1
|
Gavabari FA, Rastegari-Pouyani M, Afshar S, Mazdeh M, Bahramian A, Shahidi S, Talebi-Ghane E, Chalabi M, Eftekharian MM. Expression levels of protein inhibitor of activated STAT (PIAS) family genes in Parkinson's disease patients: results from a case-control study. Acta Neurol Belg 2025; 125:727-735. [PMID: 40016540 DOI: 10.1007/s13760-025-02752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common progressive neurological disorders characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. In recent years, PIAS family proteins have been proposed as key factors in the development of neurodegenerative diseases. The aim of this study was to investigate the expression levels of PIAS family genes in patients with PD and compare them with those in the healthy control group. METHODS The expression of PIAS family genes in the peripheral blood cells was investigated by RT-qPCR technique and the results were statistically analyzed using R software. RESULTS PIAS4 gene expression was significantly lower in PD patients compared to the control group (p = 0.016), while we found no significant change in the expression of other PIAS genes between PD patients and healthy control group. Considering gender, the expression of PIAS3 was higher in males than that in females (p = 0.024). Also, significant downregulations in PIAS3 and PIAS4 genes were observed with increasing age, especially in men regardless of being patient or healthy (p = 0.04 and 0.001, respectively). In the correlation analysis, there were significant positive pairwise correlations between PIAS family members. Also, significant negative correlations between the expression of PIAS3 and PIAS4 genes with age were found. CONCLUSION These findings show that part of the disruption of immune system regulation occurring in PD is probably related to the expression of PIAS family genes and that these proteins, especially PIAS4, can play an important role in the inflammatory and pathophysiological mechanisms of PD.
Collapse
Affiliation(s)
- Fariba Akbari Gavabari
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Fahmideh Blvd, Hamadan, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Fahmideh Blvd, Hamadan, Iran
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Bahramian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Fahmideh Blvd, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elahe Talebi-Ghane
- Modeling of Noncommunicable Diseases Research Center, Institute of Health Sciences and Technologies, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Clinical Research Development Unit of Fatemieh Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Chalabi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Fahmideh Blvd, Hamadan, Iran
| | - Mohammad Mahdi Eftekharian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Fahmideh Blvd, Hamadan, Iran.
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Cai Z, Meng K, Yu T, Xi Y, Yuan Z, Wang X, Wang C, Li L, Fu X. IFN-γ-mediated suppression of ANGPT2-Tie2 in endothelial cells facilitates tumor vascular normalization during immunotherapy. Front Immunol 2025; 16:1551322. [PMID: 40370455 PMCID: PMC12075545 DOI: 10.3389/fimmu.2025.1551322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Tumor angiogenesis is a critical biological hallmark of cancer, which involves multiple molecularly regulated signaling pathways, including the angiopoietin (ANGPT)-Tie2 and the vascular endothelial growth factor (VEGF) signaling pathways. Despite initial optimism, targeting tumor angiogenesis in the treatment of lung adenocarcinoma (LUAD) has been unsatisfactory. Currently, monotherapy with PD-1/PD-L1 inhibitors, or their combination with bevacizumab, is considered the standard therapeutic approach for LUAD. Recent studies have shown that immunotherapy suppresses tumor angiogenesis and facilitates vascular normalization. However, whether and how anti-PD-L1 therapy influences tumor vasculature remains unclear. Methods To investigate the impact of immunotherapy on the vasculature of LUAD, a mouse model of lung adenocarcinoma was established by subcutaneous implantation of Lewis lung carcinoma cells in vivo. The effects of different treatments on microvessel density and pericyte coverage were explored, and the expression of angiogenesis-related factors was analyzed. Furthermore, to explore the molecular mechanisms through which IFN-γ regulates tumor blood vessels during immunotherapy, we elucidated the specific mechanisms in vitro by means of techniques such as siRNA, ChIP, RT-qPCR, Western blot, and immunofluorescence. Finally, the effects of IFN-γ on the proliferation, migration, and angiogenic function of endothelial cells (ECs) were evaluated through CCK-8, Transwell, and HUVEC tube formation assays. Results Employing a mouse model of LUAD, we demonstrated that PD-L1 