1
|
Park JH, Back DB, Guo S, Tanaka M, Takase H, Whalen MJ, Arai K, Hayakawa K, Lo EH. Effects of mitochondrial O-GlcNAcylation in pericytes after mechanical injury. Brain Res 2025; 1859:149647. [PMID: 40250747 DOI: 10.1016/j.brainres.2025.149647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Damage to vascular cells comprise an important part of traumatic brain injury (TBI) but the underlying pathophysiology remains to be fully elucidated. Here, we investigate the loss of O-Linked β-N-acetylglucosamine(O-GlcNAc) modification (O-GlcNAcylation) and mitochondrial disruption in vascular pericytes as a candidate mechanism. In mouse models in vivo, TBI rapidly induces vascular oxidative stress and down-regulates mitochondrial O-GlcNAcylation. In pericytes but not brain endothelial cultures in vitro, mechanical stretch injury down-regulates mitochondrial O-GlcNAcylation. This is accompanied by disruptions in mitochondrial dynamics, comprising a decrease in mitochondrial fusion and an increase in mitochondrial fission proteins. Pharmacologic rescue of endogenous mitochondrial O-GlcNAcylation with an O-GlcNAcase inhibitor Thiamet-G or addition of exogenous O-GlcNAc-enhanced extracellular mitochondria ameliorates the mitochondrial disruption in pericytes damaged by mechanical injury. Finally, in a pericyte-endothelial co-culture model, mechanical injury increased trans-cellular permeability; adding Thiamet-G or O-GlcNAc-enhanced extracellular mitochondria rescued trans-cellular permeability following mechanical injury. These proof-of-concept findings suggest that mitochondrial O-GlcNAcylation in pericytes may represent a novel therapeutic target for ameliorating oxidative stress and vascular damage after mechanical injury following TBI.
Collapse
Affiliation(s)
- Ji Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Dong Bin Back
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Masayoshi Tanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Zhou Y, Qiao S, Zhang L, Liu M, Ji Q, Zhang B, Gao H, Zhou S, Liu D. Hybrid membrane-coated Cyclosporine A nanocrystals preventing secondary brain injury via alleviating neuroinflammatory and oxidative stress. J Control Release 2025; 383:113795. [PMID: 40311689 DOI: 10.1016/j.jconrel.2025.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Secondary brain injury (SBI), a prevalent complication following traumatic brain injury, remains a critical clinical challenge due to the lack of effective therapeutic interventions. Mitochondrial dysfunction in injured neurons and microglia has been identified as a pivotal driver of SBI pathogenesis. Cyclosporine A (CsA) exerts neuroprotective effects by inhibiting the over opening of the mitochondrial permeability transition pore, thereby preserving mitochondrial dysfunction in both neurons and microglia. These properties render CsA a promising candidate for SBI treatment. However, CsA shows systemic distribution and insufficient central nervous system penetration. In this study, a biomimetic SBI-targeted CsA nanocrystal system (CsA-NC@M-PB) was prepared by using hybrid membranes derived from platelets and microglia. A large amount of CsA-NC@M-PB actively accumulated in the damaged brain tissue in mild SBI mice. Mechanistically, CsA-NC@M-PB effectively attenuated mitochondrial dysfunction in both neuron and microglia, and promoted microglial polarization towards M2 phenotype by suppressing the overproduction of reactive oxygen species. Meanwhile, by suppressing neuroinflammation and enhancing the integrity of the BBB, CsA-NC@M-PB protected neuron from apoptosis and improved directional learning and memory abilities of mild SBI mice. These findings collectively demonstrated that CsA-NC@M-PB was a therapeutically viable strategy for SBI management.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Sai Qiao
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Luoqi Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Liu X, Xia J, Shao W, Li X, Yuan D, Xie J, Zhang L, Tang Y, Zhao H, Wu P. Adhesion-Related Pathways and Functional Polarization of Astrocytes in Traumatic Brain Injury: Insights from Single-cell RNA Sequencing. Neuromolecular Med 2025; 27:30. [PMID: 40287916 DOI: 10.1007/s12017-025-08858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Traumatic brain injury (TBI) induces profound functional heterogeneity in astrocytes, yet the regulatory mechanisms underlying this diversity remain poorly understood. In this study, we analyzed single-cell RNA sequencing data from the cortex and hippocampus of TBI mouse models to characterize astrocyte subtypes and their functional dynamics. We identified two major reactive subtypes: A1 astrocytes, enriched in inflammatory response, synaptic regulation, and neurodegenerative disease-related pathways; and A2 astrocytes, enriched in lipid metabolism, extracellular matrix (ECM) remodeling, and phagosome formation pathways. These functional differences were consistently observed across datasets with varying injury severities. Notably, adhesion-related pathways-including gap junctions, adherens junctions, and calcium-dependent adhesion-showed significant subtype-specific expression patterns and temporal shifts. Pseudotime trajectory analysis further suggested a potential transition between A1 and A2 states, accompanied by dynamic regulation of adhesion-related genes. Our findings highlight the complex and context-dependent roles of astrocytes in TBI and propose cell adhesion as a key modulator of astrocyte functional polarization.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Ji Xia
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Wenjing Shao
- Department of Anesthesiology, Chongqing Huamei Plastic Surgery Hospital, Chongqing, 400015, China
| | - Xiaoming Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Danfeng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Jingru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Yuqian Tang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Pengfei Wu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China.
