1
|
Lee N, Zhang T, Joe H, Park S. Network Pharmacology-Guided Evaluation of Ginger and Cornelian Cherry Extracts Against Depression and Metabolic Dysfunction in Estrogen-Deficient Chronic Stressed Rats. Int J Mol Sci 2025; 26:4829. [PMID: 40429970 PMCID: PMC12112620 DOI: 10.3390/ijms26104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated the therapeutic effects of water extracts from Zingiber officinale Roscoe (ginger) and Cornus officinalis Siebold and Zucc. fruits (COF) water extracts on depression-like behavior and metabolic dysfunction in estrogen-deficient rats exposed to chronic mild stress (CMS). Network pharmacology analysis identified three bioactive compounds in ginger and four in COF, with 11 overlapping targets linked to both depression and metabolic pathways, primarily involving NR3C1, HTR2A, MAOA, and SLC6A4 genes associated with hypothalamic-pituitary-adrenal (HPA) axis regulation and neurotransmitter modulation. Ovariectomized rats received 200 mg/kg/day of ginger or COF extracts for 7 weeks, with a 4-week CMS protocol initiated at week 3. Both extracts significantly improved depression-like behaviors, memory performance, glucose tolerance, lipid profiles, and bone mineral density, normalized HPA axis markers (corticosterone and ACTH), and increased hippocampal serotonin and dopamine levels. Ginger demonstrated greater efficacy in improving memory and metabolic outcomes compared to COF. Molecular docking further validated these findings, revealing strong and stable interactions between key phytochemicals-such as hydroxygenkwanin and telocinobufagin-and target proteins MAOA, HTR2A, and NR3C1, supporting their mechanistic role in stress and mood regulation. These results support supplementing ginger and COF extracts as promising botanical interventions for estrogen-deficiency-related mood and metabolic disorders, with potential clinical application at a human-equivalent dose of 1.5 g/day.
Collapse
Affiliation(s)
- Nara Lee
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea;
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Hanbin Joe
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea;
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| |
Collapse
|
2
|
Toader C, Serban M, Munteanu O, Covache-Busuioc RA, Enyedi M, Ciurea AV, Tataru CP. From Synaptic Plasticity to Neurodegeneration: BDNF as a Transformative Target in Medicine. Int J Mol Sci 2025; 26:4271. [PMID: 40362507 PMCID: PMC12071950 DOI: 10.3390/ijms26094271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The brain-derived neurotrophic factor (BDNF) has become one of the cornerstones of neuropathology, influencing synaptic plasticity, cognitive resilience, and neuronal survival. Apart from its molecular biology, BDNF is a powerful target for transformative benefit in precision medicine, leading to innovative therapeutic approaches for neurodegenerative and psychiatric diseases like Alzheimer's disease (AD), Parkinson's disease (PD), major depressive disorder (MDD), and post-traumatic stress disorder (PTSD). Nevertheless, clinical applicability is obstructed by hurdles in delivery, patient-specific diversity, and pleiotropic signaling. Here, we summarize findings in BDNF research, including its regulatory pathways and diagnostic/prognostic biomarkers and integrative therapeutic approaches. We describe innovative delivery systems, such as lipid nanoparticle-based mRNA therapies and CRISPR-dCas9-based epigenetic editing that bypass obstacles such as BBB (blood-brain barrier) and enzymatic degradation. The recent implementation of multiplex panels combining BDNF biodynamic indicators with tau and amyloid-β signaling markers showcases novel levels of specificity for both early detection and potential therapeutic monitoring. Humanized preclinical models like iPSC-derived neurons and organoids point to the key role of BDNF in neurodeveloping and neurodegenerative processes, paralleling advances in bridging preclinical observation and clinical environments. Moreover, novel therapeutic tools delivering TrkB activators or the implementation of AI-based dynamic care platforms enable tailored and scalable treatments. This review also aims to extend a framework used in the understanding of BDNF's relevance to traditional neurodegenerative models by situating more recent work detailing BDNF's actions in ischemic tissues and the gut-brain axis in the context of systemic health. Finally, we outline a roadmap for the incorporation of BDNF-centered therapies into worldwide healthcare, highlighting ethical issues, equity, and interdisciplinary decomposition. The therapeutic potential of BDNF heralds a new era in neuroscience and medicine, revolutionizing brain health and paving the way for the advancement of precision medicine.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Puls Med Association, 051885 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
3
|
Lee S, Hahn C, Seong E, Choi HS. Reactive EEG Biomarkers for Diagnosis and Prognosis of Alzheimer's Disease and Mild Cognitive Impairment. Biosens Bioelectron 2025; 273:117181. [PMID: 39832406 PMCID: PMC11868995 DOI: 10.1016/j.bios.2025.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition characterized by progressive cognitive decline with currently no effective treatment available. One of the most critical areas in AD research is the identification of reliable biomarkers, which are essential for accurate diagnosis, prognostic assessment, and the development of targeted therapies. In this study, we introduce two novel reactive EEG (rEEG) biomarkers aimed at enhancing the diagnosis of AD and mild cognitive impairment (MCI). These biomarkers, previously unexplored in the literature, offer new insights into differentiating between various cognitive states. The first biomarker demonstrates a significant ability to distinguish between AD patients and normal controls (NC), while also effectively distinguishing MCI patients from NC. The second biomarker is designed to identify a subset of AD patients exhibiting hyperconductivity or hyperactivity, characterized by distinctive neural electrical patterns. A cohort of 90 elderly participants (mean age 76.63 ± 6.08 years) was recruited, including 30 AD patients, 30 individuals with MCI, and 30 NC subjects. Psychiatric diagnoses of participants were made by qualified professionals at Daejeon St. Mary's Hospital, The Catholic University of Korea, utilizing comprehensive neuropsychological assessments. Notably, the rEEG biomarkers achieved accuracies of 95%, 95%, and 98% in distinguishing between AD and NC, AD and MCI, and MCI and NC groups, respectively. These results underscore the potential of rEEG as a highly accurate and reliable diagnostic tool for cognitive impairments, including AD and MCI.
