1
|
Kim JH, Jeong HG, Hyeon SJ, Park U, Oh WJ, Hwang J, Lim HH, Ko PW, Lee HW, Lee WH, Ryu H, Suk K. Crosstalk between lipocalin-2 and IL-6 in traumatic brain injury: Closely related biomarkers. Exp Neurol 2025; 385:115092. [PMID: 39637963 DOI: 10.1016/j.expneurol.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Clinical biomarkers are crucial for diagnosing and predicting outcomes in patients with traumatic brain injury (TBI). In this study, we performed an unbiased analysis of plasma proteins in acute TBI patients using bead-based multiplex assays and identified a strong positive correlation between LCN2 and IL-6 levels. Based on these findings, we hypothesized that LCN2 and IL-6 are closely related circulating biomarkers for TBI. Our previous and current studies demonstrate that the expression of LCN2, IL-6, and its receptors is upregulated in patients with chronic traumatic encephalopathy, in mouse models of traumatic and ischemic injury, and in an in vitro scratch injury model. Lcn2-deficiency reduced the injury-induced expression of IL-6 and its receptors in both animal and scratch injury models. These results suggest an augmented LCN2-dependent IL-6 signaling in the injured brain. As both LCN2 and IL-6 are secreted proinflammatory mediators, we further explored the possibility of cross-regulation between LCN2 and IL-6. In cultured glial cells, treatment with recombinant LCN2 protein enhanced the microglial expression of IL-6, while IL-6 protein treatment increased astrocytic LCN2 expression. Moreover, IL-6 expression and release were elevated in LCN2-overexpressing transgenic mice. Mechanistically, IL-6 enhanced astrocytic LCN2 expression through STAT3 signaling, while LCN2 upregulated microglial IL-6 expression through the NF-κB pathway. Taken together, our results suggest an important role of the LCN2-IL-6 axis in amplifying neuroinflammation through a positive feedback loop in secondary brain injury conditions. Finally, this study implies the utility of LCN2 and IL-6 as closely related biomarkers for TBI diagnosis and prognosis.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Han-Gil Jeong
- Division of Neurocritical Care, Department of Neurosurgery and Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si 13620, Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Won-Jong Oh
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, Daegu 41404, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Veterans Affairs Boston Healthcare System, Boston, MA 02130, United States; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Afridi R, Kim JH, Bhusal A, Lee WH, Suk K. Lipocalin-2 as a mediator of neuroimmune communication. J Leukoc Biol 2024; 116:357-368. [PMID: 38149462 DOI: 10.1093/jleuko/qiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Lipocalin-2, a neutrophil gelatinase-associated lipocalin, is a 25-kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and nonimmune cells throughout the body. Importantly, the surge in lipocalin-2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of lipocalin-2, which plays a definitive role in determining their functional phenotypes. In different central nervous system pathologies, an increased expression of glial lipocalin-2 has been linked to neurotoxicity. Lipocalin-2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated lipocalin-2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of lipocalin-2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores lipocalin-2 as a mediator of neuroimmune crosstalk in various central nervous system pathologies and highlights the role of lipocalin-2 in carrying inflammatory signals along the neuroimmune axis.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang Street, Joong-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Zhang X, Shen ZL, Ji YW, Yin C, Xiao C, Zhou C. Activation and polarization of striatal microglia and astrocytes are involved in bradykinesia and allodynia in early-stage parkinsonian mice. FUNDAMENTAL RESEARCH 2024; 4:806-819. [PMID: 39156564 PMCID: PMC11330119 DOI: 10.1016/j.fmre.2023.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 08/20/2024] Open
Abstract
