1
|
Pasca L, Romaniello R, Borgatti R, Ciricugno A. New Perspectives on Non-Invasive Cerebellar Stimulation for Social and Affective Functions in Children and Adolescents. CEREBELLUM (LONDON, ENGLAND) 2025; 24:88. [PMID: 40285968 PMCID: PMC12033187 DOI: 10.1007/s12311-025-01844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Cerebellar dysfunction affects socio-affective abilities beyond motor control. Recent studies suggest that non-invasive cerebellar neurostimulation can modulate social cognition networks, offering potential therapeutic benefits for children with autism, ADHD, and mood disorders. However, its application in pediatrics remains largely unexplored. This review summarizes emerging pediatric research on cerebellar transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We discuss their mechanisms, potential benefits, and safety considerations, highlighting preliminary findings that suggest feasibility and effectiveness. Ethical concerns and technical challenges related to pediatric neuroanatomy and stimulation parameters are also addressed. While early results are promising, further clinical trials and neurophysiological studies are essential to optimize protocols and confirm long-term efficacy. Advancing our understanding of cerebellar involvement in socio-affective functions could lead to innovative rehabilitation strategies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ludovica Pasca
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | | | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | | |
Collapse
|
2
|
Mahoney JR, Ayers E, Verghese J. Visual-somatosensory integration as a novel behavioral marker of amyloid pathology. Alzheimers Dement 2025; 21:e14561. [PMID: 40052563 PMCID: PMC11886890 DOI: 10.1002/alz.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 03/10/2025]
Abstract
INTRODUCTION The ability to integrate information across sensory modalities is a vital aspect of everyday functioning and is linked to cognition. Increasing evidence suggests that Alzheimer's disease (AD) pathology manifests in sensory association areas before appearing in higher-order cognitive areas. We examined the role of visual-somatosensory integration (VSI) as a novel behavioral marker of AD-associated amyloid pathology. METHODS This cross-sectional study included 243 adults (77 ± 6.5 years; 52% female) who completed the VSI test and AD biomarker assays. The magnitude of VSI was the independent variable and amyloid-beta probability scores (APS; PrecivityADTM) were the dependent variable. Cognitive status (normal, mild cognitive impairment, or AD) was assigned during case conferences. RESULTS Linear regression revealed an inverse association between the magnitude of VSI and APS (β = -0.16; p ≤ 0.01). As cognitive impairment increased from normal to dementia, the magnitude of VSI decreased (p < 0.05). DISCUSSION Findings provide support for VSI impairment as a new behavioral marker of AD-associated amyloid pathology. HIGHLIGHTS Here we provide support for the magnitude of VSI as a novel behavioral marker of AD-associated amyloid pathology given its significant association with an established, accurate, and reliable biomarker of AD pathology. Adults with normal cognition maintained the highest magnitude of VSI and brain amyloid negative scores. As cognitive impairment increased, the mean magnitude of VSI significantly decreased while amyloid probability scores (APS) increased. In fact, individuals with dementia revealed the lowest magnitude of VSI and the highest APS. Our research continues to emphasize the importance of successful multisensory integration in aging, where the establishment of future novel multisensory-based interventions aimed at preventing disability and optimizing independence could prove valuable.
Collapse
Affiliation(s)
- Jeannette R. Mahoney
- Department of NeurologyDivision of Cognitive and Sensorimotor AgingRenaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Emmeline Ayers
- Department of NeurologyDivision of Cognitive and Sensorimotor AgingRenaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| | - Joe Verghese
- Department of NeurologyDivision of Cognitive and Sensorimotor AgingRenaissance School of MedicineStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
3
|
Mudrik L, Boly M, Dehaene S, Fleming SM, Lamme V, Seth A, Melloni L. Unpacking the complexities of consciousness: Theories and reflections. Neurosci Biobehav Rev 2025; 170:106053. [PMID: 39929381 DOI: 10.1016/j.neubiorev.2025.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
As the field of consciousness science matures, the research agenda has expanded from an initial focus on the neural correlates of consciousness, to developing and testing theories of consciousness. Several theories have been put forward, each aiming to elucidate the relationship between consciousness and brain function. However, there is an ongoing, intense debate regarding whether these theories examine the same phenomenon. And, despite ongoing research efforts, it seems like the field has so far failed to converge around any single theory, and instead exhibits significant polarization. To advance this discussion, proponents of five prominent theories of consciousness-Global Neuronal Workspace Theory (GNWT), Higher-Order Theories (HOT), Integrated Information Theory (IIT), Recurrent Processing Theory (RPT), and Predictive Processing (PP)-engaged in a public debate in 2022, as part of the annual meeting of the Association for the Scientific Study of Consciousness (ASSC). They were invited to clarify the explananda of their theories, articulate the core mechanisms underpinning the corresponding explanations, and outline their foundational premises. This was followed by an open discussion that delved into the testability of these theories, potential evidence that could refute them, and areas of consensus and disagreement. Most importantly, the debate demonstrated that at this stage, there is more controversy than agreement between the theories, pertaining to the most basic questions of what consciousness is, how to identify conscious states, and what is required from any theory of consciousness. Addressing these core questions is crucial for advancing the field towards a deeper understanding and comparison of competing theories.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| | - Melanie Boly
- University of Wisconsin-Madison, Madison, WI, USA
| | - Stanislas Dehaene
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Institut National de la Santé et de la Recherche Médicale (INSERM), Gif-sur-Yvette, France; Collège de France, Paris, France
| | - Stephen M Fleming
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Department of Experimental Psychology, University College London, England, United Kingdom; Functional Imaging Laboratory, University College London, London, England, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, England, United Kingdom
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Dept of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Anil Seth
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Sussex Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Lucia Melloni
- Program on Brain, Mind, and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada; Max Planck Institute for Empirical Aesthetics, Frankfurt am Main Germany
| |
Collapse
|
4
|
Gyulaházi J. Brain under surgical anesthesia: focus on nociception and attention network. Neuroscience 2025; 567:273-280. [PMID: 39716486 DOI: 10.1016/j.neuroscience.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
Surgery endangers the integrity of the body through a continuous stream of noxious stimuli. General anesthesia helps patients cope with the surgery situation. In the first part of our literature review, we present our new knowledge about nociception as described by Sherrington. Anesthesiology researchers have discovered the common mechanism of action of various anesthetics for loss of consciousness (LOC). We review the neural correlates of anesthesia. Maintaining the unconscious state created by anesthetics during surgery is only possible by continuously counteracting nociception. Finally, we present the role of the opioid receptor system in antinociception. Understanding all these processes can help expand our knowledge about nociception, pain and formation of consciousness.
Collapse
Affiliation(s)
- Judit Gyulaházi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Debrecen, Hungary.
| |
Collapse
|
5
|
Ferreira BK, Paz-Simões T, Melo TN, Gonçalves PFR, Kubrusly RCC, de Melo Reis RA, Neves GA, Ferreira GC, Schuck PF. Galactose Impairs Motor Performance and Cerebellar Signaling in Young Male Wistar Rats. Mol Neurobiol 2025:10.1007/s12035-024-04684-6. [PMID: 39913017 DOI: 10.1007/s12035-024-04684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Galactosemias are a group of inborn errors of galactose metabolism that causes different motor symptoms such as ataxia, tremor, and fine motor dysfunction. The objective was to investigate the cerebellar damage caused by an acute galactose administration. Thirty-day-old male and female Wistar rats were used. Animals were randomized into the following groups: I) galactose group, receiving a single subcutaneous administration of galactose; II) control group, receiving the vehicle solution under the same conditions. One, 3 or 24 h after administration, the animals were evaluated in the Rotarod test. A lower motor performance was observed in male rats 3 h after a galactose administration. This effect was not seen in females or with galactose exposure for 1 or 24 h. The activities of acetylcholinesterase and choline acetyltransferase were found unaltered in the cerebellum of males 3 h after galactose injection. We also found lower TH levels in cerebellar hemispheres and higher TH levels in cerebellar vermis 3 h after galactose administration in male rats, without differences in MAO-A or MAO-B activities. Galactose administration resulted in lower p-CREB(Ser133) and GAD67 levels in cerebellar hemispheres, without altering these parameters in cerebellar vermis of male rats. Finally, a decrease in TrkB-FL immunocontent (but not of TrkB-T levels) was observed in male cerebellar hemispheres. The absence of neurochemical alterations 1 h or 24 h after galactose administration indicates a transient effect for this hexose. The signs and symptoms of galactosemic patients underscore the need to study galactose effects in males and females and in various brain areas. Our findings enhance the understanding of therapeutic mechanisms of catecholaminergic drugs, which are proposed as a potential therapy for galactosemia.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Thiago Paz-Simões
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Thairine Neves Melo
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Patricia Felix Rolo Gonçalves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Regina Celia Cussa Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia E Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilda Angela Neves
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos Do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, Rio de Janeiro, RJ, 373, Brazil.