Collapse
Affiliation(s)
- Soonhyouk Lee
- Center for Integrated Smart Sensors, N1, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; Megnosis Co., Ltd., 11-3, Techno 1-ro, Yuseong-gu, Daejeon, South Korea.
| | - Changtae Hahn
- Department of Psychology, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, South Korea.
| | - Eunyoung Seong
- Megnosis Co., Ltd., 11-3, Techno 1-ro, Yuseong-gu, Daejeon, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
4
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
5
|
Wei L, Wu Z, Xia Q, Baeken C, Wu GR. Prefrontal-hippocampal pathways underlying adolescent resilience. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02704-x. [PMID: 40153037 DOI: 10.1007/s00787-025-02704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025]
Abstract
The prefrontal-hippocampal pathways are integral to memory suppression, facilitating positive and adaptative responses following traumatic events. However, the role of these circuits in promoting resilience among adolescents remains largely unknown. This study used structural similarity analysis of MRI-based gray matter volume (GMV) to map connectivity networks centered on the hippocampus, investigating whether structural similarity between prefrontal regions and hippocampus were related to resilience in a cohort of 145 adolescents. Additionally, spatial correlation analyses of resilience-related structural similarity network and neurotransmitter distribution maps were conducted to identify molecular adaptations within prefrontal-hippocampal circuits associated with resilience. The results showed that higher resilience levels were correlated with stronger structural similarity between the prefrontal areas (i.e., middle frontal gyrus and orbitofrontal cortex) and hippocampus. Furthermore, the serotonergic neurotransmitter system, which modulates neural oscillations in prefrontal-hippocampal pathways, appears to be associated with resilience. The current findings suggest that structural and molecular adaptations within prefrontal-hippocampal circuits, which are implicated in the suppression of intrusive, unwanted memories, may foster resilience in young people. These insights advance our knowledge of the neurobiological markers of resilience, paving the way for more targeted and effective therapeutic interventions to bolster resilience and mitigate adverse outcomes in developmental populations.
Collapse
Affiliation(s)
- Luqing Wei
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Zhengdong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qi Xia
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chris Baeken
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, UZ Gent/Universiteit Gent, Ghent, Belgium
- Department of Psychiatry, UZ Brussel/ Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
- Ghent Experimental Psychiatry Lab, Department of Head and Skin, UZ Gent/Universiteit Gent, Ghent, Belgium.
| |
Collapse
|
6
|
Kim JH, Choi DE, Shin HS. The lateralized LC-NAergic system distinguishes vicarious versus direct fear in mice. Nat Commun 2025; 16:2364. [PMID: 40064917 PMCID: PMC11894102 DOI: 10.1038/s41467-025-57701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Fear can be induced either directly through self-experience of aversive events or vicariously by observing conspecifics experiencing such events. The locus coeruleus-norepinephrine (LC-NA) system is crucial in fear responses and cognitive processes. We investigated whether the LC-NA system differentially processes these two types of fear, direct and vicarious in male mice. The results highlighted that the right hemisphere LC→anterior cingulate cortex pathway is uniquely crucial for vicarious fear, while the two inputs to the LC-from the bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA)-differentially contribute to fear processing. The BNST plays a more targeted role in vicarious fear, and the CeA has a broader influence on fear in general. This underscores the complexity and specialization within the LC-NA system for fear-processing.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea
| | - Da-Eun Choi
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
7
|
Zhang L, Zhou Q, Zhang G, Wu C, Rong W, He S, Huo X, Zhang C. A novel prefrontal cortex and hippocampus combined brain slice based on in vivo diffusion tensor imaging of healthy male rats. Neurosci Lett 2025; 851:138171. [PMID: 40010598 DOI: 10.1016/j.neulet.2025.138171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The pathway between the prefrontal cortex (PFC) and hippocampus (HPC) has been associated with various psychiatric disorders. While hippocampal brain slices are extensively utilized, their use has traditionally been constrained in studying long connectivity between PFC and HPC due to nerve fiber rupture during the slicing process. Consequently, optimizing brain slice preparation is crucial. The experiment consisted of three phases. Initially, the structural connection of the PFC-HPC pathway was examined using diffusion tensor imaging (DTI) data from healthy male rats. Subsequently, combined PFC-HPC brain slices were created through vibratome based on imaging acquisition. Finally, the morphology and electrophysiology of the combined brain slices were analyzed. DTI findings revealed numerous nerve fibers linking the two brain regions in the rat brain. Subsequently, a successful preparation of combined PFC-HPC brain slices cut at a 7 - 8° angle relative to the middle sagittal plane was achieved using a vibratome. Hematoxylin and eosin staining results confirmed that PFC-HPC fibers remained well-preserved in the combined brain slice. Electrophysiological recordings indicated that synchronized neuronal activity occurred in the HPC upon PFC stimulation, which depended on hippocampal activity and the integrity of PFC-to-HPC connectivity. A novel procedure for the successful preparation of healthy combined HPC-PFC brain slices, maintaining a complete fiber bundle connection between PFC and HPC, is proposed. This methodology enhances the understanding of the preservation of PFC-HPC connectivity in specific angled brain slice preparations, thereby facilitating neuroscience research focused on the longrange circuitry of subregions of interest.
Collapse
Affiliation(s)
- Lijun Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Qian Zhou
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Wei Rong
- Orthopaedic Sports Medicine Center, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, No.168 Litang Road, Changping District, Beijing 102218, China
| | - Shiji He
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, NO.6 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No.380, Huairou District, Beijing 101408, China.
| |
Collapse
|
8
|
Becker M, Cabeza R. The neural basis of the insight memory advantage. Trends Cogn Sci 2025; 29:255-268. [PMID: 39863514 DOI: 10.1016/j.tics.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Creative problem solving and memory are inherently intertwined: memory accesses existing knowledge while creativity enhances it. Recent studies show that insights often accompanying creative solutions enhance long-term memory. This insight memory advantage (IMA) is explained by the 'insight as prediction error (PE)' hypothesis which states that insights arise from PEs updating predictive solution models and thereby enhancing memory. Neurally, the hippocampus initially detects PEs and then, together with the medial prefrontal cortex (mPFC), integrates and updates these expectations facilitating efficient memory encoding and retrieval. Dopamine (DA) mediates reward PEs and long-term potentiation (LTP) in the hippocampus, while noradrenaline (NE) enhances arousal and attention impacting the amygdala, the salience network, and hippocampal plasticity. These neurobiological mechanisms likely underpin IMA and have significant implications for educational practices and problem-solving strategies.
