pathology of CTE remains underexplored. Reproducible and quantitative model of CTE has yet to be established. The aim of this study is to establish a highly reproducible model of CTE with behavioral and histological manifestations. First, the pathological symptoms of mTBI with no intracranial hemorrhage or contusion using the weight drop model of 52 g ball from a height of 30 cm was determined using hematoxylin and eosin staining. Adult rats that received single, double, or triple head impacts were compared with sham behaviorally and histologically. Results revealed that rats exposed to repetitive mTBI showed motor impairment with gradual recovery over time, which was prolonged as the number of head impact increased. Similarly, cognitive function was impaired by repetitive mTBI and the recovery depended on the number of head impact. Histologically, GFAP positive astrocytes increased with repetitive mTBI, although Iba-1 positive microglial aggregation was limited. At 4w, phosphorylated Tau significantly accumulated in the prefrontal cortex, corpus callosum, CA1, and dentate gyrus of rats that received triple mTBI, compared to sham or those exposed to single, or double mTBI. This repetitive mTBI rat model provides a highly reproducible and quantifiable brain and behavioral pathology reminiscent of CTE.
Collapse
Affiliation(s)
- Chiaki Sugahara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Kawai
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shun Tanimoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuichi Hirata
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hayato Miyake
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
5
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Smith AM, Grayson BE. A strike to the head: Parallels between the pediatric and adult human and the rodent in traumatic brain injury. J Neurosci Res 2024; 102:e25364. [PMID: 38953607 DOI: 10.1002/jnr.25364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Traumatic brain injury (TBI) is a condition that occurs commonly in children from infancy through adolescence and is a global health concern. Pediatric TBI presents with a bimodal age distribution, with very young children (0-4 years) and adolescents (15-19 years) more commonly injured. Because children's brains are still developing, there is increased vulnerability to the effects of head trauma, which results in entirely different patterns of injury than in adults. Pediatric TBI has a profound and lasting impact on a child's development and quality of life, resulting in long-lasting consequences to physical, cognitive, and emotional development. Chronic issues like learning disabilities, behavioral problems, and emotional disturbances can develop. Early intervention and ongoing support are critical for minimizing these long-term deficits. Many animal models of TBI exist, and each varies significantly, displaying different characteristics of clinical TBI. The neurodevelopment differs in the rodent from the human in timing and effect, so TBI outcomes in the juvenile rodent can thus vary from the human child. The current review compares findings from preclinical TBI work in juvenile and adult rodents to clinical TBI research in pediatric and adult humans. We focus on the four brain regions most affected by TBI: the prefrontal cortex, corpus callosum, hippocampus, and hypothalamus. Each has its unique developmental projections and thus is impacted by TBI differently. This review aims to compare the healthy neurodevelopment of these four brain regions in humans to the developmental processes in rodents.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
7
|
Huang Z, Feng Y, Zhang Y, Ma X, Zong X, Jordan JD, Zhang Q. Enhancing axonal myelination: Clemastine attenuates cognitive impairment in a rat model of diffuse traumatic brain injury. Transl Res 2024; 268:40-50. [PMID: 38246342 PMCID: PMC11081842 DOI: 10.1016/j.trsl.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/10/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yulan Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
8
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
9
|
Liu Y, Fan Z, Wang J, Dong X, Ouyang W. Modified mouse model of repeated mild traumatic brain injury through a thinned-skull window and fluid percussion. J Neurosci Res 2023; 101:1633-1650. [PMID: 37382058 DOI: 10.1002/jnr.25227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Mild traumatic brain injury (mTBI) is a clinically highly heterogeneous neurological disorder, none of the existing animal models can replicate the entire sequelae. This study aimed to develop a modified closed head injury (CHI) model of repeated mTBI (rmTBI) for investigating Ca2+ fluctuations of the affected neural network, the alternations of electrophysiology, and behavioral dysfunctions. The transcranial Ca2+ study protocol includes AAV-GCaMP6s infection in the right motor cortex, thinned-skull preparation, and two-photon laser scanning microscopy (TPLSM) imaging. The CHI rmTBI model is fabricated using the thinned-skull site and applying 2.0 atm fluid percussion with 48-h interval. The neurological dysfunction, minor motor performance, evident mood, spatial working, and reference deficits we found in this study mimic the clinically relevant syndromes after mTBI. Besides, our study revealed that there was a trend of transition from Ca2+ singlepeak to multipeak and plateau, and the total Ca2+ activities of multipeaks and plateaus (p < .001 vs. pre-rmTBI value) were significantly increased in ipsilateral layer 2/3 motor neurons after rm TBI. In parallel, there is a low-frequency power shift from delta to theta band (p < .01 vs. control) in the ipsilateral layer 2/3 of motor cortex of the rmTBI mice, and the overall firing rates significantly increased (p < .01 vs. control). Moreover, rmTBI causes slight cortical and hippocampal neuron damage and possibly induces neurogenesis in the dentate gyrus (DG). The alternations of Ca2+ and electrophysiological characteristics in layer 2/3 neuronal network, histopathological changes, and possible neurogenesis may play concertedly and partially contribute to the functional outcome post-rmTBI.