blockade therapy inhibits tumor angiogenesis and normalizes vasculature in an IFN-γ-signaling-dependent manner. Notably, anti-PD-L1 therapy reduced Tie2 and ANGPT2 expression, and these effects were reversed by the JAK1/2 inhibitor. Mechanistically, we demonstrated that IFN-γ inhibited Tie2 and ANGPT2 expression in ECs, and suppressed ANGPT2 gene transcription through the AKT-FOXO1 signaling pathway. Interestingly, IFN-γ-mediated activation of STAT1 exerts negative regulation by directly binding to the promoter regions of the ANGPT2 and TEK genes. Functionally, IFN-γ limits the migration, proliferation, and tube formation of ECs. Discussion In conclusion, our results revealed a novel mechanism wherein IFN-γ-mediated inhibition of ANGPT2-Tie2 facilitates vascular normalization during immunotherapy in LUAD, which performs an essential function in the antitumor efficacy of immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| |
Collapse
|
3
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Ganguly A, Dulek B, Otaizo-Carrasquero F, Song B, Tao S, Park YD, Scott TL, Höltermann TA, Schinazi RF, Chittiboina P, Billioux BJ, Hammoud DA, Olszewski MA, Williamson PR. Pathway-instructed therapeutic selection of ruxolitinib reduces neuroinflammation in fungal postinfectious inflammatory syndrome. SCIENCE ADVANCES 2025; 11:eadi9885. [PMID: 40117367 PMCID: PMC11927619 DOI: 10.1126/sciadv.adi9885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Therapies to reduce neuroinflammation following resolution of acute central nervous system (CNS) infections are urgently needed, particularly for patients with non-HIV-associated cryptococcal meningoencephalitis complicated by a postinfectious inflammatory response syndrome (cPIIRS). To identify druggable targets in cPIIRS, patient cerebral spinal fluid samples underwent transcriptional analysis, revealing a Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway dominance in neuroinflammatory gene signatures. MurinecPIIRS models recapitulated this pathway predominance and treatment with the JAK inhibitor ruxolitinib, confirmed a mechanistic requirement for this pathway in disease pathology. Ruxolitinib treatment improved markers of neuronal damage, reduced activated T cell and myeloid cells, and improved weight. On the basis of these findings, we conducted a first-in-human ruxolitinib treatment of patients with cPIIRS (NCT00001352). Ruxolitinib treatment of six patients led to demonstrated tolerability, reductions in inflammatory biomarkers and activated immune cells, and improved brain imaging. These results advocate for pathway-instructed therapeutics in neuroinflammatory diseases and endorse JAK inhibitors in further clinical studies of cPIIRS.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brittany Dulek
- Integrated Data Science Section, NIAID, NIH, Bethesda, MD, USA
| | | | - Brian Song
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Sijia Tao
- Center for Viroscience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School ofMedicine and Children‘s Healthcare of Atlanta, Atlanta, GA, USA
- Center for Acquired Immunodeficiency Syndrome (AIDS) Research, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri L. Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tracey-Ann Höltermann
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Raymond F. Schinazi
- Center for Viroscience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School ofMedicine and Children‘s Healthcare of Atlanta, Atlanta, GA, USA
- Center for Acquired Immunodeficiency Syndrome (AIDS) Research, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | | | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor Veterans Affairs (VA) Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
4
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates muscle inflammation-induced nociception in neonatal mice. Brain Behav Immun 2025; 125:198-211. [PMID: 39716683 PMCID: PMC11903163 DOI: 10.1016/j.bbi.2024.12.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1/C-C motif chemokine ligand 2 (MCP1/CCL2) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving chemokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
Affiliation(s)
- Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Prakriti Gupta