Collapse
Affiliation(s)
- Maxi Becker
- Department of Psychology, Humboldt University Berlin, Berlin, Germany.
| | - Roberto Cabeza
- Department of Psychology, Humboldt University Berlin, Berlin, Germany; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Câmara AB, Brandão IA. The neuroinflammatory effects of Nociceptin/Orphanin FQ receptor activation can be related to depressive-like behavior. J Psychiatr Res 2025; 183:174-188. [PMID: 39978292 DOI: 10.1016/j.jpsychires.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
There is limited information on the role of the Nociceptin/Orphanin FQ receptor (NOPR) in neuroinflammation, and there is growing interest in the participation of the NOPR in depression etiology. This study aims to evaluate the neuroinflammatory effects of the NOPR activation in mice submitted to social defeat protocol (SDP). Firstly, male Swiss mice were submitted to the social defeat protocol during 10 or 20 days and treated with the NOPR agonist Ro 65-6570 (1.5 or 2 mg/kg; ip). Subsequently, behavioral tests were applied to evaluate depressive-like behaviors. Finally, inflammatory cytokines were measured in the animals' brains and blood. A meta-analysis, including 11 experiments, was also conducted to evaluate if the NOPR activation contributes to inflammation. The studies' weights, odds ratios, and confidence intervals were used to calculate the average effect size as the main outcome measure. The software SPSS v.29 and R programming language were used to analyze the data. The SDP and/or NOP agonist reduced distance traveled and exploration rate in the open field test. The SDP and/or the NOP agonist also increased immobility time in the tail suspension test, as well as reduced social interaction. Additionally, the NOP agonist increased the concentration of IL-6 and TNF alpha in the hippocampus, as well as reduced the IL-10 concentration in the hippocampus, but not in prefrontal cortex and serum. The SDP increased the concentration of IL-6 and TNF alpha in animals' serum and prefrontal cortex, but not in the hippocampus. The role of NOPR in neuroinflammation was regardless of the social defeat stress in the hippocampus. Meta-analysis also demonstrated the participation of NOPR activation in inducing inflammation in mice models. We suggest that upregulation of NOPR can activate signaling pathways involved in neuroinflammation, contributing to depression etiology.
Collapse
Affiliation(s)
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
10
|
Ge H, Si L, Li C, Huang J, Sun L, Wu L, Xie Y, Xiao L, Wang G. The Antidepressant Effect of Resveratrol Is Related to Neuroplasticity Mediated by the ELAVL4- Bdnf mRNA Pathway. Int J Mol Sci 2025; 26:1113. [PMID: 39940881 PMCID: PMC11817429 DOI: 10.3390/ijms26031113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Resveratrol, a plant-derived polyphenol, exhibits significant antidepressant effects and notably enhances neuroplasticity in neurological diseases. However, whether the antidepressant function of resveratrol is related to neuroplasticity remains uncertain, and the underlying mechanisms is poorly understood. This study aims to investigate the role and mechanism of resveratrol in neuroplasticity in depression. Here, we adopted the chronic unpredictable mild stress (CUMS) model and resveratrol intervention by oral gavage. Thereafter, behavioral tests confirmed resveratrol's antidepressant effect, and Nissl staining, Golgi staining, and Western blotting (WB) were employed to assess the neuronal plasticity. Moreover, proteomic analysis and WB were used to screen and identify the key proteins. To investigate the downstream target of ELAV-like RNA-binding protein 4 (ELAVL4) (one of candidate genes), the RNA Interactome Database and the National Center for Biotechnology Information databases were utilized to predict the targets of ELAVL4. Finally, Quantitative PCR, WB, and Immunofluorescence were used to verify the prediction. Our results indicate that resveratrol alleviates CUMS-induced depressive-like behaviors accompanied by the restoration of impaired hippocampal neuroplasticity. Then, proteomic analysis shows that 351 differentially expressed proteins (DEPs) decrease after CUMS, while 24 DEPs increase remarkably with the resveratrol treatment. Among which, ELAVL4 is downregulated by CUMS, simultaneously increasing after resveratrol intervention, which acts as a protective protein in this process. Finally, brain-derived neurotrophic factor (Bdnf) mRNA is predicted to be the potential target of ELAVL4 and validated by molecular technologies. In conclusion, our findings demonstrate that resveratrol's antidepressant efficacy is closely associated with ELAVL4, an RNA-binding protein, a mediated neuroplasticity pathway, potentially intersecting with the Bdnf mRNA. Overall, this research sheds light on the role of the ELAVL4-Bdnf mRNA pathway through neuroplasticity in resveratrol's antidepressant action, which provides an mRNA regulation perspective for the development of novel antidepressants and understanding depression pathology.
Collapse
Affiliation(s)
- Hailong Ge
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
| | - Lujia Si
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
| | - Chen Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
| | - Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
| | - Limin Sun
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.S.); (Y.X.)
| | - Lan Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
| | - Yinping Xie
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.S.); (Y.X.)
| | - Ling Xiao
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.S.); (Y.X.)
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.G.); (L.S.); (C.L.); (J.H.); (L.W.)
- Department of Psychiatry, Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (L.S.); (Y.X.)
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Zhang J, Lu J, Ge J, Li S, Liang X. Managing malice in negative environments: the mediating effect of coping styles on the relationship between negative sense of place and malevolent creativity among Chinese high school students. BMC Psychol 2025; 13:35. [PMID: 39806442 PMCID: PMC11731381 DOI: 10.1186/s40359-024-02333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Creativity motivated by negative intentions can be referred to as malevolent creativity. While existing findings have largely focused on environmental or individual factors influencing malevolent creativity, less attention has been directed towards understanding how the sense of place-derived from individual-environment interaction-affects malevolent creativity. Additionally, the role of coping styles as mediating mechanisms in negative environments has been insufficiently explored. METHODS This study aims to investigate the relationship between negative sense of place and malevolent creativity, while examining the mediating role of coping styles. To this end, a paper-based survey was conducted among 1310 Chinese high school students, utilizing the Negative Sense of Place Scale, Coping Styles Scale, and Malevolent Creativity Scale. Data were analyzed using SPSS 26.0 and Mplus 8.3. RESULTS The findings revealed that a negative sense of place in the school environment significantly and positively predicted malevolent creativity. Negative sense of place was also positively associated with negative coping styles and negatively associated with positive coping styles. Furthermore, coping styles mediated the relationship between negative sense of place and malevolent creativity. CONCLUSION This study enriches existing literature by elucidating the links between sense of place, coping styles, and malevolent creativity. These findings provide valuable insights for strategies aimed at reducing malevolent creativity and preventing harmful creative behaviors in educational contexts.
Collapse
Affiliation(s)
- Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Jiaxin Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Jiahao Ge
- College of Education, Zhejiang Normal University, Yingbin Avenue, Jinhua, China
| | - Susu Li
- College of Education, Zhejiang Normal University, Yingbin Avenue, Jinhua, China
| | - Xiaoyu Liang
- College of Education, Zhejiang Normal University, Yingbin Avenue, Jinhua, China.