| |
Collapse
|
6
|
Zhang Z. Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity. Brain Topogr 2025; 38:19. [PMID: 39755830 DOI: 10.1007/s10548-024-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases. A total of 24 studies were identified as eligible for inclusion in the present meta-analysis. These studies included 269 foci observed in 58 contrasts (558 patients with ischemic stroke; 526 healthy controls; 38.84% female). The results showed: (1) within-network hypoconnectivity in the sensorimotor network (SMN), default mode network (DMN), frontoparietal network (FPN), and salience network (SN), respectively; (2) across-network hypoconnectivity between the SMN and both of the SN and visual network, and between the FPN and both of the SN and DMN; and (3) across-network hyperconnectivity between the SMN and both of the DMN and FPN, and between the SN and both of the DMN and FPN. Meta-regression showed that hypoconnectivity between the DMN and the FPN became less pronounced as the ischemic stroke phase progressed from the acute to the subacute and chronic phases. This study provides the first meta-analytic evidence of large-scale rsFC dysfunction in ischemic stroke. These dysfunctional biomarkers could help identify patients with ischemic stroke at risk for cognitive, sensory, motor, and emotional impairments and further provide potential insight into developing diagnostic models and therapeutic interventions for rehabilitation and recovery.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Inuggi A, Marenco G, Bode J, Bovio A, Versaggi S, Favilla L, Pereira da Silva B, Picci RL, Amore M, Serafini G, Escelsior A. Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01952-3. [PMID: 39741206 DOI: 10.1007/s00406-024-01952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Recent studies suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). Here, we aimed to characterize the structural alterations of cerebellar lobules in BD, evaluating their possible relation with those occurring in the rest of the brain. One-hundred-fifty-five type I BD patients were recruited and compared with one-hundred-nineteen controls subjects. Cerebral cortical thickness (CT) was evaluated vertex-wise, while cerebellar CT at the level of its twelve lobules. A widespread pattern of cortical thinning was found in several clusters of BD patients. In the cerebellum, we found an anterior thinning (lobule I_II, III, X) and a posterior thickening (crus I, crus II, lobule VI and lobule IX) of its lobules in BD. Exploring the relation between cerebral and cerebellar CT changes in BD patients, after correcting for age and disease duration, the CT of a large subset of cerebral regions, found thinned in BD, were also inversely correlated with the thickening of cerebellar lobule IX. We speculate that this lobule may undergo adaptive changes to compensate the widespread cortical thinning which characterizes BD syndrome. Such a compensatory adaptation of the cerebellum would be similar to that found in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Silvio Versaggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Rocco Luigi Picci
- Dipartimento Di Salute Mentale E Dipendenze Patologiche, ASL3, Liguria, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| |
Collapse
|
8
|
Nishiyama H, Nishiyama N, Zemelman BV. Purkinje cell ablation and Purkinje cell-specific deletion of Tsc1 in the developing cerebellum strengthen cerebellothalamic synapses. J Physiol 2024; 602:6973-7001. [PMID: 39558452 DOI: 10.1113/jp285887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Cerebellar damage early in life often causes long-lasting motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviours. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is a major direct target of the cerebellar nuclei, conveying cerebellar signals to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The ablation of Purkinje cells in the developing cerebellum strengthened cerebellothalamic synapses and enhanced thalamic suprathreshold activities. Purkinje-cell specific deletion of tuberous sclerosis complex subunit 1 (Tsc1), an autism-associated gene for which the protein product negatively regulates the mammalian target of rapamycin, also strengthened cerebellothalamic synapses. However, this strengthening occurred only in homozygous deletion, whereas both homozygous and hemizygous deletion are known to cause autism-like behaviours. These results suggest that, although the cerebellothalamic projection is vulnerable to disturbances in the developing cerebellar cortex, other changes may also drive the behavioural consequences of early cerebellar perturbation. KEY POINTS: Cerebellar damage early in life often causes motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. Recent studies focus on how the developing cerebellum affects the formation and function of the cerebral cortex, the higher-order centre for all behaviours. However, the cerebellum does not directly connect to the cerebral cortex. Here, we studied the consequences of early cerebellar perturbation on the thalamus because it is a direct postsynaptic target of the cerebellum, sending cerebellar signals to the cerebral cortex. Loss of cerebellar Purkinje cells, which are commonly associated with various neurological disorders, strengthened cerebellothalamic synapses, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum. Purkinje cell-specific loss of tuberous sclerosis complex-1, a negative regulator of mammalian target of rapamycin, is an established mouse model of autism. This mouse model also showed strengthened cerebellothalamic synapses.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Li Y, Zheng Y, Rong L, Zhou Y, Zhu Z, Xie Q, Liang Z, Zhao X. Altered Function and Structure of the Cerebellum Associated with Gut-Brain Regulation in Crohn's Disease: a Structural and Functional MRI Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2285-2296. [PMID: 39096431 DOI: 10.1007/s12311-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 08/05/2024]
Abstract
This study employed structural and functional magnetic resonance imaging (MRI) to investigate changes in the function and structure of the cerebellum associated with gut-brain axis (GBA) regulation in patients diagnosed with Crohn's disease (CD). The study comprised 20 CD patients, including 12 with active disease (CD-A) and 8 in remission (CD-R), as well as 21 healthy controls. Voxel-based morphometry (VBM) was utilized for structural analysis of cerebellar gray matter volume, while independent component analysis (ICA) was applied for functional analysis of cerebellar functional connectivity (FC). The results showed significant GMV reduction in the left posterior cerebellar lobe across all CD patients compared to HCs, with more pronounced differences in the CD-A subgroup. Additionally, an increase in mean FC of the cerebellar network was observed in all CD patients, particularly in the CD-A subgroup, which demonstrated elevated FC in the vermis and bilateral posterior cerebellum. Correlation analysis revealed a positive relationship between cerebellar FC and the Crohn's Disease Activity Index (CDAI) and a trend toward a negative association with the reciprocal of the Self-rating Depression Scale (SDS) score in CD patients. The study's findings suggest that the cerebellum may play a role in the abnormal regulation of the GBA in CD patients, contributing to a better understanding of the neural mechanisms underlying CD and highlighting the cerebellum's potential role in modulating gut-brain interactions.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yanling Zheng
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lan Rong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Qian Xie
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
11
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
12
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
13
|
García M, Amayra I, Pérez M, Salgueiro M, Martínez O, López-Paz JF, Allen PA. Cognition in Chiari Malformation Type I: an Update of a Systematic Review. Neuropsychol Rev 2024; 34:952-973. [PMID: 37798373 PMCID: PMC11473453 DOI: 10.1007/s11065-023-09622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Chiari malformation has been classified as a group of posterior cranial fossa disorders characterized by hindbrain herniation. Chiari malformation type I (CM-I) is the most common subtype, ranging from asymptomatic patients to those with severe disorders. Research about clinical manifestations or medical treatments is still growing, but cognitive functioning has been less explored. The aim of this systematic review is to update the literature search about cognitive deficits in CM-I patients. A literature search was performed through the following electronic databases: MEDLINE, PsychINFO, Pubmed, Cochrane Library, Scopus, and Web of Science. The date last searched was February 1, 2023. The inclusion criteria were as follows: (a) include pediatric or adult participants with a CM-I diagnosis, (b) include cognitive or neuropsychological assessment with standardized tests, (c) be published in English or Spanish, and (d) be empirical studies. Articles that did not report empirical data, textbooks and conference abstracts were excluded. After the screening, twenty-eight articles were included in this systematic review. From those, twenty-one articles were focused on adult samples and seven included pediatric patients. There is a great heterogeneity in the recruited samples, followed methodology and administered neurocognitive protocols. Cognitive functioning appears to be affected in CM-I patients, at least some aspects of attention, executive functions, visuospatial abilities, episodic memory, or processing speed. However, these results require careful interpretation due to the methodological limitations of the studies. Although it is difficult to draw a clear profile of cognitive deficits related to CM-I, the literature suggests that cognitive dysfunction may be a symptom of CM-I. This suggest that clinicians should include cognitive assessment in their diagnostic procedures used for CM-I. In summary, further research is needed to determine a well-defined cognitive profile related to CM-I, favoring a multidisciplinary approach of this disorder.