In addition to the cardinal motor symptoms, pain is a major non-motor symptom of Parkinson's disease (PD). Neuroinflammation in the substantia nigra pars compacta and dorsal striatum is involved in neurodegeneration in PD. But the polarization of microglia and astrocytes in the dorsal striatum and their contribution to motor deficits and hyperalgesia in PD have not been characterized. In the present study, we observed that hemiparkinsonian mice established by unilateral 6-OHDA injection in the medial forebrain bundle exhibited motor deficits and mechanical allodynia. In these mice, both microglia and astrocytes in the dorsal striatum were activated and polarized to M1/M2 microglia and A1/A2 astrocytes as genes specific to these cells were upregulated. These effects peaked 7 days after 6-OHDA injection. Meanwhile, striatal astrocytes in parkinsonian mice also displayed hyperpolarized membrane potentials, enhanced voltage-gated potassium currents, and dysfunction in inwardly rectifying potassium channels and glutamate transporters. Systemic administration of minocycline, a microglia inhibitor, attenuated the expression of genes specific to M1 microglia and A1 astrocytes in the dorsal striatum (but not those specific to M2 microglia and A2 astrocytes), attenuated the damage in the nigrostriatal dopaminergic system, and alleviated the motor deficits and mechanical allodynia in parkinsonian mice. By contrast, local administration of minocycline into the dorsal striatum of parkinsonian mice mitigated only hyperalgesia. This study suggests that M1 microglia and A1 astrocytes in the dorsal striatum may play important roles in the development of pathophysiology underlying hyperalgesia in the early stages of PD.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Lin Shen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
5
|
Bhusal A, Kim JH, Kim SC, Hwang EM, Ryu H, Ali MS, Park SC, Lee WH, Suk K. The microglial innate immune protein PGLYRP1 mediates neuroinflammation and consequent behavioral changes. Cell Rep 2024; 43:113813. [PMID: 38393947 DOI: 10.1016/j.celrep.2024.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Peptidoglycan recognition protein 1 (PGLYRP1) is a pattern-recognition protein that mediates antibacterial actions and innate immune responses. Its expression and role in neuroinflammatory conditions remain unclear. We observed the upregulation of PGLYRP1 in inflamed human and mouse spinal cord and brain, with microglia being the primary cellular source. Experiments using a recombinant PGLYRP1 protein show that PGLYRP1 potentiates reactive gliosis, neuroinflammation, and consequent behavioral changes in multiple animal models of neuroinflammation. Furthermore, shRNA-mediated knockdown of Pglyrp1 gene expression attenuates this inflammatory response. In addition, we identify triggering receptor expressed on myeloid cell-1 (TREM1) as an interaction partner of PGLYRP1 and demonstrate that PGLYRP1 promotes neuroinflammation through the TREM1-Syk-Erk1/2-Stat3 axis in cultured glial cells. Taken together, our results reveal a role for microglial PGLYRP1 as a neuroinflammation mediator. Finally, we propose that PGLYRP1 is a potential biomarker and therapeutic target in various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Md Sekendar Ali
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
6
|
Tan Q, Zhang C, Rao X, Wan W, Lin W, Huang S, Ying J, Lin Y, Hua F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: mechanisms and therapeutic application. Front Immunol 2024; 15:1358719. [PMID: 38533497 PMCID: PMC10963420 DOI: 10.3389/fimmu.2024.1358719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.
Collapse
Affiliation(s)
- Qianqian Tan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Lin
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shupeng Huang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Ge Y, Wu J, Zhang L, Huang N, Luo Y. A New Strategy for the Regulation of Neuroinflammation: Exosomes Derived from Mesenchymal Stem Cells. Cell Mol Neurobiol 2024; 44:24. [PMID: 38372822 PMCID: PMC10876823 DOI: 10.1007/s10571-024-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Neuroinflammation is an important pathogenesis of neurological diseases and causes a series of physiopathological changes, such as abnormal activation of glial cells, neuronal degeneration and death, and disruption of the blood‒brain barrier. Therefore, modulating inflammation may be an important therapeutic tool for treating neurological diseases. Mesenchymal stem cells (MSCs), as pluripotent stem cells, have great therapeutic potential for neurological diseases due to their regenerative ability, immunity, and ability to regulate inflammation. However, recent studies have shown that MSC-derived exosomes (MSC-Exos) play a major role in this process and play a key role in neuroprotection by regulating neuroglia. This review summarizes the recent progress made in regulating neuroinflammation by focusing on the mechanisms by which MSC-Exos are involved in the regulation of glial cells through signaling pathways such as the TLR, NF-κB, MAPK, STAT, and NLRP3 pathways to provide some references for subsequent research and therapy.