| |
Collapse
|
12
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Theta and gamma modulation in the nucleus accumbens as drivers of neurophysiological responses to acute methamphetamine sensitization in mice. Exp Brain Res 2024; 243:7. [PMID: 39611892 DOI: 10.1007/s00221-024-06968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Methamphetamine (METH) has well-documented long-term effects on the brain, including increased psychomotor activity and behavioral sensitization. However, its immediate effects on the brain's reward system following acute exposure, which may contribute to the development of addiction, are less understood. This study aimed to investigate the effects of acute METH on brain oscillations in the nucleus accumbens of C57BL/6 mice. Mice in the METH group received 5 mg/kg of METH for 5 days during the conditioning phase, followed by an 8-day abstinence period. Afterward, they underwent a 6-minute tail suspension test and were given a 1 mg/kg METH challenge. Local field potential (LFP) data were analyzed for percent total power, mean frequency indices, and phase-amplitude coupling (PAC) to assess the neural effects of METH exposure across these phases. A reduction in theta power was observed across the conditioning, abstinence, and challenge phases of METH exposure. The subsequent METH challenge enhanced gamma oscillations, and PAC analysis revealed a consistent theta-gamma coupling index during both the METH administration and challenge phases. It highlights the sensitivity of the reward system to intense, short-term drug exposure, providing new insights into how acute neural stimulation may contribute to the development of addictive behaviors, reinforcing the brain's vulnerability to drug-induced changes in neural circuitry.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
13
|
Kinugawa K, Mano T, Sugie K. Changes in brain functional connectivity between on and off states and their relationship with cognitive impairment in Parkinson's disease. Sci Rep 2024; 14:27333. [PMID: 39521853 PMCID: PMC11550463 DOI: 10.1038/s41598-024-78642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms. Cognitive decline is crucial in disease progression and affect quality of life; however, their underlying mechanisms in PD remain unclear. We explored the relationship between cognitive impairment and functional connectivity (FC) using resting-state functional magnetic resonance imaging in 26 patients with sporadic PD, focusing on the changes in FC between on and off states. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) score. The correlation between MMSE scores and changes in FC values during on and off states was assessed using Pearson's correlation coefficient. The correlation between changes in FC during the on and off periods and cognitive function differed for each cognitive function item. MMSE memory scores were positively correlated with FC between the brainstem and the left cerebral hemisphere. MMSE attention scores were positively correlated with FC between the bilateral thalamus and frontal lobes and negatively correlated with FC between the left cerebral hemispheres. These findings may facilitate our understanding of the neural correlates underlying cognitive impairment in PD and help develop treatment strategies to preserve cognitive function.
Collapse
Affiliation(s)
- Kaoru Kinugawa
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Tomoo Mano
- Department of Neurology, Nara Medical University, Kashihara, Japan.
- Department of Rehabilitation Medicine, Nara Prefecture General Medical Center, Nara, Japan.
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
14
|
Bobula B, Bąk J, Kania A, Siwiec M, Kiełbiński M, Tokarski K, Pałucha-Poniewiera A, Hess G. Maternal fluoxetine impairs synaptic transmission and plasticity in the medial prefrontal cortex and alters the structure and function of dorsal raphe nucleus neurons in offspring mice. Pharmacol Biochem Behav 2024; 244:173849. [PMID: 39142357 DOI: 10.1016/j.pbb.2024.173849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are commonly prescribed to women during pregnancy and breastfeeding despite posing a risk of adverse cognitive outcomes and affective disorders for the child. The consequences of SSRI-induced excess of 5-HT during development for the brain neuromodulatory 5-HT system remain largely unexplored. In this study, an SSRI - fluoxetine (FLX) - was administered to C57BL/6 J mouse dams during pregnancy and lactation to assess its effects on the offspring. We found that maternal FLX decreased field potentials, impaired long-term potentiation, facilitated long-term depression and tended to increase the density of 5-HTergic fibers in the medial prefrontal cortex (mPFC) of female but not male adolescent offspring. These effects were accompanied by deteriorated performance in the temporal order memory task and reduced sucrose preference with no change in marble burying behavior in FLX-exposed female offspring. We also found that maternal FLX reduced the axodendritic tree complexity of 5-HT dorsal raphe nucleus (DRN) neurons in female but not male offspring, with no changes in the excitability of DRN neurons of either sex. While no effects of maternal FLX on inhibitory postsynaptic currents (sIPSCs) in DRN neurons were found, we observed a significant influence of FLX exposure on kinetics of spontaneous excitatory postsynaptic currents (sEPSCs) in DRN neurons. Finally, we report that no changes in field potentials and synaptic plasticity were evident in the mPFC of the offspring after maternal exposure during pregnancy and lactation to a new antidepressant, vortioxetine. These findings show that in contrast to the mPFC, long-term consequences of maternal FLX exposure on the structure and function of DRN 5-HT neurons are mild and suggest a sex-dependent, distinct sensitivity of cortical and brainstem neurons to FLX exposure in early life. Vortioxetine appears to exert fewer side effects with regards to the mPFC when compared with FLX.
Collapse
Affiliation(s)
- Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Joanna Bąk
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Kania
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Michał Kiełbiński
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| |
Collapse
|
15
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
16
|
Honma M, Yoshiba S, Miyamoto S, Himi N, Haga S, Ogura S, Maki K, Masaoka Y, Izumizaki M, Shirota T. Changes in facial appearance alter one's sensitivity not only to the self but also to the outside world. Front Psychol 2024; 15:1426820. [PMID: 39319069 PMCID: PMC11420145 DOI: 10.3389/fpsyg.2024.1426820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Changes in facial appearance due to orthognathic surgery are known to improve a patient's postoperative quality of life, however, potential changes in cognitive function are unknown. This study examined the effects of changes in facial appearance due to orthognathic surgery on the sensitivity to self and to outside objects in patients with jaw deformities. Methods Patients with jaw deformities (n = 22) and healthy controls (n = 30) were tested at 3 months preoperatively, at 1 month preoperatively, and at 1 month postoperatively to assess their impression of objects (positive, negative, and neutral pictures) and their evaluation of their own face and body. Results The results showed that changes in facial appearance improved self-evaluation and increased their sensitivity to emotional objects even when the objects were identical. Furthermore, the improving rating for own face was associated with the sensitivity for objects. Discussion The changes in facial appearance in patients may have helped to clear the sensitivity to these emotional objects. These findings may provide a new indicator of efficacy in orthognathic surgery.
Collapse
Affiliation(s)
- Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Sayaka Yoshiba
- Department of Oral Surgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Saya Miyamoto
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Nanae Himi
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| | - Shugo Haga
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Sumire Ogura
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
17
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
18
|
Messanvi F, Visocky V, Senneca C, Berkun K, Taori M, Bradley SP, Wang H, Tejeda H, Chudasama Y. Galanin receptor 1 expressing neurons in hippocampal-prefrontal circuitry modulate goal directed attention and impulse control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605653. [PMID: 39131306 PMCID: PMC11312591 DOI: 10.1101/2024.07.29.605653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
While amino acid neurotransmitters are the main chemical messengers in the brain, they are co-expressed with neuropeptides which are increasingly recognized as modulators of cognitive pathways. For example, the neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. In a recent study in rats, we discovered that direct pharmacological stimulation of galanin receptor type 1 (GalR1) in the ventral prefrontal cortex (vPFC) and ventral hippocampus (vHC) led to opposing effects on attention and impulse control behavior. In the present study, we investigate how subtypes of neurons expressing GalR1 in these two areas differentially contribute to these behaviors. We first establish that GalR1 is predominantly expressed in glutamatergic neurons in both the vPFC and HC. We develop a novel viral approach to gain genetic access to GalR1-expressing neurons and demonstrate that optogenetic excitation of GalR1 expressing neurons in the vPFC, but not vHC, selectively disrupts attention in a complex behavioral task. Finally, using fiber photometry, we measure the bulk calcium dynamics in GalR1-expressing neurons during the same task to demonstrate opposing activity in vPFC and vHC. These results are consistent with our previous work demonstrating differential behavioral effects induced by GalR1 activating in vPFC and vHC. These results indicate the distinct neuromodulatory and behavioral contributions of galanin mediated by subclasses of neurons in the hippocampal and prefrontal circuitry.