Collapse
Affiliation(s)
- Maitane García
- Department of Psychology, Faculty of Health Sciences, Neuro-E-Motion Research Team, University of Deusto, Bilbao, Spain.
| | - Imanol Amayra
- Department of Psychology, Faculty of Health Sciences, Neuro-E-Motion Research Team, University of Deusto, Bilbao, Spain
| | - Manuel Pérez
- Department of Psychology, Faculty of Health Sciences, Neuro-E-Motion Research Team, University of Deusto, Bilbao, Spain
- Faculty of Health Sciences, Isabel I University, Burgos, Spain
| | - Monika Salgueiro
- Department of Clinical and Health Psychology, and Research Methodology, Faculty of Psychology, University of the Basque Country, Donostia, Spain
| | - Oscar Martínez
- Department of Psychology, Faculty of Health Sciences, Neuro-E-Motion Research Team, University of Deusto, Bilbao, Spain
| | - Juan Francisco López-Paz
- Department of Psychology, Faculty of Health Sciences, Neuro-E-Motion Research Team, University of Deusto, Bilbao, Spain
| | - Philip A Allen
- Conquer Chiari Research Center, Department of Psychology, University of Akron, Akron, OH, USA
| |
Collapse
|
14
|
Vásquez E, Oresti GM, Paez MD, Callegari EA, Masone D, Muñoz EM. Impact of aging on the GABA B receptor-mediated connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606013. [PMID: 39131332 PMCID: PMC11312617 DOI: 10.1101/2024.07.31.606013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
GABA B receptors (GABABRs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABABR and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABABR-transporter interaction. Based on our results, we report that a significant decrease in GABAB2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABABR and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABABR tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABABR's interactome-mediated signaling. Significance Statement This study elucidates age-related changes in cerebellar GABAB receptors (GABABRs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions.
Collapse
Affiliation(s)
- Elena Vásquez
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gerardo M. Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María D. Paez
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Eduardo A. Callegari
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| |
Collapse
|
15
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
16
|
Parikh V, Medley A, Goh HT. Effects of rTMS to primary motor cortex and cerebellum on balance control in healthy adults. Eur J Neurosci 2024; 60:3984-3994. [PMID: 38721642 DOI: 10.1111/ejn.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024]
Abstract
Both the primary motor cortex (M1) and the cerebellum are crucial for postural stability and deemed as potential targets for non-invasive brain stimulation (NIBS) to enhance balance performance. However, the optimal target remains unknown. The purpose of this study was to compare the role of M1 and the cerebellum in modulating balance performance in young healthy adults using facilitatory 5 Hz repetitive transcranial magnetic stimulation (rTMS). Twenty-one healthy young adults (mean age = 27.95 ± 1.15 years) received a single session of 5 Hz rTMS on M1 and the cerebellum in a cross-over order with a 7-day washout period between the two sessions. Three balance assessments were performed on the Biodex Balance system SD: Limits of Stability (LOS), modified Clinical Test of Sensory Interaction on Balance (mCTSIB), and Balance Error Scoring System (BESS). No significant effect of rTMS was found on the LOS. The effect of rTMS on the mCTSIB was mediated by stimulation target, proprioception, and vision (p = .003, ηp 2 = 0.37). Cerebellar rTMS improved the mCTSIB sway index under eyes closed-foam surface condition (p = .02), whereas M1 rTMS did not result in improvement on the mCTSIB. The effect of rTMS on the BESS was mediated by stimulation target, posture, and proprioception (p = .049, ηp 2 = 0.14). Cerebellar rTMS enhanced reactive balance performance during most sensory deprived conditions.
Collapse
Affiliation(s)
- Vyoma Parikh
- School of Physical Therapy, Texas Woman's University, United States
- School of Medicine, Emory University, United States
| | - Ann Medley
- School of Physical Therapy, Texas Woman's University, United States
| | - Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, United States
| |
Collapse
|
17
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
19
|
Choi MCY, Law THP, Chen S, Cheung WSK, Yim C, Ng OKS, Au LWC, Mok VCT, Woo PYM. Case Report: Taxifolin for neurosurgery-associated early-onset cerebral amyloid angiopathy. Front Neurol 2024; 15:1360705. [PMID: 38566852 PMCID: PMC10985332 DOI: 10.3389/fneur.2024.1360705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cases of iatrogenic cerebral amyloid angiopathy (CAA) have been increasingly reported recently, particularly those associated with neurosurgery. Preclinical studies have shown taxifolin to be promising for treating CAA. We describe a young 42-year-old man with a history of childhood traumatic brain injury that required a craniotomy for hematoma evacuation. He later presented with recurrent lobar intracerebral hemorrhage (ICH) decades later, which was histologically confirmed to be CAA. Serial 11C-Pittsburgh compound B positron emission tomography (11C-PiB-PET) imaging showed a 24% decrease in global standardized uptake value ratio (SUVR) at 10 months after taxifolin use. During this period, the patient experienced clinical improvement with improved consciousness and reduced recurrent ICH frequency, which may be partly attributable to the potential amyloid-β (Aβ) clearing the effect of taxifolin. However, this effect seemed to have diminished at 15 months, CAA should be considered in young patients presenting with recurrent lobar ICH with a history of childhood neurosurgery, and serial 11C-PiB-PET scans warrant further validation as a strategy for monitoring treatment response in CAA for candidate Aβ-clearing therapeutic agents such as taxifolin.