| |
Collapse
|
5
|
Sivalingam AM, Sureshkumar DD, Pandurangan V. Cerebellar pathology in forensic and clinical neuroscience. Ageing Res Rev 2025; 106:102697. [PMID: 39988260 DOI: 10.1016/j.arr.2025.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Recent research underscores the cerebellum's growing importance in forensic science and neurology, showing its functions extend beyond motor control, especially in identifying causes of death. Critical neuropathological markers including alpha-synuclein and tau protein aggregates, cellular degeneration, inflammation, and vascular changes are vital for identifying neurodegenerative diseases, injuries, and toxic exposures. Advanced forensic methods, such as Magnetic resonance imaging (MRI), immunohistochemistry, and molecular analysis, have greatly improved the accuracy of diagnoses. Promising new therapies, including neuroprotective agents like resveratrol and transcranial magnetic stimulation (TMS), offer potential in treating cerebellar disorders. The cerebellum's vulnerability to toxins, drugs, and traumatic brain injuries (TBIs) highlights its forensic relevance. Moreover, advancements in genetic diagnostics, such as next-generation sequencing and CRISPR-Cas9, are enhancing the understanding and treatment of genetic conditions like Joubert syndrome and Dandy-Walker malformation. These findings emphasize the need for further research into cerebellar function and its broader significance in both forensic science and neurology.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai, Tamil Nadu 602 105, India.
| | - Darshitha D Sureshkumar
- Department of Forensic Science, NIMS Institute of Allied Medical Science and Technology, (NIMS University), Jaipur, Rajasthan 303121, India
| | - Vijayalakshmi Pandurangan
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai-602 105, Tamil Nadu, India
| |
Collapse
|
6
|
Elazar D, Alvarez N, Drobeck S, Gunn TM. SLC1A4 and Serine Homeostasis: Implications for Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2025; 26:2104. [PMID: 40076728 PMCID: PMC11900201 DOI: 10.3390/ijms26052104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The solute carrier family 1 member 4 (SLC1A4) gene encodes a neutral amino acid transporter, also referred to as alanine-serine-cysteine transporter 1, ASCT1, that helps maintain amino acid balance in the brain and periphery. In the brain, SLC1A4 plays an important role in transporting levo (L) and dopa (D) isomers of serine. L-serine is required for many cellular processes, including protein and sphingolipid synthesis, while D-serine is a co-agonist required for normal neurotransmission through N-methyl-D-aspartate receptors. Through its roles transporting L-serine across the blood-brain barrier and regulating synaptic D-serine levels, SLC1A4 helps establish and maintain brain health across the lifespan. This review examines the role of SLC1A4 in neurodevelopment and neurodegeneration and assesses the therapeutic potential of serine supplementation to treat neurodevelopmental symptoms associated with mutations in SLC1A4, as well as schizophrenia, depression, traumatic brain injury, and Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Dana Elazar
- Touro College of Osteopathic Medicine, Touro University, Great Falls, MT 59405, USA; (D.E.); (N.A.); (S.D.)
| | - Natalie Alvarez
- Touro College of Osteopathic Medicine, Touro University, Great Falls, MT 59405, USA; (D.E.); (N.A.); (S.D.)
| | - Sabrina Drobeck
- Touro College of Osteopathic Medicine, Touro University, Great Falls, MT 59405, USA; (D.E.); (N.A.); (S.D.)
| | - Teresa M. Gunn
- Touro College of Osteopathic Medicine, Touro University, Great Falls, MT 59405, USA; (D.E.); (N.A.); (S.D.)