Collapse
Affiliation(s)
- Fany Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Vladimir Visocky
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Carolyn Senneca
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Kathleen Berkun
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Maansi Taori
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Sean P Bradley
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Hugo Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Yogita Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Guerreiro IC, Clopath C. Memory's gatekeeper: The role of PFC in the encoding of congruent events. Proc Natl Acad Sci U S A 2024; 121:e2403648121. [PMID: 39018188 PMCID: PMC11287283 DOI: 10.1073/pnas.2403648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
Theoretical models conventionally portray the consolidation of memories as a slow process that unfolds during sleep. According to the classical Complementary Learning Systems theory, the hippocampus (HPC) rapidly changes its connectivity during wakefulness to encode ongoing events and create memory ensembles that are later transferred to the prefrontal cortex (PFC) during sleep. However, recent experimental studies challenge this notion by showing that new information consistent with prior knowledge can be rapidly consolidated in PFC during wakefulness and that PFC lesions disrupt the encoding of congruent events in the HPC. The contributions of the PFC to memory encoding have therefore largely been overlooked. Moreover, most theoretical frameworks assume random and uncorrelated patterns representing memories, disregarding the correlations between our experiences. To address these shortcomings, we developed a HPC-PFC network model that simulates interactions between the HPC and PFC during the encoding of a memory (awake stage), and subsequent consolidation (sleeping stage) to examine the contributions of each region to the consolidation of novel and congruent memories. Our results show that the PFC network uses stored memory "schemas" consolidated during previous experiences to identify inputs that evoke congruent patterns of activity, quickly integrate it into its network, and gate which components are encoded in the HPC. More specifically, the PFC uses GABAergic long-range projections to inhibit HPC neurons representing input components correlated with a previously stored memory "schema," eliciting sparse hippocampal activity during exposure to congruent events, as it has been experimentally observed.
Collapse
Affiliation(s)
- Inês C. Guerreiro
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Díez-Solinska A, Goñi-Balentziaga O, Beitia-Oyarzabal G, Muñoz-Culla M, Vegas O, Azkona G. Chronic defeat stress induces monoamine level dysregulation in the prefrontal cortex but not in the hippocampus of OF1 male mice. Behav Brain Res 2024; 467:115023. [PMID: 38688411 DOI: 10.1016/j.bbr.2024.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic social stress can increase susceptibility to chronic diseases such as depression. One of the most used models to study the physiological mechanisms and behavioral outcomes of this type of stress is chronic defeat stress (CDS) in male mice. OF1 male mice were subjected to a stress period lasting 18 days. During that time, non-stressed animals were housed in groups. The cluster analysis of the behavioral profile displayed during the first social interaction divided subjects into two groups: active/aggressive (AA) and passive/reactive (PR). The day after the end of the stress period, the following behavioral analyses were performed: the sucrose preference test (SPT) on day 19, the open field test (OFT) on day 20, and the forced swim test (FST) on day 21. Immediately after completing the last test, animals were weighed, and blood samples were obtained. Then, they were sacrificed, and their prefrontal cortices and hippocampi were removed and stored to analyze monoamine levels. Stressed animals displayed anhedonia, and solely the PR mice continued to show higher levels of immobility in the OFT and FST. All stressed animals, regardless of the coping strategy, presented higher plasma corticosterone levels. In addition, stressed mice showed lower levels of tyrosine, dopamine, DOPAC, MHPG, kynurenine, kynurenic acid, and 5-HIAA levels but higher serotonin levels in the prefrontal cortex, not in the hippocampus. In conclusion, our results show that CSD induces differences in monoamine levels between brain areas, and these differences did not respond to the coping strategy adopted.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Olatz Goñi-Balentziaga
- Department of Clinical and Health Psychology, and Research Methods, School of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Garikoitz Beitia-Oyarzabal
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain
| | - Maider Muñoz-Culla
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain; Biogipuzkoa Health Research Institute, Donostia-San Sebastian 20014, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain; Biogipuzkoa Health Research Institute, Donostia-San Sebastian 20014, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and their Development, University of the Basque Country (UPV/EHU), Donostia-San Sebastian 20018, Spain.
| |
Collapse
|
23
|
Becker M, Fischer DJ, Kühn S, Gallinat J. Videogame training increases clinical well-being, attention and hippocampal-prefrontal functional connectivity in patients with schizophrenia. Transl Psychiatry 2024; 14:218. [PMID: 38806461 PMCID: PMC11133354 DOI: 10.1038/s41398-024-02945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Recent research shows that videogame training enhances neuronal plasticity and cognitive improvements in healthy individuals. As patients with schizophrenia exhibit reduced neuronal plasticity linked to cognitive deficits and symptoms, we investigated whether videogame-related cognitive improvements and plasticity changes extend to this population. In a training study, patients with schizophrenia and healthy controls were randomly assigned to 3D or 2D platformer videogame training or E-book reading (active control) for 8 weeks, 30 min daily. After training, both videogame conditions showed significant increases in sustained attention compared to the control condition, correlated with increased functional connectivity in a hippocampal-prefrontal network. Notably, patients trained with videogames mostly improved in negative symptoms, general psychopathology, and perceived mental health recovery. Videogames, incorporating initiative, goal setting and gratification, offer a training approach closer to real life than current psychiatric treatments. Our results provide initial evidence that they may represent a possible adjunct therapeutic intervention for complex mental disorders.
Collapse
Affiliation(s)
- Maxi Becker
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany.
- Humboldt-University Berlin, Department of Psychology, Berlin, Germany.
| | - Djo J Fischer
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simone Kühn
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
- Max Planck-UCL Center for Computational Psychiatry and Ageing Research, Berlin, Germany.
| | - Jürgen Gallinat
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
24
|
Ramacciotti MC, Soares Junior RDS, Sato JR, Gualtieri M. Left OFC Activation in Functional Near-Infrared Spectroscopy during an Inhibitory Control Task in an Early Years Sample: Integrating Stress Responses with Cognitive Function and Brain Activation. Dev Neurosci 2024; 47:81-97. [PMID: 38663367 PMCID: PMC11965844 DOI: 10.1159/000539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/18/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior. INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior.