Collapse
Affiliation(s)
- Maxwell C. Y. Choi
- Department of Neurosurgery, Kwong Wah Hospital, Kowloon, Hong Kong SAR, China
| | - Tiffany H. P. Law
- Department of Neurosurgery, Kwong Wah Hospital, Kowloon, Hong Kong SAR, China
| | - Sirong Chen
- Research Department, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - William S. K. Cheung
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong SAR, China
| | - Carmen Yim
- Department of Neurosurgery, Kwong Wah Hospital, Kowloon, Hong Kong SAR, China
| | - Oliver K. S. Ng
- Department of Anatomical and Cellular Pathology, Kwong Wah Hospital, Kowloon, Hong Kong SAR, China
| | - Lisa W. C. Au
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Vincent C. T. Mok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peter Y. M. Woo
- Department of Neurosurgery, Kwong Wah Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Masoli S, Sanchez-Ponce D, Vrieler N, Abu-Haya K, Lerner V, Shahar T, Nedelescu H, Rizza MF, Benavides-Piccione R, DeFelipe J, Yarom Y, Munoz A, D'Angelo E. Human Purkinje cells outperform mouse Purkinje cells in dendritic complexity and computational capacity. Commun Biol 2024; 7:5. [PMID: 38168772 PMCID: PMC10761885 DOI: 10.1038/s42003-023-05689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purkinje cells in the cerebellum are among the largest neurons in the brain and have been extensively investigated in rodents. However, their morphological and physiological properties remain poorly understood in humans. In this study, we utilized high-resolution morphological reconstructions and unique electrophysiological recordings of human Purkinje cells ex vivo to generate computational models and estimate computational capacity. An inter-species comparison showed that human Purkinje cell had similar fractal structures but were larger than those of mouse Purkinje cells. Consequently, given a similar spine density (2/μm), human Purkinje cell hosted approximately 7.5 times more dendritic spines than those of mice. Moreover, human Purkinje cells had a higher dendritic complexity than mouse Purkinje cells and usually emitted 2-3 main dendritic trunks instead of one. Intrinsic electro-responsiveness was similar between the two species, but model simulations revealed that the dendrites could process ~6.5 times (n = 51 vs. n = 8) more input patterns in human Purkinje cells than in mouse Purkinje cells. Thus, while human Purkinje cells maintained spike discharge properties similar to those of rodents during evolution, they developed more complex dendrites, enhancing computational capacity.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Diana Sanchez-Ponce
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Nora Vrieler
- Feinberg school of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Abu-Haya
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vitaly Lerner
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
- Brain and Cognitive Sciences and Center of Visual Science, University of Rochester, Rochester, NY, USA
| | - Tal Shahar
- Department of Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Ruth Benavides-Piccione
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Javier DeFelipe
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Yosef Yarom
- Department of Neurobiology and ELSC, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alberto Munoz
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
21
|
Sader M, Waiter GD, Williams JHG. The cerebellum plays more than one role in the dysregulation of appetite: Review of structural evidence from typical and eating disorder populations. Brain Behav 2023; 13:e3286. [PMID: 37830247 PMCID: PMC10726807 DOI: 10.1002/brb3.3286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Dysregulated appetite control is characteristic of anorexia nervosa (AN), bulimia nervosa (BN), and obesity (OB). Studies using a broad range of methods suggest the cerebellum plays an important role in aspects of weight and appetite control, and is implicated in both AN and OB by reports of aberrant gray matter volume (GMV) compared to nonclinical populations. As functions of the cerebellum are anatomically segregated, specific localization of aberrant anatomy may indicate the mechanisms of its relationship with weight and appetite in different states. We sought to determine if there were consistencies in regions of cerebellar GMV changes in AN/BN and OB, as well as across normative (NOR) variation. METHOD Systematic review and meta-analysis using GingerALE. RESULTS Twenty-six publications were identified as either case-control studies (nOB = 277; nAN/BN = 510) or regressed weight from NOR data against brain volume (total n = 3830). AN/BN and OB analyses both showed consistently decreased GMV within Crus I and Lobule VI, but volume reduction was bilateral for AN/BN and unilateral for OB. Analysis of the NOR data set identified a cluster in right posterior lobe that overlapped with AN/BN cerebellar reduction. Sensitivity analyses indicated robust repeatability for NOR and AN/BN cohorts, but found OB-specific heterogeneity. DISCUSSION Findings suggest that more than one area of the cerebellum is involved in control of eating behavior and may be differentially affected in normal variation and pathological conditions. Specifically, we hypothesize an association with sensorimotor and emotional learning via Lobule VI in AN/BN, and executive function via Crus I in OB.
Collapse
Affiliation(s)
- Michelle Sader
- Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| | | | - Justin H. G. Williams
- Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
- School of MedicineGriffith UniversityGold CoastQueenslandAustralia
- Gold Coast Mental Health and Specialist ServicesGold CoastQueenslandAustralia
| |
Collapse
|
22
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Nishiyama H, Nishiyama N, Zemelman BV. Loss of Purkinje cells in the developing cerebellum strengthens the cerebellothalamic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564864. [PMID: 37961231 PMCID: PMC10635038 DOI: 10.1101/2023.11.01.564864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cerebellar damage early in life often causes long-lasting motor, social, and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviors. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviors. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is the direct postsynaptic target of the cerebellum, sending cerebellar outputs to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The hemizygous deletion of the tuberous sclerosis complex-1 ( Tsc1 ) gene in the Purkinje cell-known to cause Purkinje cell hypoactivity and autistic behaviors-did not alter cerebellothalamic synapses or intrinsic membrane properties of thalamic neurons. However, the ablation of Purkinje cells in the developing cerebellum strengthened the cerebellothalamic synapses and enhanced thalamic suprathreshold activities. These results suggest that the cerebellothalamic circuit is resistant to moderate perturbation in the developing cerebellum, such as the reduced firing rate of Purkinje cells, and that autistic behaviors are not necessarily linked to thalamic abnormality. Still, Purkinje cell loss alters the thalamic circuit, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum.
Collapse
|
24
|
Zhong Y, Liu H, Liu G, Liang Y, Dai C, Zhao L, Lai H, Mo L, Tan C, Deng F, Liu X, Chen L. Cerebellar and cerebral white matter changes in Parkinson's disease with resting tremor. Neuroradiology 2023; 65:1497-1506. [PMID: 37548715 DOI: 10.1007/s00234-023-03206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE Cerebellum modulates the amplitude of resting tremor in Parkinson's disease (PD) via cerebello-thalamo-cortical (CTC) circuit. Tremor-related white matter alterations have been identified in PD patients by pathological studies, but in vivo evidence is limited; the influence of such cerebellar white matter alterations on tremor-related brain network, including CTC circuit, is also unclear. In this study, we investigated the cerebral and cerebellar white matter alterations in PD patients with resting tremor using diffusion tensor imaging (DTI). METHODS In this study, 30 PD patients with resting tremor (PDWR), 26 PD patients without resting tremor (PDNR), and 30 healthy controls (HCs) from the Parkinson's Progression Markers Initiative (PPMI) cohort were included. Tract-based spatial statistics (TBSS) and region of interest-based analyses were conducted to determine white matter difference. Correlation analysis between DTI measures and clinical characteristics was also performed. RESULTS In the whole brain, TBSS and region of interest-based analyses identified higher fractional anisotropy (FA) value, lower mean diffusivity (MD) value, and lower radial diffusivity (RD) in multiple fibers. In the cerebellum, TBSS analysis revealed significantly higher FA value, decreased RD value as well as MD value in multiple cerebellar tracts including the inferior cerebellar peduncle (ICP) and middle cerebellar peduncle (MCP) when comparing the PDWR with HC, and higher FA value in the MCP when compared with PDNR. CONCLUSION We identified better white matter integrity in the cerebrum and cerebellum in PDWR indicating a potential association between the cerebral and cerebellar white matter and resting tremor in PD.
Collapse
Affiliation(s)
- Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hongyu Lai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Fen Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
25
|
Nitu NS, Sultana SZ, Haq A, Sumi SA, Bose SK, Sinha S, Kumar S, Haque M. Histological Study on the Thickness of Gray Matter at the Summit and Bottom of Folium in Different Age Groups of Bangladeshi People. Cureus 2023; 15:e42103. [PMID: 37476298 PMCID: PMC10354462 DOI: 10.7759/cureus.42103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
Context The cerebellum is a part of the hindbrain and consists of cortical gray matter (GM) at the surface and a medullary core of white matter (WM). The GM contains a cell body of neurons that helps process and transmit any command type through nerve fibers found in the WM. The main functions of GM in the central nervous system empower persons to control motor activity, recollection, and passion. So, this research aims to assess the thickness of GM at the summit and bottom of folia by histologically studying the cerebellum cortex. Methods The collection of data was a descriptive type of cross-sectional study. The method was the purposive type. This study was conducted from August 2016 to March 2017, and the research was carried out at Mymensingh Medical College's Department of Anatomy, Bangladesh. Specimens containing cerebellum were preserved from Bangladeshi cadavers according to sexes and ages ranging in years. We chose fresh specimens from people who died within the last 12 hours and preserved them in 10% formol saline. The size of the tissue that was collected for the histological study was not more than 2 cm2 and not more than 4-5 mm thick. Then the tissue was placed in 10% formol saline. This fluid was used for quick fixation and partial dehydration of the tissue. After dehydration, each tissue segment is processed for infiltration and embedding separately. Every section was stained with hematoxylin and eosin stain (H&E) before being coated with dibutyl phthalate polystyrene xylene (DPX) coverslips on slides. Result The mean (±SD) thickness of GM at the summit of folium was 886.2±29.7µm in Group A, 925.2±25.9µm in Group B, 912.7±22.3µm in Group C, and 839.9±40.7µm in Group D. Mean (±SD) GM thickness at the bottom of the fissure was 395.6±12.2 µm, 403.9±26.0µm, 380.4±23.4 µm, and 375.8±28.8 µm in Groups A, B, C, and D respectively. Conclusion The thickness of the cortex is an essential factor in the normal development process, and it was similar in the current study. Normal aging, Alzheimer's disease, and other dementias cause reduced GM which makes the cortical sheet thin. Huntington's disease, corticobasal degeneration, amyotrophic lateral sclerosis, and schizophrenia are all examples of neurological disorders. Cortical thinning is typically locally localized, and the progression of atrophy can thus disclose much about a disease's history and causal variables. The present study correspondingly found that GM was reduced after the age of 50 years onward. Furthermore, longitudinal investigations of cortical atrophy have the potential to be extremely useful in measuring the efficacy of a wide range of treatments.