Collapse
Affiliation(s)
- Ying Ge
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jingjing Wu
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Li Zhang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Bhusal A, Nam Y, Seo D, Lee WH, Suk K. Cathelicidin-Related Antimicrobial Peptide Negatively Regulates Bacterial Endotoxin-Induced Glial Activation. Cells 2022; 11:cells11233886. [PMID: 36497142 PMCID: PMC9738883 DOI: 10.3390/cells11233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have suggested that mouse cathelicidin-related antimicrobial peptide (CRAMP) and its human homologue leucine leucine-37 (LL-37) play critical roles in innate immune responses. Here, we studied the role of mouse CRAMP in bacterial endotoxin lipopolysaccharide (LPS)-induced neuroinflammation. CRAMP peptide treatment significantly inhibited LPS-mediated inflammatory activation of glial cells in culture. In the animal model of LPS-induced neuroinflammation, CRAMP expression was highly induced in multiple cell types, such as astrocytes, microglia, and neurons. Injection of exogenous CRAMP peptide significantly inhibited inflammatory cytokine expression and the reactivity of glial cells in the mouse brain following intraperitoneal or intracerebroventricular LPS administration. Altogether, results of the study suggest that CRAMP plays an important part in containment of LPS-induced neuroinflammatory responses, and that CRAMP can be exploited for the development of targeted therapies for neuroinflammatory conditions associated with bacterial infection.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4835; Fax: +82-53-256-1566
| |
Collapse
|
9
|
Naudé PJW, Pariante C, Hoffman N, Koopowitz SM, Donald KA, Zar HJ, Stein DJ. Antenatal maternal depression, early life inflammation and neurodevelopment in a South African birth cohort. Brain Behav Immun 2022; 105:160-168. [PMID: 35803482 DOI: 10.1016/j.bbi.2022.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/07/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Antenatal exposure to maternal psychological adversity, including depression, increases the risk of impaired neurodevelopment in children. The underlying biological mechanisms remain unclear, especially in early life during critical windows of development and maturation. This study investigated the association of antenatal maternal depression, maternal and early life inflammatory markers and neurodevelopmental outcomes in children at 2 years of age. METHODS A subgroup of mothers and their children (n = 255) that were enrolled in a South African birth cohort study, the Drakenstein Child Health Study, were followed from the antenatal period through to 2 years of child age. Maternal depressive symptoms were measured by the Beck Depression Inventory (BDI-II) at 26 weeks gestation. Serum inflammatory markers [granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), interleukin IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, tumour necrosis factor-α (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL) and metalloproteinase-9 (MMP-9)] were measured in mothers at enrolment and in their children at 6-10 weeks and at 2 years. Neurodevelopment was assessed at 2 years using the Bayley Scales of Infant and Toddler Development III. RESULTS Antenatal depressive symptoms (present in 25% of the mothers) were significantly associated with higher levels of IL-7 (p = 0.008), IL-8 (p = 0.019) and TNF-α (p = 0.031) in the mothers after correcting for sociodemographic and lifestyle factors. Serum IL-1β and NGAL levels were significantly elevated over time in children born to mothers with depressive symptoms compared to those without depression, after controlling for maternal and child health and sociodemographic factors. Elevated infant IL-1β at 6-10 weeks of age partially mediated the association of maternal depressive symptoms with poorer language scores at 2 years. CONCLUSION Alterations in early life immunity, as reflected by elevated IL-1β, is a potential pathway through which antenatal maternal depressive symptoms may impact language development in young children.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | | | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, South Africa; Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SA-MRC Unit on Child and Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| |
Collapse
|
10
|
Shin HJ, Jin Z, An HS, Park G, Lee JY, Lee SJ, Jang HM, Jeong EA, Kim KE, Lee J, Yoo DY, Roh GS. Lipocalin-2 Deficiency Reduces Hepatic and Hippocampal Triggering Receptor Expressed on Myeloid Cells-2 Expressions in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Brain Sci 2022; 12:brainsci12070878. [PMID: 35884685 PMCID: PMC9312821 DOI: 10.3390/brainsci12070878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Lipocalin-2 (LCN2) is an acute-phase protein that has been linked to insulin resistance, diabetes, and neuroinflammatory diseases. Triggering receptor expressed on myeloid cells-2 (TREM2) has been also implicated in microglia-mediated neuroinflammation. However, the potential role of LCN2 on TREM2 in diabetic mouse models is not fully understood. Methods: We investigated hepatic and hippocampal TREM2 expressions in high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic LCN2 knockout (KO) mice. Results: In addition to increased serum LCN2 level, diabetic wild-type (WT) mice had insulin resistance and hepatic steatosis. However, LCN2 deletion attenuated these metabolic parameters in diabetic mice. We also found that LCN2 deletion reduced hepatic inflammation and microglial activation in diabetic mice. In particular, diabetic LCN2 KO mice had a reduction in hepatic and hippocampal TREM2 expressions compared with diabetic WT mice. Furthermore, we found that many TREM2-positive Kupffer cells and microglia in diabetic WT mice were reduced through LCN2 deletion. Conclusions: These findings indicate that LCN2 may promote hepatic inflammation and microglial activation via upregulation of TREM2 in diabetic mice.
Collapse
Affiliation(s)
- Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Zhen Jin
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.J.); (G.P.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.J.); (G.P.)
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Dae Young Yoo
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.J.S.); (H.S.A.); (J.Y.L.); (S.J.L.); (H.M.J.); (E.A.J.); (K.E.K.); (J.L.); (D.Y.Y.)
- Correspondence: ; Tel.: +82-55-772-8035
| |
Collapse
|