Collapse
Affiliation(s)
| | | | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Mirella Gualtieri
- Graduate Program in Neuroscience and Behavior, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Ruggiero RN, Marques DB, Rossignoli MT, De Ross JB, Prizon T, Beraldo IJS, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Lopes-Aguiar C, Leite JP. Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. eLife 2024; 12:RP90997. [PMID: 38593008 PMCID: PMC11003745 DOI: 10.7554/elife.90997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Collapse
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Danilo Benette Marques
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Jana Batista De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| | - Ikaro Jesus Silva Beraldo
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | | | | | - Jose Eduardo Peixoto-Santos
- Neuroscience Discipline, Department of Neurology and Neurosurgery,Universidade Federal de São PauloSão PauloBrazil
| | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics Federal University of Minas GeraisBelo HorizonteBrazil
- Laboratory of Molecular and Behavioral Neuroscience (LANEC), Federal University of Minas GeraisBelo HorizonteBrazil
| | - Joao Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
| |
Collapse
|
26
|
Smith GC, Griffith KR, Sicher AR, Brockway DF, Proctor EA, Crowley NA. MODERATE ALCOHOL CONSUMPTION INDUCES LASTING IMPACTS ON PREFRONTAL CORTICAL SIGNALING IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587955. [PMID: 38617243 PMCID: PMC11014573 DOI: 10.1101/2024.04.03.587955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Both alcohol use disorder (AUD) and Alzheimer's Disease and Related Dementias (ADRD) appear to include disruption in the balance of excitation and inhibition in the cortex, but their potential interactions are unclear. We examined the effect of moderate voluntary binge alcohol consumption on the aged, pre-disease neuronal environment by measuring intrinsic excitability and spontaneous neurotransmission on prefrontal cortical pyramidal (excitatory, glutamatergic) and non-pyramidal (inhibitory, GABAergic) neurons following a prolonged period of abstinence from alcohol in mice. Results highlight that binge alcohol consumption has lasting impacts on the electrophysiological properties of prefrontal cortical neurons. A profound increase in excitatory events onto layer 2/3 non-pyramidal neurons following alcohol consumption was seen, along with altered intrinsic excitability of pyramidal neurons, which could have a range of effects on Alzheimer's Disease progression in humans. These results indicate that moderate voluntary alcohol influences the pre-disease environment in aging and highlight the need for further mechanistic investigation into this risk factor.
Collapse
Affiliation(s)
- Grace C Smith
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
| | - Keith R Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Avery R Sicher
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA 16802
| | - Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA 16802
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
- Departments of Neurosurgery Penn State College of Medicine, Hershey PA, USA 17033; and Engineering Science and Mechanics, University Park, PA, USA 16802
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
27
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
28
|
Wei RM, Zhang YM, Zhang KX, Liu GX, Li XY, Zhang JY, Lun WZ, Liu XC, Chen GH. An enriched environment ameliorates maternal sleep deprivation-induced cognitive impairment in aged mice by improving mitochondrial function via the Sirt1/PGC-1α pathway. Aging (Albany NY) 2024; 16:1128-1144. [PMID: 38231482 PMCID: PMC10866428 DOI: 10.18632/aging.205385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Early life stress can cause cognitive impairment in aged offspring. Environmental enrichment (EE) is considered to be an effective non-pharmacological treatment for improving cognitive decline. The aim of this research was to evaluate the effect of EE, on cognitive impairment in aged offspring induced by maternal sleep deprivation (MSD) and the underlying mechanisms involved to investigate its potential value in clinical practice. METHODS CD-1 damns were subjected or not to sleep deprivation during late gestation. Twenty-one days after birth, the offspring were assigned to standard or EE cages. At 18 months-old, the learning and memory function of the offspring mice was evaluated using Morris water maze. The hippocampal and prefrontal cortical levels of protein, gene, proinflammation cytokines, and oxidative stress indicators was examined by Western blot, real-time polymerase chain reaction, enzyme linked immunosorbent assay, and biochemical assays. RESULTS Offspring in MSD group exhibited declined learning and memory abilities compared with control animals. Moreover, the hippocampal and prefrontal cortical levels of Sirtuin1 (Sirt1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), postsynaptic density protein-95, and synaptophysin were lower and those of proinflammation cytokines higher in the MSD group; meanwhile, the superoxide dismutase content was higher and the malondialdehyde and reactive oxygen species contents were lower. However, these deleterious changes were ameliorated by exposure to EE. CONCLUSIONS EE attenuates MSD-induced cognitive impairment, oxidative stress, and neuroinflammation and reverses the reduction in synaptic protein levels in aged offspring mice via the Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Gao-Xia Liu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Jing-Ya Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Wei-Zhong Lun
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| | - Xue-Chun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238001, Anhui, China
| |
Collapse
|
29
|
Chen C, Wang Z, Cao X, Zhu J. Exploring the association between early exposure to material hardship and psychopathology through indirect effects of fronto-limbic functional connectivity during fear learning. Cereb Cortex 2023; 33:10702-10710. [PMID: 37689831 DOI: 10.1093/cercor/bhad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023] Open
Abstract
Experiencing family material hardship has been shown to be associated with disruptions in physical and psychological development. However, the association between material hardship and functional connectivity in the fronto-limbic circuit during fear learning is unclear. A total of 161 healthy young adults aged 17-28 were recruited in our brain imaging study, using the Fear Conditioning Task to test the associations between material hardship and connectivity in fronto-limbic circuit and psychopathology. The results showed that family material hardship was linked to higher positive connectivity between the left amygdala and bilateral dorsal anterior cingulate cortex, as well as higher negative connectivity between the left hippocampus and right ventromedial prefrontal cortex. A mediation analysis showed that material hardship was associated with depression via amygdala functional connectivity (indirect effect = 0.228, P = 0.016), and also indirectly associated with aggression and anger-hostility symptoms through hippocampal connections (aggression: indirect effect = 0.057, P = 0.001; anger-hostility: indirect effect = 0.169, P = 0.048). That is, family material hardship appears to affect fronto-limbic circuits through changes in specific connectivity, and these specific changes, in turn, could lead to specific psychological symptoms. The findings have implications for designing developmentally sensitive interventions to mitigate the emergence of psychopathological symptoms.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| | - Zhengxinyue Wang
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Cao
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianjun Zhu
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
30
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
31
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
32
|
Keszycki R, Rodriguez G, Dunn JT, Locci A, Orellana H, Haupfear I, Dominguez S, Fisher DW, Dong H. Characterization of apathy-like behaviors in the 5xFAD mouse model of Alzheimer's disease. Neurobiol Aging 2023; 126:113-122. [PMID: 36989547 PMCID: PMC10106415 DOI: 10.1016/j.neurobiolaging.2023.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Most patients with Alzheimer's disease (AD) develop neuropsychiatric symptoms (NPS) alongside cognitive decline, and apathy is one of the most common symptoms. Few preclinical studies have investigated the biological substrates underlying NPS in AD. In this study, we used a cross-sectional design to characterize apathy-like behaviors and assess memory in 5xFAD and wildtype control mice at 6, 12, and 16 months of age. Nest building, burrowing, and marble burying were used to test representative behaviors of apathy, and a composite score of apathy-like behavior was generated from these assays. Soluble Aβ42 and plaques were quantified in the prefrontal cortex and hippocampus of the 5xFAD mice with the highest and lowest composite scores using ELISA and histology. Results suggest that 5xFAD mice develop significant apathy-like behaviors starting at 6 months of age that worsen with aging and are positively correlated with soluble Aβ42 and plaques in the prefrontal cortex and hippocampus. Our findings highlight the utility of studying NPS in mouse models of AD to uncover important relationships with underlying neuropathology.