Collapse
Affiliation(s)
| | | | - Ahsanul Haq
- Statistics, Gonoshasthaya-RNA Molecular Diagnostic and Research Center, Dhanmondi, BGD
| | - Sharmin A Sumi
- Anatomy, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, BGD
| | | | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
26
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Francis AN, Camprodon JA, Filbey F. Functional hyperconnectivity between corticocerebellar networks and altered decision making in young adult cannabis users: Evidence from 7T and multivariate pattern analysis. Psychiatry Res Neuroimaging 2023; 331:111613. [PMID: 36924741 DOI: 10.1016/j.pscychresns.2023.111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Decision-making (DM) impairments are important predictors of cannabis initiation and continued use. In cannabis users, how decision-making abnormalities related to structural and functional connectivity in the brain are not fully understood. We employed a three-method multimodal image analysis and multivariate pattern analysis (MVPA) on high dimensional 7 tesla MRI images examining functional connectivity, white matter microstructure and gray matter volume in a group of cannabis users and non-users. Neuroimaging and cognitive analyses were performed on 92 CU and 92 age- matched NU from a total of 187 7T scans. CU were selected on the basis of their scores on the Semi-Structured Assessment for the Genetics of Alcoholism. The groups were first compared on a decision-making test and then on ICA based functional connectivity between corticocerebellar networks. An MVPA was done as a confirmatory analysis. The anatomy of these networks was then assessed using Diffusion Tensor imaging (DTI) and cortical volume analyses. Cannabis Users had significantly higher scores on the Iowa Gambling task (IGT) [Gambling task Percentage larger] and significantly lower scores on the [Gambling task reward Percentage smaller]. Left accumbens (L NAc) volume was significantly larger in cannabis users. DTI analysis between the groups yielded no significant (FWE corrected) differences. Resting state FC analysis of the left Cerebellum region 9 showed enhanced functional connectivity with the right nucleus accumbens and left pallidum and left putamen in CU. In addition, posterior cerebellum showed enhanced functional connectivity (FWE corrected) with 2 nodes of the DMN and left and right paracingulate (sub genual ACC) and the sub callosal cortex in CU. IGT percentage larger scores correlated with posterior cerebellar functional connectivity in non-user women. A multivariate pattern analysis confirmed this cerebellar hyperconnectivity in both groups. Our results demonstrate for the first time that deficits in DM observed in cannabis users are mirrored in hyper connectivity in corticocerebellar networks. Cortical volumes of some of the nodes of these networks showed increases in users. However, the underlying white matter was largely intact in CU. The observed DM deficits and hyper connectivity in resting networks may contribute to difficulties in quitting and/or facilitating relapse.
Collapse
Affiliation(s)
- Alan N Francis
- Department of Neuroscience, University of Texas Rio Grande Valley, TX, United States.
| | - Joan A Camprodon
- Dept of Psychiatry, Massachusetts General Hospital, Harvard Medical School, United States
| | - Francesca Filbey
- Center for Brain Health, School of Behavioral & Brain Science, University of Texas, Dallas, United States
| |
Collapse
|
28
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
29
|
Henschke JU, Pakan JMP. Engaging distributed cortical and cerebellar networks through motor execution, observation, and imagery. Front Syst Neurosci 2023; 17:1165307. [PMID: 37114187 PMCID: PMC10126249 DOI: 10.3389/fnsys.2023.1165307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
When we interact with the environment around us, we are sometimes active participants, making directed physical motor movements and other times only mentally engaging with our environment, taking in sensory information and internally planning our next move without directed physical movement. Traditionally, cortical motor regions and key subcortical structures such as the cerebellum have been tightly linked to motor initiation, coordination, and directed motor behavior. However, recent neuroimaging studies have noted the activation of the cerebellum and wider cortical networks specifically during various forms of motor processing, including the observations of actions and mental rehearsal of movements through motor imagery. This phenomenon of cognitive engagement of traditional motor networks raises the question of how these brain regions are involved in the initiation of movement without physical motor output. Here, we will review evidence for distributed brain network activation during motor execution, observation, and imagery in human neuroimaging studies as well as the potential for cerebellar involvement specifically in motor-related cognition. Converging evidence suggests that a common global brain network is involved in both movement execution and motor observation or imagery, with specific task-dependent shifts in these global activation patterns. We will further discuss underlying cross-species anatomical support for these cognitive motor-related functions as well as the role of cerebrocerebellar communication during action observation and motor imagery.
Collapse
Affiliation(s)
- Julia U. Henschke
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Janelle M. P. Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz, Magdeburg, Germany
| |
Collapse
|
30
|
Wingrove J, Makaronidis J, Prados F, Kanber B, Yiannakas MC, Magee C, Castellazzi G, Grandjean L, Golay X, Tur C, Ciccarelli O, D'Angelo E, Gandini Wheeler-Kingshott CA, Batterham RL. Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study. EClinicalMedicine 2023; 58:101883. [PMID: 36883140 PMCID: PMC9980836 DOI: 10.1016/j.eclinm.2023.101883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. METHODS In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. FINDINGS Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). INTERPRETATION This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. FUNDING This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case.
Collapse
Affiliation(s)
- Jed Wingrove
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Janine Makaronidis
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Ferran Prados
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Baris Kanber
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cormac Magee
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Louis Grandjean
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Xavier Golay
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Olga Ciccarelli
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Egidio D'Angelo
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Claudia A.M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Rachel L. Batterham
- Centre for Obesity Research, Department of Medicine, University College London, London, UK
- National Institute for Health and Care Research, Biomedical Research Centre at UCLH and UCL, London, UK
- Corresponding author. Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
31
|
Garofalo M, Vansenne F, Verbeek DS, Sival DA. The pathogenetic basis for a disease continuum in early- and late-onset ataxia-dystonia supports a unified genetic diagnostic approach. Eur J Paediatr Neurol 2023; 43:44-51. [PMID: 36905829 DOI: 10.1016/j.ejpn.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Genetically inherited ataxic disorders are classified by their age of disease presentation into early- and late-onset ataxia (EOA and LOA, presenting before or after the 25th year-of-life). In both disease groups, comorbid dystonia co-occurs frequently. Despite overlapping genes and pathogenetic features, EOA, LOA and dystonia are considered as different genetic entities with a separate diagnostic approach. This often leads to diagnostic delay. So far, the possibility of a disease continuum between EOA, LOA and mixed ataxia-dystonia has not been explored in silico. In the present study, we analyzed the pathogenetic mechanisms underlying EOA, LOA and mixed ataxia-dystonia. METHODS We analyzed the association of 267 ataxia genes with comorbid dystonia and anatomical MRI lesions in literature. We compared anatomical damage, biological pathways, and temporal cerebellar gene expression between EOA, LOA and mixed ataxia-dystonia. RESULTS The majority (≈65%) of ataxia genes were associated with comorbid dystonia in literature. Both EOA and LOA gene groups with comorbid dystonia were significantly associated with lesions in the cortico-basal-ganglia-pontocerebellar network. EOA, LOA and mixed ataxia-dystonia gene groups were enriched for biological pathways related to nervous system development, neural signaling and cellular processes. All genes revealed similar cerebellar gene expression levels before and after 25 years of age and during cerebellar development. CONCLUSION In EOA, LOA and mixed ataxia-dystonia gene groups, our findings show similar anatomical damage, underlying biological pathways and temporal cerebellar gene expression patterns. These findings may suggest the existence of a disease continuum, supporting the diagnostic use of a unified genetic approach.