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| |
Collapse
|
7
|
Garcia JP, Armbruster M, Sommer M, Nunez-Beringer A, Dulla CG. Glutamate uptake is transiently compromised in the perilesional cortex following controlled cortical impact. Cereb Cortex 2025; 35:bhaf031. [PMID: 40007051 DOI: 10.1093/cercor/bhaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/03/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), is regulated by the excitatory amino acid transporters glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Following traumatic brain injury, extracellular glutamate levels increase, contributing to excitotoxicity, circuit dysfunction, and morbidity. Increased neuronal glutamate release and compromised astrocyte-mediated uptake contribute to elevated glutamate, but the mechanistic and spatiotemporal underpinnings of these changes are not well established. Using the controlled cortical impact model of TBI and iGluSnFR glutamate imaging, we quantified extracellular glutamate dynamics after injury. Three days postinjury, glutamate release was increased, and glutamate uptake and GLT-1 expression were reduced. Seven and 14 days postinjury, glutamate dynamics were comparable between sham and controlled cortical impact animals. Changes in peak glutamate response were unique to specific cortical layers and proximity to injury. This was likely driven by increases in glutamate release, which was spatially heterogeneous, rather than reduced uptake, which was spatially uniform. The astrocyte K+ channel, Kir4.1, regulates activity-dependent slowing of glutamate uptake. Surprisingly, Kir4.1 was unchanged after controlled cortical impact and accordingly, activity-dependent slowing of glutamate uptake was unaltered. This dynamic glutamate dysregulation after traumatic brain injury underscores a brief period in which disrupted glutamate uptake may contribute to dysfunction and highlights a potential therapeutic window to restore glutamate homeostasis.
Collapse
Affiliation(s)
- Jacqueline P Garcia
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Cellular, Molecular, and Developmental Biology Program, Tufts University School of Medicine, Boston, MA, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Aliana Nunez-Beringer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Green C, Zaman V, Blumenstock K, Banik NL, Haque A. Dysregulation of Metabolic Peptides in the Gut-Brain Axis Promotes Hyperinsulinemia, Obesity, and Neurodegeneration. Biomedicines 2025; 13:132. [PMID: 39857716 PMCID: PMC11763097 DOI: 10.3390/biomedicines13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic peptides can influence metabolic processes and contribute to both inflammatory and/or anti-inflammatory responses. Studies have shown that there are thousands of metabolic peptides, made up of short chains of amino acids, that the human body produces. These peptides are crucial for regulating many different processes like metabolism and cell signaling, as they bind to receptors on various cells. This review will cover the role of three specific metabolic peptides and their roles in hyperinsulinemia, diabetes, inflammation, and neurodegeneration, as well as their roles in type 3 diabetes and dementia. The metabolic peptides glucagon-like peptide 1 (GLP-1), gastric inhibitor polypeptide (GIP), and pancreatic peptide (PP) will be discussed, as dysregulation within their processes can lead to the development of various inflammatory and neurodegenerative diseases. Research has been able to closely investigate the connections between these metabolic peptides and their links to the gut-brain axis, highlighting changes made in the gut that can lead to dysfunction in processes in the brain, as well as changes made in the brain that can lead to dysregulation in the gut. The role of metabolic peptides in the development and potentially reversal of diseases such as obesity, hyperinsulinemia, and type 2 diabetes will also be discussed. Furthermore, we review the potential links between these conditions and neuroinflammation and the development of neurodegenerative diseases like dementia, specifically Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Camille Green
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
| | - Kayce Blumenstock
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Balzamino BO, Cacciamani A, Dinice L, Cecere M, Pesci FR, Ripandelli G, Micera A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins' Release and Neuroprotective Strategies. BIOLOGY 2024; 13:1030. [PMID: 39765697 PMCID: PMC11673524 DOI: 10.3390/biology13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Millions of people worldwide suffer from retinal disorders. Retinal diseases require prompt attention to restore function or reduce progressive impairments. Genetics, epigenetics, life-styling/quality and external environmental factors may contribute to developing retinal diseases. In the physiological retina, some glial cell types sustain neuron activities by guaranteeing ion homeostasis and allowing effective interaction in synaptic transmission. Upon insults, glial cells interact with neuronal and the other non-neuronal retinal cells, at least in part counteracting the biomolecular changes that may trigger retinal complications and vision loss. Several epigenetic and oxidative stress mechanisms are quickly activated to release factors that in concert with growth, fibrogenic and angiogenic factors can influence the overall microenvironment and cell-to-cell response. Reactive Müller cells participate by secreting neurotrophic/growth/angiogenic factors, cytokines/chemokines, cytotoxic/stress molecules and neurogenic inflammation peptides. Any attempt to maintain/restore the physiological condition can be interrupted by perpetuating insults, vascular dysfunction and neurodegeneration. Herein, we critically revise the current knowledge on the cell-to-cell and cell-to-mediator interplay between Müller cells, astrocytes and microglia, with respect to pro-con modulators and neuroprotective/detrimental activities, as observed by using experimental models or analyzing ocular fluids, altogether contributing a new point of view to the field of research on precision medicine.