Collapse
Affiliation(s)
- Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hector Orellana
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
33
|
Watanabe Y, Dezawa S, Takei H, Nagasaka K, Takashima I. Hippocampal-prefrontal long-term potentiation-like plasticity with transcranial direct current stimulation in rats. Neurobiol Learn Mem 2023; 201:107750. [PMID: 37023973 DOI: 10.1016/j.nlm.2023.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a new treatment method for improving cognitive and motor functions. However, the neuronal mechanisms of tDCS in modulating brain functions, especially cognitive and memory functions, are not well understood. In the present study, we assessed whether tDCS could promote neuronal plasticity between the hippocampus and prefrontal cortex in rats. This is important because the hippocampus-prefrontal pathway is a key pathway in cognitive and memory functions and is involved in various psychiatric and neurodegenerative disorders. Specifically, the effect of anodal or cathodal tDCS on the medial prefrontal cortex was investigated in rats by measuring the medial prefrontal cortex response to electrical stimulation applied to the CA1 region of the hippocampus. Following anodal tDCS, the evoked prefrontal response was potentiated compared to that in the pre-tDCS condition. However, the evoked prefrontal response did not show any significant changes following cathodal tDCS. Furthermore, the plastic change of the prefrontal response following anodal tDCS was only induced when hippocampal stimulation was continuously applied during tDCS. Anodal tDCS without hippocampal activation showed little or no changes. These results indicate that combining anodal tDCS of the prefrontal cortex with hippocampal activation induces long-term potentiation (LTP)-like plasticity in the hippocampus-prefrontal pathway. This LTP-like plasticity can facilitate smooth information transmission between the hippocampus and the prefrontal cortex and may lead to improvements in cognitive and memory function.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan.
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, 6-8-33, Manabe, Tsuchiura 300-0051, Japan
| | - Hiroyuki Takei
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| |
Collapse
|
34
|
Kumar PR, Shilpa B, Jha RK. Brain Disorders: Impact of Mild SARS-CoV-2 May Shrink Several Parts of the Brain. Neurosci Biobehav Rev 2023; 149:105150. [PMID: 37004892 PMCID: PMC10063523 DOI: 10.1016/j.neubiorev.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Coronavirus (COVID-19) is a highly infectious respiratory infection discovered in Wuhan, China, in December 2019. As a result of the pandemic, several individuals have experienced life-threatening diseases, the loss of loved ones, lockdowns, isolation, an increase in unemployment, and household conflict. Moreover, COVID-19 may cause direct brain injury via encephalopathy. The long-term impacts of this virus on mental health and brain function need to be analysed by researchers in the coming years. This article aims to describe the prolonged neurological clinical consequences related to brain changes in people with mild COVID-19 infection. When compared to a control group, people those who tested positive for COVID-19 had more brain shrinkage, grey matter shrinkage, and tissue damage. The damage occurs predominantly in areas of the brain that are associated with odour, ambiguity, strokes, reduced attention, headaches, sensory abnormalities, depression, and mental abilities for few months after the first infection. Therefore, in patients after a severe clinical condition of COVID-19, a deepening of persistent neurological signs is necessary.
Collapse
Affiliation(s)
- Puranam Revanth Kumar
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - B Shilpa
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| | - Rajesh Kumar Jha
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, India
| |
Collapse
|
35
|
Muza PM, Bush D, Pérez-González M, Zouhair I, Cleverley K, Sopena ML, Aoidi R, West SJ, Good M, Tybulewicz VL, Walker MC, Fisher EM, Chang P. Cognitive impairments in a Down syndrome model with abnormal hippocampal and prefrontal dynamics and cytoarchitecture. iScience 2023; 26:106073. [PMID: 36818290 PMCID: PMC9929862 DOI: 10.1016/j.isci.2023.106073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.
Collapse
Affiliation(s)
- Phillip M. Muza
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Cognitive Neuroscience and UCL Queen Square Institute of Neurology, University College London, London WC1N 3AZ, UK
| | - Marta Pérez-González
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Miriam L. Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Victor L.J. Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
36
|
5-HT-dependent synaptic plasticity of the prefrontal cortex in postnatal development. Sci Rep 2022; 12:21015. [PMID: 36470912 PMCID: PMC9723183 DOI: 10.1038/s41598-022-23767-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.
Collapse
|
37
|
Onufriev MV, Stepanichev MY, Moiseeva YV, Zhanina MY, Nedogreeva OA, Kostryukov PA, Lazareva NA, Gulyaeva NV. A Comparative Study of Two Models of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Long-Lasting Accumulation of Corticosterone and Interleukins in the Hippocampus and Frontal Cortex in Koizumi Model. Biomedicines 2022; 10:biomedicines10123119. [PMID: 36551875 PMCID: PMC9775077 DOI: 10.3390/biomedicines10123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1β in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-952-4007
| |
Collapse
|
38
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
39
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
41
|
Lantrip C, Szabo YZ, Kozel FA, Holtzheimer P. Neuromodulation as an Augmenting Strategy for Behavioral Therapies for Anxiety and PTSD: a Narrative Review. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2022; 9:406-418. [PMID: 36714210 PMCID: PMC9881183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PURPOSE OF REVIEW Post-traumatic stress disorder (PTSD) is a prevalent problem. Despite current treatments, symptoms may persist, and neuromodulation therapies show great potential. A growing body of research suggests that transcranial magnetic stimulation (TMS) is effective as a standalone treatment for PTSD, with recent research demonstrating promising use when combined synergistically with behavioral treatments. In this review, we survey this literature including data suggesting mechanisms involved in anxiety and PTSD that may be targeted by neurostimulation. RECENT FINDINGS Evidence suggests the mechanism of action for TMS that contributes to behavioral change may be enhanced neural plasticity via increased functionality of prefrontal and subcortical/limbic structures and associated networks. Some research has demonstrated a behavioral change in PTSD and anxiety due to enhanced extinction learning or improved ability to think flexibly and reduce ruminative tendencies. Growing evidence suggests TMS may be best used as a therapeutic adjunct, at least acutely, for extinction-based exposure therapies in patients by accelerating therapy response. SUMMARY While TMS has shown promise as a standalone intervention, augmentation with psychotherapy is one avenue of interest. Non-responders to current EBPs might particularly benefit from this sort of targeted approach, and it may shorten treatment length, which would help the successful completion of a course of therapy.