Collapse
Affiliation(s)
- M Garofalo
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F Vansenne
- Department of Clinical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D A Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Sun F, Chen Y, Huang Y, Yan J, Chen Y. Relationship between gray matter structure and age in children and adolescents with high-functioning autism spectrum disorder. Front Hum Neurosci 2023; 16:1039590. [PMID: 36684838 PMCID: PMC9853167 DOI: 10.3389/fnhum.2022.1039590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The present study used magnetic resonance imaging to investigate the difference in the relationship between gray matter structure and age in children and adolescents with autism spectrum disorder (ASD) and typically developing (TD) subjects. Methods After screening T1 structural images from the Autism Brain Imaging Data Exchange (ABIDE) database, 111 children and adolescents (7-18 years old) with high-functioning ASD and 151 TD subjects matched for age, sex and full IQ were included in the current study. By using the voxel-based morphological analysis method, gray matter volume/density (GMV/GMD) maps were obtained for each participant. Then, a multiple regression analysis was performed for ASD and TD groups, respectively to estimate the relationship between GMV/GMD and age with gender, education, site, and IQ scores as covariates. Furthermore, a z-test was used to compare such relationship difference between the groups. Results Results showed that compared with TD, the GMD of ASD showed stronger positive correlations with age in the prefrontal cortex, and a stronger negative correlation in the left inferior parietal lobule, and a weaker positive correlation in the right inferior parietal lobule. The GMV of ASD displayed stronger positive correlations with age in the prefrontal cortex and cerebellum. Conclusion These findings may provide evidence to support that the brain structure abnormalities underlying ASD during childhood and adolescence may differ from each other.
Collapse
Affiliation(s)
- Fenfen Sun
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yue Chen
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yingwen Huang
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jing Yan
- Center for Brain, Mind, and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Yihong Chen
- Department of Otorhinolaryngology, The First People’s Hospital of Xiaoshan, Hangzhou, China
| |
Collapse
|
33
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
34
|
Ribeiro S, Sherrard RM. Cerebellum and neurodevelopmental disorders: RORα is a unifying force. Front Cell Neurosci 2023; 17:1108339. [PMID: 37066074 PMCID: PMC10098020 DOI: 10.3389/fncel.2023.1108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Errors of cerebellar development are increasingly acknowledged as risk factors for neuro-developmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia. Evidence has been assembled from cerebellar abnormalities in autistic patients, as well as a range of genetic mutations identified in human patients that affect the cerebellar circuit, particularly Purkinje cells, and are associated with deficits of motor function, learning and social behavior; traits that are commonly associated with autism and schizophrenia. However, NDDs, such as ASD and schizophrenia, also include systemic abnormalities, e.g., chronic inflammation, abnormal circadian rhythms etc., which cannot be explained by lesions that only affect the cerebellum. Here we bring together phenotypic, circuit and structural evidence supporting the contribution of cerebellar dysfunction in NDDs and propose that the transcription factor Retinoid-related Orphan Receptor alpha (RORα) provides the missing link underlying both cerebellar and systemic abnormalities observed in NDDs. We present the role of RORα in cerebellar development and how the abnormalities that occur due to RORα deficiency could explain NDD symptoms. We then focus on how RORα is linked to NDDs, particularly ASD and schizophrenia, and how its diverse extra-cerebral actions can explain the systemic components of these diseases. Finally, we discuss how RORα-deficiency is likely a driving force for NDDs through its induction of cerebellar developmental defects, which in turn affect downstream targets, and its regulation of extracerebral systems, such as inflammation, circadian rhythms, and sexual dimorphism.
Collapse
|
35
|
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci 2023; 17:1095157. [PMID: 36874211 PMCID: PMC9974833 DOI: 10.3389/fncel.2023.1095157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Advances in the operational mode of the cerebellum indicate a role in sequencing and predicting non-social and social events, crucial for individuals to optimize high-order functions, such as Theory of Mind (ToM). ToM deficits have been described in patients with remitted bipolar disorders (BD). The literature on BD patients' pathophysiology reports cerebellar alterations; however, sequential abilities have never been investigated and no study has previously focused on prediction abilities, which are needed to properly interpret events and to adapt to changes. Methods To address this gap, we compared the performance of BD patients in the euthymic phase with healthy controls using two tests that require predictive processing: a ToM test that require implicit sequential processing and a test that explicitly assesses sequential abilities in non-ToM functions. Additionally, patterns of cerebellar gray matter (GM) alterations were compared between BD patients and controls using voxel-based morphometry. Results Impaired ToM and sequential skills were detected in BD patients, specifically when tasks required a greater predictive load. Behavioral performances might be consistent with patterns of GM reduction in cerebellar lobules Crus I-II, which are involved in advanced human functions. Discussion These results highlight the importance of deepening the cerebellar role in sequential and prediction abilities in patients with BD.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health-Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
36
|
Çavdar S, Güneş YC, Algın O. Connections of the Dentate Nucleus with the Amygdala: Experimental Rat and Human 3-Tesla Tractography Study. Brain Connect 2022; 12:905-913. [PMID: 35587596 DOI: 10.1089/brain.2021.0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The role of the cerebellum in motor function is well recognized. However, its role in higher nervous system activities such as cognition, emotion, endocrine, and autonomic activities is less known. The present study aims to show direct dento-amygdala projections using a biotinylated dextran amine (BDA) tracer in rats and 3-tesla (T) high-resolution diffusion tensor imaging (DTI)-based tractography in humans. Materials and Methods: The BDA tracer was pressure injected into the dentate nucleus of the cerebellum of Wistar albino rats. Labeled cells and axons were documented. High-resolution 3-T tractography data were obtained from the Human Connectome Project database. Dento-amygdala tracts were analyzed using diffusion spectrum imaging (DSI) Studio software. Results: The experimental study showed bilateral projections between the dentate nucleus and the central and basal nuclei and ipsilateral projections between lateral nuclei of the amygdala. The fibers from the dentate nucleus reached the amygdala through the superior cerebellar peduncle (SCP), and the contralateral fibers crossed in the decussation of SCP at the midbrain. The dento-amygdala results of the experimental study corresponded with the 3-T tractography findings on humans. Additionally, DTI findings showed that most of the dentate fibers passed through the hypothalamus before reaching the amygdala, and the amygdalae of the two sides are connected through the anterior commissure. Discussion: The 3-T DTI data of adult humans showed both direct dento-amygdala and indirect dento-hypothalamo-amygdala projections. Thus, this may indicate cerebellar contribution in modulation of emotional and autonomic functions. Furthermore, this can explain the emotional and cognitive deficits that occur in patients with cerebellar or SCP damage. Impact statement The present study showed direct dento-amygdala connections in the rat brain and human brain, which may provide evidence for cerebellar contribution in modulation of emotional and autonomic functions.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasin Celal Güneş
- Department of Radiology, Kecioren Training and Research Hospital, Ankara, Turkey.,Department of Radiology, Bilkent City Hospital, Ankara, Turkey
| | - Oktay Algın
- Department of Radiology, Bilkent City Hospital, Ankara, Turkey.,National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Department of Radiology, Yıldırım Beyazıt University, City Hospital, Ankara, Turkey
| |
Collapse
|
37
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
38
|
Fruzzetti L, Kalidindi HT, Antonietti A, Alessandro C, Geminiani A, Casellato C, Falotico E, D’Angelo E. Dual STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye movements. PLoS Comput Biol 2022; 18:e1010564. [PMID: 36194625 PMCID: PMC9565489 DOI: 10.1371/journal.pcbi.1010564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner. Incomplete measurements of the movement trajectory, such as the visual endpoint error, are supposedly used to form internal predictions about the movement kinematics resulting in predictive control. In order to characterize the synaptic and neural circuit mechanisms underlying predictive saccadic control, we have reconstructed the saccadic system in a digital controller embedding a spiking neural network of the cerebellum with spike timing-dependent plasticity (STDP) rules driving parallel fiber-Purkinje cell long-term potentiation and depression (LTP and LTD). This model implements a control policy based on a dual plasticity mechanism, resulting in the identification of the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or pause responses. To our knowledge, this is the first model that explains in mechanistic terms the visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-timing to regulate firing in different populations of the neuronal network. This elementary model of saccades could be extended and applied to other more complex cases in which single jerks are concatenated to compose articulated and coordinated movements.