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| | - Michela Cecere
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Francesca Romana Pesci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (A.C.); (M.C.); (F.R.P.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, via di Santo Stefano Rotondo 6, 00184 Rome, Italy; (B.O.B.); (L.D.)
| |
Collapse
|
10
|
Koyama Y, Hamada Y, Fukui Y, Hosogi N, Fujimoto R, Hishinuma S, Ogawa Y, Takahashi K, Izumi Y, Michinaga S. Endothelin-1 increases Na +-K +-2Cl - cotransporter-1 expression in cultured astrocytes and in traumatic brain injury model: An involvement of HIF1α activation. Glia 2024; 72:2231-2246. [PMID: 39166289 DOI: 10.1002/glia.24609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Na+-K+-2Cl- cotransporter-1 (NKCC1) is present in brain cells, including astrocytes. The expression of astrocytic NKCC1 increases in the acute phase of traumatic brain injury (TBI), which induces brain edema. Endothelin-1 (ET-1) is a factor that induces brain edema and regulates the expression of several pathology-related genes in astrocytes. In the present study, we investigated the effect of ET-1 on NKCC1 expression in astrocytes. ET-1 (100 nM)-treated cultured astrocytes showed increased NKCC1 mRNA and protein levels. The effect of ET-1 on NKCC1 expression in cultured astrocytes was reduced by BQ788 (1 μM), an ETB antagonist, but not by FR139317 (1 μM), an ETA antagonist. The involvement of ET-1 in NKCC1 expression in TBI was examined using a fluid percussion injury (FPI) mouse model that replicates the pathology of TBI with high reproducibility. Administration of BQ788 (15 nmol/day) decreased FPI-induced expressions of NKCC1 mRNA and protein, accompanied with a reduction of astrocytic activation. FPI-induced brain edema was attenuated by BQ788 and NKCC1 inhibitors (azosemide and bumetanide). ET-1-treated cultured astrocytes showed increased mRNA and protein expression of hypoxia-inducible factor-1α (HIF1α). Immunohistochemical observations of mouse cerebrum after FPI showed co-localization of HIF1α with GFAP-positive astrocytes. Increased HIF1α expression in the TBI model was reversed by BQ788. FM19G11 (an HIF inhibitor, 1 μM) and HIF1α siRNA suppressed ET-induced increase in NKCC1 expression in cultured astrocytes. These results indicate that ET-1 increases NKCC1 expression in astrocytes through the activation of HIF1α.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yasuhiro Hamada
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yura Fukui
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Nami Hosogi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Rina Fujimoto
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiko Izumi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
11
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
12
|
Castro E Silva JH, Pieropan F, Rivera AD, Butt AM, Costa SL. Agathisflavone Modulates Reactive Gliosis After Trauma and Increases the Neuroblast Population at the Subventricular Zone. Nutrients 2024; 16:4053. [PMID: 39683446 DOI: 10.3390/nu16234053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach. METHODS In this study, we investigated the potential of the flavonoid agathisflavone to modulate astroglial and microglial injury responses and promote neurogenesis in the subventricular zone (SVZ) neurogenic niche. Agathisflavone, or the vehicle in controls, was administered directly into the lateral ventricles in postnatal day (P)8-10 mice by twice daily intracerebroventricular (ICV) injections for 3 days, and brains were examined at P11. RESULTS In the controls, ICV injection caused glial reactivity along the needle track, characterised immunohistochemically by increased astrocyte expression of glial fibrillary protein (GFAP) and the number of Iba-1+ microglia at the lesion site. Treatment with agathisflavone decreased GFAP expression, reduced both astrocyte reactivity and the number of Iba-1+ microglia at the core of the lesion site and the penumbra, and induced a 2-fold increase on the ratio of anti-inflammatory CD206+ to pro-inflammatory CD16/32+ microglia. Notably, agathisflavone increased the population of neuroblasts (GFAP+ type B cells) in all SVZ microdomains by up to double, without significantly increasing the number of neuronal progenitors (DCX+). CONCLUSIONS Although future studies should investigate the underlying molecular mechanisms driving agathisflavone effects on microglial polarization and neurogenesis at different timepoints, these data indicate that agathisflavone could be a potential adjuvant treatment for TBI or central nervous system disorders that have reactive gliosis as a common feature.