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Namrata G R Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Clark DN, Brown SV, Xu L, Lee RL, Ragusa JV, Xu Z, Milner JD, Filiano AJ. Prolonged STAT1 signaling in neurons causes hyperactive behavior. Brain Behav Immun 2025; 124:1-8. [PMID: 39542073 PMCID: PMC11745914 DOI: 10.1016/j.bbi.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The interferon (IFN)-induced STAT1 signaling pathway is a canonical immune pathway that has also been implicated in regulating neuronal activity. The pathway is enriched in brains of individuals with autism spectrum disorder (ASD) and schizophrenia (SZ). Over-activation of the STAT1 pathway causes pathological transcriptional responses, however it is unclear how these responses might translate into behavioral phenotypes. We hypothesized that prolonged STAT1 signaling in neurons would be sufficient to cause behavioral deficits associated with neurodevelopmental disorders. In this study, we developed a novel mouse model with the clinical STAT1 gain-of-function mutation, T385M, in neurons. These mice were hyperactive and displayed neural hypoactivity with less neuron counts in the caudate putamen. Driving the STAT1 gain-of-function mutation exclusively in dopaminergic neurons, which project to the caudate putamen of the dorsal striatum, mimicked some hyperactive behaviors without a reduction of neurons. Moreover, we demonstrated that this phenotype is neuron specific, as mice with prolonged STAT1 signaling in all excitatory or inhibitory neurons or in microglia were not hyperactive. Overall, these findings suggest that STAT1 signaling in neurons is a crucial player in regulating striatal neuron activity and aspects of motor behavior.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Shelby V Brown
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Rae-Ling Lee
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joey V Ragusa
- Department of Pathology, Duke University, Durham, NC, USA
| | - Zhenghao Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Du Y, Yang L, Wang X, Jiang N, Zhou Y, Chen R, Li H. Proteome Profiling of Experimental Autoimmune Encephalomyelitis Mouse Model and the Effect of a SUMO E1 Inhibitor. J Proteome Res 2024; 23:5312-5325. [PMID: 39568369 DOI: 10.1021/acs.jproteome.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases, causing demyelination and inflammation in the central nervous system. The pathology of MS has been extensively studied using the experimental autoimmune encephalomyelitis (EAE) mouse model. However, the molecular mechanisms are still largely unclear and require further investigation. In this study, we carried out quantitative proteomic analysis of the brain and spinal cord tissues in mice induced with EAE using a data-independent acquisition strategy and identified 744 differentially regulated proteins in the brain and 741 in the spinal cord. The changed proteins were highly related with phagocytosis, lysosomal enzymes, inflammasome activation, complements, and synaptic loss processes. Moreover, gene set enrichment analysis revealed the elevation of the SUMOylation process in EAE with the increase of SUMOylation-related enzymes and modification targets. Furthermore, to test the possibility of treating MS by targeting SUMOylation, we explored the application of a selective SUMO E1 inhibitor, TAK-981. Intriguingly, TAK-981 suppressed the global SUMOylation level in the brain and significantly alleviated the symptoms of EAE in mice. Our findings contribute to a better understanding of MS pathology, reveal the important role of SUMOylation in disease progression, and demonstrate the potential of the SUMO E1 inhibitor as a novel treatment for MS.
Collapse
Affiliation(s)
- Yingdong Du
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Linlin Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoxiao Wang
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanting Zhou
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hongyan Li
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
7
|
Li C, Ren S, Yan C, Wang C, Jiang T, Kang Y, Chen J, Xiong H, Guo J, Jiang G, Liu S, Nie P, Chen Z. HES1 revitalizes the functionality of aged adipose-derived stem cells by inhibiting the transcription of STAT1. Stem Cell Res Ther 2024; 15:399. [PMID: 39501364 PMCID: PMC11539794 DOI: 10.1186/s13287-024-04002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The effectiveness of adipose-derived stem cells (ADSCs) in therapy diminishes with age. It has been reported that transcription factors (TFs) play a crucial role in the aging and functionality of stem cells. Nevertheless, there is limited understanding regarding the involvement of TFs in the aging mechanism of ADSCs. METHODS RNA sequencing (RNA-seq) was utilized to discern the differentially expressed genes in ADSCs obtained from donors of varying ages. TFs exhibiting significant variations across age groups were identified and subsequently validated. ADSCs were manipulated to exhibit either enhanced expression or reduced levels of HES1 and STAT1 via lentivirus transfection and small interfering RNA (siRNA) techniques. The impact of these genetic alterations on ADSCs' proliferation, migration, and cellular senescence was assessed using EdU, transwell, and senescence-activated β-galactosidase (SA-β-gal) staining assays. The DNA sequences bound by HES1 were