Collapse
Affiliation(s)
- Lorenzo Fruzzetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hari Teja Kalidindi
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- * E-mail: (HK); (EF)
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- * E-mail: (HK); (EF)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
39
|
Zhang T, Zhang Q, Wu J, Wang M, Li W, Yan J, Zhang J, Jin Z, Li L. The critical role of the orbitofrontal cortex for regret in an economic decision-making task. Brain Struct Funct 2022; 227:2751-2767. [DOI: 10.1007/s00429-022-02568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
|
40
|
Cerebellar engagement in the attachment behavioral system. Sci Rep 2022; 12:13571. [PMID: 35945247 PMCID: PMC9363408 DOI: 10.1038/s41598-022-17722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Brain structural bases of individual differences in attachment are not yet fully clarified. Given the evidence of relevant cerebellar contribution to cognitive, affective, and social functions, the present research was aimed at investigating potential associations between attachment dimensions (through the Attachment Style Questionnaire, ASQ) and cerebellar macro- and micro-structural measures (Volumetric and Diffusion Tensor Imaging data). In a sample of 79 healthy subjects, cerebellar and neocortical volumetric data were correlated with ASQ scores at the voxel level within specific Regions Of Interest. Also, correlations between ASQ scores and age, years of education, anxiety and depression levels were performed to control for the effects of sociodemographic and psychological variables on neuroimaging results. Positive associations between scores of the Preoccupation with Relationships (ASQ subscale associated to insecure/anxious attachment) and cortical volume were found in the cerebellum (right lobule VI and left Crus 2) and neocortex (right medial OrbitoFrontal Cortex, OFC) regions. Cerebellar contribution to the attachment behavioral system reflects the more general cerebellar engagement in the regulation of emotional and social behaviors. Cerebellar properties of timing, prediction, and learning well integrate with OFC processing, supporting the regulation of attachment experiences. Cerebellar areas might be rightfully included in the attachment behavioral system.
Collapse
|
41
|
Chirokoff V, Di Scala G, Swendsen J, Dilharreguy B, Berthoz S, Chanraud S. Impact of Metacognitive and Psychological Factors in Learning-Induced Plasticity of Resting State Networks. BIOLOGY 2022; 11:biology11060896. [PMID: 35741416 PMCID: PMC9219664 DOI: 10.3390/biology11060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Connections within the brain can reshape themselves to rapidly adapt to new learning. We aimed to demonstrate that these reconfigurations do not only reflect a memory trace but a more global response to other processes involved in learning. Furthermore, we investigated why individuals do not present the same ability both in learning and in connection plasticity. Present results indicate that brain rapid reconfiguration is not only linked to learning abilities but also to the process of confidence in learning. Factors such as age, education, and anxiety also appear to influence the brain’s response to learning and explain part of the variability observed between subjects. This study revealed important links between brain and psychological functioning and how they influence each other which highlights the need for considering psychological factors both in education and in psychiatric disorders. Abstract While resting-state networks are able to rapidly adapt to experiences and stimuli, it is currently unknown whether metacognitive processes such as confidence in learning and psychological temperament may influence this process. We explore the neural traces of confidence in learning and their variability by: (1) targeting rs-networks in which functional connectivity (FC) modifications induced by a learning task were associated either with the participant’s performance or confidence in learning; and (2) investigating the links between FC changes and psychological temperament. Thirty healthy individuals underwent neuropsychological and psychometric evaluations as well as rs-fMRI scans before and after a visuomotor associative learning task. Confidence in learning was positively associated with the degree of FC changes in 11 connections including the cerebellar, frontal, parietal, and subcortical areas. Variability in FC changes was linked to the individual’s level of anxiety sensitivity. The present findings indicate that reconfigurations of resting state networks linked to confidence in learning differ from those linked to learning accuracy. In addition, certain temperament characteristics appear to influence these reconfigurations.
Collapse
Affiliation(s)
- Valentine Chirokoff
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
- Correspondence: ; +33-6-74-80-25-05
| | - Georges Di Scala
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Joel Swendsen
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Bixente Dilharreguy
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Sylvie Berthoz
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
- Psychiatry Unit, Institut Mutualiste Montsouris 42, Boulevard Jourdan, 75014 Paris, France
| | - Sandra Chanraud
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| |
Collapse
|
42
|
Jung SJ, Vlasov K, D’Ambra AF, Parigi A, Baya M, Frez EP, Villalobos J, Fernandez-Frentzel M, Anguiano M, Ideguchi Y, Antzoulatos EG, Fioravante D. Novel Cerebello-Amygdala Connections Provide Missing Link Between Cerebellum and Limbic System. Front Syst Neurosci 2022; 16:879634. [PMID: 35645738 PMCID: PMC9136059 DOI: 10.3389/fnsys.2022.879634] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
The cerebellum is emerging as a powerful regulator of cognitive and affective processing and memory in both humans and animals and has been implicated in affective disorders. How the cerebellum supports affective function remains poorly understood. The short-latency (just a few milliseconds) functional connections that were identified between the cerebellum and amygdala—a structure crucial for the processing of emotion and valence—more than four decades ago raise the exciting, yet untested, possibility that a cerebellum-amygdala pathway communicates information important for emotion. The major hurdle in rigorously testing this possibility is the lack of knowledge about the anatomy and functional connectivity of this pathway. Our initial anatomical tracing studies in mice excluded the existence of a direct monosynaptic connection between the cerebellum and amygdala. Using transneuronal tracing techniques, we have identified a novel disynaptic circuit between the cerebellar output nuclei and the basolateral amygdala. This circuit recruits the understudied intralaminar thalamus as a node. Using ex vivo optophysiology and super-resolution microscopy, we provide the first evidence for the functionality of the pathway, thus offering a missing mechanistic link between the cerebellum and amygdala. This discovery provides a connectivity blueprint between the cerebellum and a key structure of the limbic system. As such, it is the requisite first step toward obtaining new knowledge about cerebellar function in emotion, thus fundamentally advancing understanding of the neurobiology of emotion, which is perturbed in mental and autism spectrum disorders.