Collapse
Affiliation(s)
- Juliana Helena Castro E Silva
- Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil
| | - Francesca Pieropan
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
- Southampton Solent University, E Park Terrace, Southampton SO14 0YN, UK
| | - Andrea Domenico Rivera
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Arthur Morgan Butt
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil
| |
Collapse
|
13
|
Filipi T, Tureckova J, Vanatko O, Chmelova M, Kubiskova M, Sirotova N, Matejkova S, Vargova L, Anderova M. ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model. Front Cell Neurosci 2024; 18:1472374. [PMID: 39449756 PMCID: PMC11499153 DOI: 10.3389/fncel.2024.1472374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are crucial for the functioning of the nervous system as they maintain the ion homeostasis via volume regulation. Pathological states, such as amyotrophic lateral sclerosis (ALS), affect astrocytes and might even cause a loss of such functions. In this study, we examined astrocytic swelling/volume recovery in both the brain and spinal cord of the SOD1 animal model to determine the level of their impairment caused by the ALS-like pathology. Astrocyte volume changes were measured in acute brain or spinal cord slices during and after exposure to hyperkalemia. We then compared the results with alterations of extracellular space (ECS) diffusion parameters, morphological changes, expression of the Kir4.1 channel and the potassium concentration measured in the cerebrospinal fluid, to further disclose the link between potassium and astrocytes in the ALS-like pathology. Morphological analysis revealed astrogliosis in both the motor cortex and the ventral horns of the SOD1 spinal cord. The activated morphology of SOD1 spinal astrocytes was associated with the results from volume measurements, which showed decreased swelling of these cells during hyperkalemia. Furthermore, we observed lower shrinkage of ECS in the SOD1 spinal ventral horns. Immunohistochemical analysis then confirmed decreased expression of the Kir4.1 channel in the SOD1 spinal cord, which corresponded with the diminished volume regulation. Despite astrogliosis, cortical astrocytes in SOD1 mice did not show alterations in swelling nor changes in Kir4.1 expression, and we did not identify significant changes in ECS parameters. Moreover, the potassium level in the cerebrospinal fluid did not deviate from the physiological concentration. The results we obtained thus suggest that ALS-like pathology causes impaired potassium uptake associated with Kir4.1 downregulation in the spinal astrocytes, but based on our data from the cortex, the functional impairment seems to be independent of the morphological state.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Natalia Sirotova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Stanislava Matejkova
- Analytical Laboratory, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
14
|
Vita SM, Cruise SC, Gilpin NW, Molina PE. HISTOLOGICAL COMPARISON OF REPEATED MILD WEIGHT DROP AND LATERAL FLUID PERCUSSION INJURY MODELS OF TRAUMATIC BRAIN INJURY IN FEMALE AND MALE RATS. Shock 2024; 62:398-409. [PMID: 38813916 DOI: 10.1097/shk.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT In preclinical traumatic brain injury (TBI) research, the animal model should be selected based on the research question and outcome measures of interest. Direct side-by-side comparisons of different injury models are essential for informing such decisions. Here, we used immunohistochemistry to compare the outcomes from two common models of TBI, lateral fluid percussion (LFP) and repeated mild weight drop (rmWD) in adult female and male Wistar rats. Specifically, we measured the effects of LFP and rmWD on markers of cerebrovascular and tight junction disruption, neuroinflammation, mature neurons, and perineuronal nets in the cortical site of injury, cortex adjacent to injury, dentate gyrus, and the CA 2/3 area of the hippocampus. Animals were randomized into the LFP or rmWD group. On day 1, the LFP group received a craniotomy, and on day 4, injury (or sham procedure; randomly assigned). The rmWD animals underwent either injury or isoflurane only (randomly assigned) on each of those 4 days. Seven days after injury, brains were harvested for analysis. Overall, our observations revealed that the most significant disruptions were evident in response to LFP, followed by craniotomy only, whereas rmWD animals showed the least residual changes compared with isoflurane-only controls, supporting consideration of rmWD as a mild injury. LFP led to longer-lasting disruptions, perhaps more representative of moderate TBI. We also report that craniotomy and LFP produced greater disruptions in females relative to males. These findings will assist the field in the selection of animal models based on target severity of postinjury outcomes and support the inclusion of both sexes and appropriate control groups.