Collapse
Affiliation(s)
- Yuncheng Liu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhiheng Fan
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jihui Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Xuefen Dong
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
10
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
11
|
Spencer HF, Boese M, Berman RY, Radford KD, Choi KH. Effects of a Subanesthetic Ketamine Infusion on Inflammatory and Behavioral Outcomes after Closed Head Injury in Rats. Bioengineering (Basel) 2023; 10:941. [PMID: 37627826 PMCID: PMC10452037 DOI: 10.3390/bioengineering10080941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people annually, and most cases are classified as mild TBI (mTBI). Ketamine is a potent trauma analgesic and anesthetic with anti-inflammatory properties. However, ketamine's effects on post-mTBI outcomes are not well characterized. For the current study, we used the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), which replicates the biomechanics of a closed-head impact with resulting free head movement. Adult male Sprague-Dawley rats sustained a single-session, repeated-impacts CHIMERA injury. An hour after the injury, rats received an intravenous ketamine infusion (0, 10, or 20 mg/kg, 2 h period), during which locomotor activity was monitored. Catheter blood samples were collected at 1, 3, 5, and 24 h after the CHIMERA injury for plasma cytokine assays. Behavioral assays were conducted on post-injury days (PID) 1 to 4 and included rotarod, locomotor activity, acoustic startle reflex (ASR), and pre-pulse inhibition (PPI). Brain tissue samples were collected at PID 4 and processed for GFAP (astrocytes), Iba-1 (microglia), and silver staining (axonal injury). Ketamine dose-dependently altered locomotor activity during the infusion and reduced KC/GRO, TNF-α, and IL-1β levels after the infusion. CHIMERA produced a delayed deficit in rotarod performance (PID 3) and significant axonal damage in the optic tract (PID 4), without significant changes in other behavioral or histological measures. Notably, subanesthetic doses of intravenous ketamine infusion after mTBI did not produce adverse effects on behavioral outcomes in PID 1-4 or neuroinflammation on PID 4. A further study is warranted to thoroughly investigate beneficial effects of IV ketamine on mTBI given multi-modal properties of ketamine in traumatic injury and stress.
Collapse
Affiliation(s)
- Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
| | - Kwang H. Choi
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA;
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; (M.B.); (K.D.R.)
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Corrigan F, Wee IC, Collins-Praino LE. Chronic motor performance following different traumatic brain injury severity-A systematic review. Front Neurol 2023; 14:1180353. [PMID: 37288069 PMCID: PMC10243142 DOI: 10.3389/fneur.2023.1180353] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.
Collapse
Affiliation(s)
- Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey E. Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
A surgical modification in the technique of rat pinealectomy. Anat Sci Int 2023; 98:164-175. [PMID: 36029435 DOI: 10.1007/s12565-022-00683-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several experimental intents require pineal gland removal. The main challenge of the pinealectomy surgical procedure is the hemorrhage due to the transverse sinus torn. The study aimed to modify the rat pinealectomy surgical procedure to reduce the risk of bleeding and the mortality rate. METHODS Adult male rats experienced pinealectomy surgery. A mini-drill was used to remove a small skull area in the junction of the lambda and sagittal sutures. The pineal gland was removed using a curved-head hook. Animals experienced intensive post-surgical care. Locomotion, cerebellar motor function, working memory, and anxiety were evaluated 2 weeks after pinealectomy by the open field, rotarod, Y maze, and the elevated plus maze, respectively. RESULTS Surgical modification reduced the bleeding risk and animal mortality rate. No significant alteration was found in locomotion and working memory. However, the pinealectomy was anxiogenic and decreased entry to the open arm. The cerebellar motor performance did not change in the rotarod test. Hematoxylin-Eosin staining of removed tissue confirmed the histology of the pineal gland. CONCLUSION Advantages of this technique were removing a small skull area, modifying the hook insertion point to prevent damaging the brain veins, reducing the bleeding risk and the mortality rate. Surgery modification was associated with a decreased final number of animals used. Regardless of the melatonin shortage, pinealectomy affects different organs, which should be considered in the research study design.