Collapse
Affiliation(s)
- Crystal Lantrip
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research On Returning War Veterans, Waco, TX 76711, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Yvette Z. Szabo
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research On Returning War Veterans, Waco, TX 76711, USA
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - F. Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Paul Holtzheimer
- Department of Veterans Affairs, National Center for PTSD, White River Junction, VT, USA
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
42
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
43
|
Polysialylation in a DISC1 Mutant Mouse. Int J Mol Sci 2022; 23:ijms23095207. [PMID: 35563598 PMCID: PMC9102787 DOI: 10.3390/ijms23095207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Schizophrenia is a serious psychiatric disorder that affects the social life of patients. Psychiatric disorders are caused by a complex combination of genetic (G) and environmental (E) factors. Polysialylation represents a unique posttranslational modification of a protein, and such changes in neural cell adhesion molecules (NCAMs) have been reported in postmortem brains from patients with psychiatric disorders. To understand the G × E effect on polysialylated NCAM expression, in this study, we performed precise measurements of polySia and NCAM using a disrupted-in-schizophrenia 1 (DISC1)-mutant mouse (G), a mouse model of schizophrenia, under acute stress conditions (E). This is the first study to reveal a lower number and smaller length of polySia in the suprachiasmatic nucleus of DISC1 mutants relative to those in wild-type (WT) mice. In addition, an analysis of polySia and NCAM responses to acute stress in five brain regions (olfactory bulb, prefrontal cortex, suprachiasmatic nucleus, amygdala, and hippocampus) revealed that the pattern of changes in these responses in WT mice and DISC1 mutants differed by region. These differences could indicate the vulnerability of DISC1 mutants to stress.
Collapse
|
44
|
Ten-Blanco M, Flores Á, Pereda-Pérez I, Piscitelli F, Izquierdo-Luengo C, Cristino L, Romero J, Hillard CJ, Maldonado R, Di Marzo V, Berrendero F. Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomed Pharmacother 2022; 149:112925. [PMID: 35477218 DOI: 10.1016/j.biopha.2022.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
Abstract
Anxiety and stress disorders are often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear are unknown. Here we investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. These results show that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism could be of relevance for the development of novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Inmaculada Pereda-Pérez
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Cristina Izquierdo-Luengo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Julián Romero
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Sciences, Hearth and Lung Research Institute (IUCPQ), Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center, Université Laval, Quebec City, Canada
| | - Fernando Berrendero
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
45
|
Huang Y, Ling Q, Manyande A, Wu D, Xiang B. Brain Imaging Changes in Patients Recovered From COVID-19: A Narrative Review. Front Neurosci 2022; 16:855868. [PMID: 35527821 PMCID: PMC9072792 DOI: 10.3389/fnins.2022.855868] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused several outbreaks of highly contagious respiratory diseases worldwide. The respiratory symptoms of Coronavirus Disease-19 (COVID-19) have been closely monitored and studied, while the central nervous system (CNS) and peripheral system (PNS) lesions induced by COVID-19 have not received much attention. Currently, patients with COVID-19-associated encephalopathy present with dizziness, headache, anxiety and depression, stroke, epileptic seizures, the Guillain-Barre syndrome (GBS), and demyelinating disease. The exact pathologic basis for these neurological symptoms is currently not known. Rapid mutation of the SARS-CoV-2 genome leads to the appearance of SARS-CoV-2 variants of concern (VOCs), which have higher infectivity and virulence. Therefore, this narrative review will focus on the imaging assessment of COVID-19 and its VOC. There has been an increase in technologies, such as [18F]fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and functional magnetic resonance imaging (fMRI), that have been used to observe changes in brain microstructure over time in patients with COVID-19 recovery. Medical imaging and pathological approaches aimed at exploring the associations between COVID-19 and its VOC, with cranial nerve and abnormal nerve discharge will shed light on the rehabilitation process of brain microstructural changes related to SARS-CoV-2, and aid future research in our understanding of the treatment and prognosis of COVID-19 encephalopathy.
Collapse
Affiliation(s)
- Yan Huang
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiong Ling
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Duozhi Wu
- Department of Anesthesiology, Hainan general Hospital, Haikou, China
- *Correspondence: Duozhi Wu,
| | - Boqi Xiang
- School of Public Health, Rutgers University, New Brunswick, NJ, United States
- Boqi Xiang,
| |
Collapse
|
46
|
Tsetsenis T, Badyna JK, Li R, Dani JA. Activation of a Locus Coeruleus to Dorsal Hippocampus Noradrenergic Circuit Facilitates Associative Learning. Front Cell Neurosci 2022; 16:887679. [PMID: 35496910 PMCID: PMC9051520 DOI: 10.3389/fncel.2022.887679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/22/2023] Open
Abstract
Processing of contextual information during a new episodic event is crucial for learning and memory. Neuromodulation in the hippocampus and prefrontal cortex plays an important role in the formation of associations between environmental cues and an aversive experience. Noradrenergic neurons in the locus coeruleus send dense projections to both regions, but their contribution to contextual associative learning has not been established. Here, we utilize selective optogenetic and pharmacological manipulations to control noradrenergic transmission in the hippocampus during the encoding of a contextual fear memory. We find that boosting noradrenergic terminal release in the dorsal CA1 enhances the acquisition of contextual associative learning and that this effect requires local activation of β-adrenenergic receptors. Moreover, we show that increasing norepinephrine release can ameliorate contextual fear learning impairments caused by dopaminergic dysregulation in the hippocampus. Our data suggest that increasing of hippocampal noradrenergic activity can have important implications in the treatment of cognitive disorders that involve problems in contextual processing.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia K. Badyna
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Li
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - John A. Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Onufriev MV, Moiseeva YV, Zhanina MY, Lazareva NA, Gulyaeva NV. A Comparative Study of Koizumi and Longa Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Early Corticosterone and Inflammatory Response in the Hippocampus and Frontal Cortex. Int J Mol Sci 2021; 22:13544. [PMID: 34948340 PMCID: PMC8703333 DOI: 10.3390/ijms222413544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|