Collapse
Affiliation(s)
| | - Shealan C Cruise
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | |
Collapse
|
15
|
Zou S, Xu J, Yang W, Chen Z, Shan H, Liu J, Tian D, Wu X, Du Q, Dong X, Jiang L. A two-center prospective cohort study of serum RIP-3 as a potential biomarker in relation to severity and prognosis after severe traumatic brain injury. Neurosurg Rev 2024; 47:433. [PMID: 39141133 DOI: 10.1007/s10143-024-02658-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Receptor-interacting protein kinase-3 (RIP-3) is a key component for inducing necroptosis following acute brain injury. Purpose of this study is to unveil whether serum RIP-3 levels are related to severity and clinical outcomes after human severe traumatic brain injury (sTBI). In this two-center prospective cohort study, serum RIP-3 levels were detected in 127 healthy controls coupled with 127 sTBI patients. The prognostic indicators encompassed posttraumatic 180-day mortality, overall survival and poor prognosis (defined as extended Glasgow outcome scale scores of 1-4). The prognosis associations were verified via multivariate analysis. There was a significant incremental serum RIP-3 levels in patients with sTBI, relative to the controls. RIP-3 levels of patients were independently correlated with Rotterdam Computed Tomography (CT) scores and Glasgow coma scale (GCS) scores, as well as were independently predictive of mortality, overall survival and poor prognosis. Mortality and poor prognosis were effectively predicted by serum RIP-3 levels under the receiver operating characteristic curve. Linear relationships between RIP-3 levels and their risks were verified. Mortality and poor prognosis models of serum RIP-3 levels combined with GCS and Rotterdam CT scores displayed efficient predictive abilities. The two models were graphically represented, which were of clinical stability and value by employing the calibration and decision curves. Increased serum RIP-3 levels after sTBI are closely linked to heightened trauma severity and poor prognosis, signifying that serum RIP-3 may be an encouraging biomarker for evaluating severity and predicting clinical outcome of sTBI.
Collapse
Affiliation(s)
- Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Jian Xu
- Graduate School, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Wenjie Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Hao Shan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
| | - Jin Liu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
| | - Da Tian
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
| | - Xiaoyu Wu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China
| | - Li Jiang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, China.