investigated through the CUT & Tag assay. Lastly, the therapeutic efficacy of aged ADSCs with HES1 overexpression was evaluated in skin injury model of male Sprague-Dawley rats. RESULTS 678 genes showed differential expression between ADSCs obtained from young and old donors (Y-ADSCs and O-ADSCs), with 47 of these genes being TFs. Notably, the expression of the TF hairy and enhancer of split 1 (HES1) was notably reduced in ADSCs from old donors. Introducing HES1 overexpression in aged ADSCs resulted in improved cellular function and the suppression of cellular senescence, while reducing HES1 levels in young ADSCs had the opposite effect. Mechanistically, HES1 was found to interact with the promoter region of another TF, signal transducer and activator of transcription 1 (STAT1), to inhibit its transcription. Knocking down STAT1 could fully reverse the negative effects caused by decreased HES1 in ADSCs, leading to a reduction in the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-8. Ultimately, restoring HES1 expression in aged ADSCs demonstrated enhanced therapeutic potential in promoting skin wound healing. CONCLUSION HES1 acts as an inhibitor of cellular senescence in the aging progression of ADSCs through the modulation of STAT1 expression, suggesting a promising avenue for rejuvenating senescent ADSCs and improving wound healing.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jing Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, Hubei, 430000, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengjuan Nie
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
8
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Fadaka AO, Dourson AJ, Hofmann MC, Gupta P, Raut NGR, Jankowski MP. The intersection of endocrine signaling and neuroimmune communication regulates neonatal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605393. [PMID: 39211258 PMCID: PMC11361094 DOI: 10.1101/2024.07.26.605393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates. We found that local GH treatment inhibited neonatal inflammatory myalgia but appeared to do so through a unique signal transducer and activator of transcription (STAT) dependent pathway within sensory neurons. The STAT1 transcription factor appeared to regulate peripheral inflammation itself by modulation of monocyte chemoattractant protein 1 (MCP1) release from sensory neurons. Data suggests that STAT1 upregulation, downstream of GH signaling, contributes to neonatal nociception during muscle inflammation through a novel neuroimmune loop involving cytokine release from primary afferents. Results could uncover new ways to treat muscle pain and inflammation in neonates.
Collapse
|
10
|
Liu H, Yang H, You M, Zhang S, Huang S, Tan X, Liu Q, Jiang C, Xie L. Discovery of Potential Drug Targeting Key Genes in Alzheimer's Disease: Insights from Transcriptome Analysis and Molecular Docking. J Mol Neurosci 2024; 74:56. [PMID: 38802701 DOI: 10.1007/s12031-024-02208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that presents a significant global health challenge. To explore drugs targeting key genes in AD, R software was used to analyze the data of single nuclei transcriptome from human cerebral frontal cortex in AD, and the differentially expressed genes (DEGs) were screened. Then the gene ontology (GO) analysis, Kyoto gene and genome encyclopedia (KEGG) pathway enrichment and protein-protein interaction (PPI) network were analyzed. The hub genes were calculated by Cytoscape software. Molecular docking and molecular dynamics simulation were used to evaluate and visualize the binding between candidate drugs and key genes. A total of 564 DEGs were screened, and the hub genes were ISG15, STAT1, MX1, IFIT3, IFIT2, RSAD2, IFIT1, IFI44, IFI44L and DDX58. Enrichment terms mainly included response to virus, IFN-γ signaling pathway and virus infection. Diclofenac had good binding effect with IFI44 and IFI44L. Potential drugs may act on key gene targets and then regulate biological pathways such as virus response and IFN-γ-mediated signal pathway, so as to achieve anti-virus, improve immune balance and reduce inflammatory response, and thus play a role in anti-AD.
Collapse
Affiliation(s)
- Hanjie Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hui Yang
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610200, Sichuan, China
| | - Maochun You
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Siyu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Sihan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xin Tan
- Affiliated Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610041, Sichuan, China
| | - Qi Liu
- Acupuncture and Tuina School, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Cen Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lushuang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|