Collapse
Affiliation(s)
- Se Jung Jung
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Ksenia Vlasov
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Alexa F. D’Ambra
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Abhijna Parigi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Mihir Baya
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Edbertt Paul Frez
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | | | | | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Yoichiro Ideguchi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Evan G. Antzoulatos
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Diasynou Fioravante
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
- *Correspondence: Diasynou Fioravante
| |
Collapse
|
43
|
Gandolfi D, Puglisi FM, Boiani GM, Pagnoni G, Friston KJ, D'Angelo EU, Mapelli J. Emergence of associative learning in a neuromorphic inference network. J Neural Eng 2022; 19. [PMID: 35508120 DOI: 10.1088/1741-2552/ac6ca7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes - by modelling the activity of functional neural networks at a mesoscopic scale - the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored. APPROACH We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller. MAIN RESULTS Persistent changes of synaptic strength - that mirrored neurophysiological observations - emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures. SIGNIFICANCE These findings show that: i) an ensemble of free energy minimizing neurons - organized in a biological plausible architecture - can recapitulate functional self-organization observed in nature, such as associative plasticity, and ii) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Emilia-Romagna, 41121, ITALY
| | - Francesco Maria Puglisi
- DIEF, Universita degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10/1, Modena, MO, 41121, ITALY
| | - Giulia Maria Boiani
- Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Emilia-Romagna, 41121, ITALY
| | - Giuseppe Pagnoni
- Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Emilia-Romagna, 41121, ITALY
| | - Karl J Friston
- Institute of Neurology, University College London, 23 Queen Square, LONDON, WC1N 3BG, London, WC1N 3AR, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Egidio Ugo D'Angelo
- Department Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, Pavia, Pavia, Lombardia, 27100, ITALY
| | - Jonathan Mapelli
- Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, 41125, ITALY
| |
Collapse
|
44
|
Beuriat PA, Cristofori I, Gordon B, Grafman J. The shifting role of the cerebellum in executive, emotional and social processing across the lifespan. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:6. [PMID: 35484543 PMCID: PMC9047369 DOI: 10.1186/s12993-022-00193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The cerebellum's anatomical and functional organization and network interactions between the cerebellum and the cerebral cortex and subcortical structures are dynamic across the lifespan. Executive, emotional and social (EES) functions have likewise evolved during human development from contributing to primitive behaviors during infancy and childhood to being able to modulate complex actions in adults. In this review, we address how the importance of the cerebellum in the processing of EES functions might change across development. This evolution is driven by the macroscopic and microscopic modifications of the cerebellum that are occurring during development including its increasing connectivity with distant supra-tentorial cortical and sub-cortical regions. As a result of anatomical and functional changes, neuroimaging and clinical data indicate that the importance of the role of the cerebellum in human EES-related networks shifts from being crucial in newborns and young children to being only supportive later in life. In early life, given the immaturity of cortically mediated EES functions, EES functions and motor control and perception are more closely interrelated. At that time, the cerebellum due to its important role in motor control and sequencing makes EES functions more reliant on these computational properties that compute spatial distance, motor intent, and assist in the execution of sequences of behavior related to their developing EES expression. As the cortical brain matures, EES functions and decisions become less dependent upon these aspects of motor behavior and more dependent upon high-order cognitive and social conceptual processes. At that time, the cerebellum assumes a supportive role in these EES-related behaviors by computing their motor and sequential features. We suspect that this evolving role of the cerebellum has complicated the interpretation of its contribution to EES computational demands.
Collapse
Affiliation(s)
- Pierre-Aurélien Beuriat
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA. .,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France. .,Rockfeller School of Medicine, Claude Bernard University, Lyon, France.
| | - Irene Cristofori
- Institute of Cognitive, Neuroscience Marc Jeannerod, CNRS/UMR 5229, 69500, Bron, France.,Université Claude Bernard, Lyon 1, 69100, Villeurbanne, France
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA.,Departments of Neurology, Psychiatry and Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Smith AP, Kelly TH, Lile JA, Martin CA, Ramirez MP, Wesley MJ. Exploratory examination of the effects of d-amphetamine on active-state functional connectivity: Influence of impulsivity and sensation-seeking status. Exp Clin Psychopharmacol 2022; 30:194-208. [PMID: 33764102 PMCID: PMC8463640 DOI: 10.1037/pha0000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in diagnostic research identified that individuals with higher impulsivity and sensation-seeking scores tend to report more positive subjective responses to stimulant drugs such as amphetamine. The current exploratory study hypothesized that differences in underlying mesocorticolimbic circuitry may mediate the relationship between personality and responses to stimulants due to its previously established implication in reward processes as well as the overlap between its dopaminergic projections and the pharmacodynamics of many stimulants. Forty participants (20 female) were recruited with relatively high- and low-impulsivity and sensation-seeking scores as defined by the Zuckerman-Kuhlman Personality Questionnaire (Form IIIR; Zuckerman, Kuhlman, Joireman, Teta, & Kraft, 1993) for a double-blind, placebo-controlled, intranasal amphetamine administration study conducted within an MRI scanner. Active state seed-to-voxel connectivity analyses assessed the effects of amphetamine, personality, subjective responses to amphetamine, and their interactions with mesocorticolimbic seeds on data collected during monetary incentive delay and go/no-go task performance. Results indicated that amphetamine administration largely disrupted brain activity as evidenced by connectivity values shifting toward no correlation among brain stem, striatal, and frontal cortex regions. Additionally, associations of impulsivity and connectivity between ventral tegmental and medial orbitofrontal as well as lateral orbitofrontal and putamen regions were inverted from negative to positive during the placebo and amphetamine conditions, respectively. Personality was unrelated to subjective responses to amphetamine. Results are interpreted as providing evidence of underlying differences in mesocorticolimbic circuitry being a potential target for requisite diagnostic and treatment strategies implicated with stimulant use disorders, but further research is needed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
46
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
47
|
Su D, Cui Y, Liu Z, Chen H, Fang J, Ma H, Zhou J, Feng T. Altered Brain Activity in Depression of Parkinson's Disease: A Meta-Analysis and Validation Study. Front Aging Neurosci 2022; 14:806054. [PMID: 35401154 PMCID: PMC8984499 DOI: 10.3389/fnagi.2022.806054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 01/16/2023] Open
Abstract
Background The pathophysiology of depression in Parkinson's disease (PD) is not fully understood. Studies based upon functional MRI (fMRI) showed the alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain regions pertaining to depression in PD. However, large variance was observed across previous studies. Therefore, we conducted a meta-analysis to quantitatively evaluate the results in previous publications and completed an independent regions-of-interests (ROIs)-based analysis using our own data to validate the results of the meta-analysis. Methods We searched PubMed, Embase, and Web of Science to identify fMRI studies in PD patients with depression. Using signed differential mapping (SDM) method, we performed a voxel-based meta-analysis. Then, a validation study by using multiscale entropy (MSE) in 28 PD patients with depression and 25 PD patients without depression was conducted. The fMRI scan was completed in anti-depression-medication-off state. The ROIs of the MSE analysis were the regions identified by the meta-analysis. Results A total of 126 PD patients with depression and 153 PD patients without depression were included in meta-analysis. It was observed that the resting-state activities within the posterior cingulate gyrus, supplementary motor area (SMA), and cerebellum were altered in depressed patients. Then, in the validation study, these regions were used as ROIs. PD patients with depression had significantly lower MSE of the BOLD fluctuations in these regions (posterior cingulate gyrus: F = 0.856, p = 0.049; SMA: F = 0.914, p = 0.039; cerebellum: F = 0.227, p = 0.043). Conclusion Our study revealed that the altered BOLD activity in cingulate, SMA, and cerebellum of the brain were pertaining to depression in PD.
Collapse
Affiliation(s)
- Dongning Su
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yusha Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhu Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huimin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinping Fang
- Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Huizi Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
49
|
Co-occurrence of schizo-obsessive traits and its correlation with altered executive control network functional connectivity. Eur Arch Psychiatry Clin Neurosci 2022; 272:301-312. [PMID: 33389057 DOI: 10.1007/s00406-020-01222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
The prevalence of obsessive-compulsive symptoms (OCS) in schizophrenia patients is as around 30%. Evidence suggested that mild OCS could reduce symptoms of schizophrenia, supporting the presence of compensatory functions. However, severe OCS could aggravate various impairments in schizophrenia patients, supporting the "double jeopardy hypothesis". Patients with schizo-obsessive comorbidity, schizophrenia patients and obsessive-compulsive disorder patients have been found to have similarities in executive dysfunctions and altered resting-state functional connectivity within the executive control network (ECN). Executive functions could be associated with the ECN. However, little is known as to whether such overlap exists in the subclinical populations of individuals with schizo-obsessive traits (SOT), schizotypal individuals and individuals with high levels of obsessive-compulsive symptoms (OCS). In this study, we recruited 30 schizotypal individuals, 25 individuals with OCS, 29 individuals with SOT and 29 controls for a resting-state ECN-related functional connectivity (rsFC) and a go/shift/no-go task. We found that individuals with SOT exhibited increased rsFC within the ECN compared with controls, while schizotypal individuals exhibited the opposite. Individuals with OCS exhibited decreased rsFC within the ECN and between the ECN and the default mode network (DMN), relative to controls. No significant correlational results between altered rsFC related to the ECN with executive function performance were found after corrections for multiple comparisons in three subclinical groups. Our findings showed that individuals with SOT had increased rsFC within the ECN, while schizotypal individuals and individuals with OCS showed the opposite. Our findings provide evidence for possible neural substrates of subclinical comorbidity of OCS and schizotypy.
Collapse
|
50
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|