| |
Collapse
|
16
|
Lagod PP, Abdelli LS, Naser SA. An In Vivo Model of Propionic Acid-Rich Diet-Induced Gliosis and Neuro-Inflammation in Mice (FVB/N-Tg(GFAPGFP)14Mes/J): A Potential Link to Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8093. [PMID: 39125662 PMCID: PMC11311704 DOI: 10.3390/ijms25158093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Evidence shows that Autism Spectrum Disorder (ASD) stems from an interplay of genetic and environmental factors, which may include propionic acid (PPA), a microbial byproduct and food preservative. We previously reported that in vitro treatment of neural stem cells with PPA leads to gliosis and neuroinflammation. In this study, mice were exposed ad libitum to a PPA-rich diet for four weeks before mating. The same diet was maintained through pregnancy and administered to the offspring after weaning. The brains of the offspring were studied at 1 and 5 months postpartum. Glial fibrillary acidic protein (astrocytic marker) was significantly increased (1.53 ± 0.56-fold at 1 M and 1.63 ± 0.49-fold at 5 M) in the PPA group brains. Tubulin IIIβ (neuronal marker) was significantly decreased in the 5 M group. IL-6 and TNF-α expression were increased in the brain of the PPA group (IL-6: 2.48 ± 1.25-fold at 5 M; TNF-α: 2.84 ± 1.16-fold at 1 M and 2.64 ± 1.42-fold, at 5 M), while IL-10 was decreased. GPR41 and p-Akt were increased, while PTEN (p-Akt inhibitor) was decreased in the PPA group. The data support the role of a PPA-rich diet in glia over-proliferation and neuro-inflammation mediated by the GPR41 receptor and PTEN/Akt pathway. These findings strongly support our earlier study on the role of PPA in ASD.
Collapse
Affiliation(s)
- Piotr P. Lagod
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Latifa S. Abdelli
- Health Sciences Department, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Saleh A. Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
17
|
Cheng C, Lu CF, Hsieh BY, Huang SH, Kao YCJ. Anisotropy component of DTI reveals long-term neuroinflammation following repetitive mild traumatic brain injury in rats. Eur Radiol Exp 2024; 8:82. [PMID: 39046630 PMCID: PMC11269550 DOI: 10.1186/s41747-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND This study aimed to investigate the long-term effects of repetitive mild traumatic brain injury (rmTBI) with varying inter-injury intervals by measuring diffusion tensor metrics, including mean diffusivity (MD), fractional anisotropy (FA), and diffusion magnitude (L) and pure anisotropy (q). METHODS Eighteen rats were randomly divided into three groups: short-interval rmTBI (n = 6), long-interval rmTBI (n = 6), and sham controls (n = 6). MD, FA, L, and q values were analyzed from longitudinal diffusion tensor imaging at days 50 and 90 after rmTBI. Immunohistochemical staining against neurons, astrocytes, microglia, and myelin was performed. Analysis of variance, Pearson correlation coefficient, and simple linear regression model were used. RESULTS At day 50 post-rmTBI, lower cortical FA and q values were shown in the short-interval group (p ≤ 0.038). In contrast, higher FA and q values were shown for the long-interval group (p ≤ 0.039) in the corpus callosum. In the ipsilesional external capsule and internal capsule, no significant changes were found in FA, while lower L and q values were shown in the short-interval group (p ≤ 0.028) at day 90. The q values in the external capsule and internal capsule were negatively correlated with the number of microglial cells and the total number of astroglial cells (p ≤ 0.035). CONCLUSION Tensor scalar measurements, such as L and q values, are sensitive to exacerbated chronic injury induced by rmTBI with shorter inter-injury intervals and reflect long-term astrogliosis induced by the cumulative injury. RELEVANCE STATEMENT Tensor scalar measurements, including L and q values, are potential DTI metrics for detecting long-term and subtle injury following rmTBI; in particular, q values may be used for quantifying remote white matter (WM) changes following rmTBI. KEY POINTS The alteration of L and q values was demonstrated after chronic repetitive mild traumatic brain injury. Changing q values were observed in the impact site and remote WM. The lower q values in the remote WM were associated with astrogliosis.
Collapse
Affiliation(s)
- Ching Cheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hui Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
18
|
Overgaard Wichmann T, Hedegaard Højsager M, Hasager Damkier H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front Cell Neurosci 2024; 18:1414662. [PMID: 38818518 PMCID: PMC11137310 DOI: 10.3389/fncel.2024.1414662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.
Collapse
|
19
|
Zhang MX, Hong H, Shi Y, Huang WY, Xia YM, Tan LL, Zhao WJ, Qiao CM, Wu J, Zhao LP, Huang SB, Jia XB, Shen YQ, Cui C. A Pilot Study on a Possible Mechanism behind Olfactory Dysfunction in Parkinson's Disease: The Association of TAAR1 Downregulation with Neuronal Loss and Inflammation along Olfactory Pathway. Brain Sci 2024; 14:300. [PMID: 38671952 PMCID: PMC11048016 DOI: 10.3390/brainsci14040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|