Collapse
|
14
|
Velayudhan PS, Mak JJ, Gazdzinski LM, Wheeler AL. Persistent white matter vulnerability in a mouse model of mild traumatic brain injury. BMC Neurosci 2022; 23:46. [PMID: 35850624 PMCID: PMC9290236 DOI: 10.1186/s12868-022-00730-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Following one mild traumatic brain injury (mTBI), there is a window of vulnerability during which subsequent mTBIs can cause substantially exacerbated impairments. Currently, there are no known methods to monitor, shorten or mitigate this window. Methods To characterize a preclinical model of this window of vulnerability, we first gave male and female mice one or two high-depth or low-depth mTBIs separated by 1, 7, or 14 days. We assessed brain white matter integrity using silver staining within the corpus callosum and optic tracts, as well as behavioural performance on the Y-maze test and visual cliff test. Results The injuries resulted in windows of white matter vulnerability longer than 2 weeks but produced no behavioural impairments. Notably, this window duration is substantially longer than those reported in any previous preclinical vulnerability study, despite our injury model likely being milder than the ones used in those studies. We also found that sex and impact depth differentially influenced white matter integrity in different white matter regions. Conclusions These results suggest that the experimental window of vulnerability following mTBI may be longer than previously reported. Additionally, this work highlights the value of including white matter damage, sex, and replicable injury models for the study of post-mTBI vulnerability and establishes important groundwork for the investigation of potential vulnerability mechanisms, biomarkers, and therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00730-y.
Collapse
Affiliation(s)
- Prashanth S Velayudhan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jordan J Mak
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lisa M Gazdzinski
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Anne L Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Langlois LD, Selvaraj P, Simmons SC, Gouty S, Zhang Y, Nugent FS. Repetitive mild traumatic brain injury induces persistent alterations in spontaneous synaptic activity of hippocampal CA1 pyramidal neurons. IBRO Neurosci Rep 2022; 12:157-162. [PMID: 35746968 PMCID: PMC9210462 DOI: 10.1016/j.ibneur.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is the most common form of TBI which frequently results in persistent cognitive impairments and memory deficits in affected individuals [1]. Although most studies have investigated the role of hippocampal synaptic dysfunction in earlier time points following a single injury, the long-lasting effects of mTBI on hippocampal synaptic transmission following multiple brain concussions have not been well-elucidated. Using a repetitive closed head injury (3XCHI) mouse model of mTBI, we examined the alteration of spontaneous synaptic transmission onto hippocampal CA1 pyramidal neurons by recording spontaneous excitatory AMPA receptor (AMPAR)- and inhibitory GABAAR-mediated postsynaptic currents (sEPSCs and sIPSCs, respectively) in adult male mice 2-weeks following the injury. We found that mTBI potentiated postsynaptic excitatory AMPAR synaptic function while depressed postsynaptic inhibitory GABAAR synaptic function in CA1 pyramidal neurons. Additionally, mTBI slowed the decay time of AMPAR currents while shortened the decay time of GABAAR currents suggesting changes in AMPAR and GABAAR subunit composition by mTBI. On the other hand, mTBI reduced the frequency of sEPSCs while enhanced the frequency of sIPSCs resulting in a lower ratio of sEPSC/sIPSC frequency in CA1 pyramidal neurons of mTBI animals compared to sham animals. Altogether, our results suggest that mTBI induces persistent postsynaptic modifications in AMPAR and GABAAR function and their synaptic composition in CA1 neurons while triggering a compensatory shift in excitation/inhibition (E/I) balance of presynaptic drives towards more inhibitory synaptic drive to hippocampal CA1 cells. The persistent mTBI-induced CA1 synaptic dysfunction and E/I imbalance could contribute to deficits in hippocampal plasticity that underlies long-term hippocampal-dependent learning and memory deficits in mTBI patients long after the initial injury.
Collapse
Affiliation(s)
- Ludovic D. Langlois
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA
| | - Prabhuanand Selvaraj
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Anatomy, Physiology and Genetics, Bethesda, MD 20814, USA
| | - Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA
| | - Yumin Zhang
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Anatomy, Physiology and Genetics, Bethesda, MD 20814, USA
- Corresponding authors.
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Edward Hebert School of Medicine, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD 20814, USA
- Corresponding authors.
| |
Collapse
|