1
|
Tian Y, Wu X, Luo S, Xiong D, Liu R, Hu L, Yuan Y, Shi G, Yao J, Huang Z, Fu F, Yang X, Tang Z, Zhang J, Hu K. A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex. Comput Struct Biotechnol J 2024; 23:2173-2189. [PMID: 38827229 PMCID: PMC11141146 DOI: 10.1016/j.csbj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.
Collapse
Affiliation(s)
- Yuhan Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Songhao Luo
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiwei Huang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Public Platform Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
2
|
Modular strategy for development of the hierarchical visual network in mice. Nature 2022; 608:578-585. [PMID: 35922512 DOI: 10.1038/s41586-022-05045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/28/2022] [Indexed: 12/31/2022]
Abstract
Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.
Collapse
|
3
|
Siper PM, Rowe MA, Guillory SB, Rouhandeh AA, George-Jones JL, Tavassoli T, Lurie S, Zweifach J, Weissman J, Foss-Feig J, Halpern D, Trelles MP, Mulhern MS, Brittenham C, Gordon J, Zemon V, Buxbaum JD, Kolevzon A. Visual Evoked Potential Abnormalities in Phelan-McDermid Syndrome. J Am Acad Child Adolesc Psychiatry 2022; 61:565-574.e1. [PMID: 34303785 PMCID: PMC8782912 DOI: 10.1016/j.jaac.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study used visual evoked potentials (VEPs) to examine excitatory and inhibitory postsynaptic activity in children with Phelan-McDermid syndrome (PMS) and the association with genetic factors. PMS is caused by haploinsufficiency of SHANK3 on chromosome 22 and represents a common single-gene cause of autism spectrum disorder (ASD) and intellectual disability. METHOD Transient VEPs were obtained from 175 children, including 31 with PMS, 79 with idiopathic ASD, 45 typically developing controls, and 20 unaffected siblings of children with PMS. Stimuli included standard and short-duration contrast-reversing checkerboard conditions, and the reliability between these 2 conditions was assessed. Test-retest reliability and correlations with deletion size were explored in the group with PMS. RESULTS Children with PMS and, to a lesser extent, those with idiopathic ASD displayed significantly smaller amplitudes and decreased beta and gamma band activity relative to TD controls and PMS siblings. Across groups, high intraclass correlation coefficients were obtained between standard and short-duration conditions. In children with PMS, test-retest reliability was strong. Deletion size was significantly correlated with P60-N75 amplitude for both conditions. CONCLUSION Children with PMS displayed distinct transient VEP waveform abnormalities in both time and frequency domains that might reflect underlying glutamatergic deficits that were associated with deletion size. A similar response pattern was observed in a subset of children with idiopathic ASD. VEPs offer a noninvasive measure of excitatory and inhibitory neurotransmission that holds promise for stratification and surrogate endpoints in ongoing clinical trials in PMS and ASD.
Collapse
|
4
|
Homman-Ludiye J, Bourne JA. The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR J 2021; 61:248-259. [PMID: 33620074 DOI: 10.1093/ilar/ilaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Rodent models, particularly mice, have dominated the field of developmental neuroscience for decades, like they have in most fields of biomedicine research. However, with 80 million years since rodents and primates last shared a common ancestor, the use of mice to model the development of the human brain is not without many shortcomings. The human brain diverges from the mouse brain in many aspects and is comprised of novel structures as well as diversified cellular subtypes. While these newly evolved features have no equivalent in rodents, they are observed in nonhuman primates. Therefore, elucidating the cellular mechanisms underlying the development and maturation of the healthy and diseased human brain can be achieved using less complex nonhuman primates. Historically, macaques were the preferred nonhuman primate model. However, over the past decade, the New World marmoset monkey (Callithrix jacchus) has gained more importance, particularly in the field of neurodevelopment. With its small size, twin or triplet birth, and prosocial behavior, the marmoset is an ideal model to study normal brain development as well as neurodevelopmental disorders, which are often associated with abnormal social behaviors. The growing interest in the marmoset has prompted many comparative studies, all demonstrating that the marmoset brain closely resembles that of the human and is perfectly suited to model human brain development. The marmoset is thus poised to extend its influence in the field of neurodevelopment and will hopefully fill the gaps that the mouse has left in our understanding of how our brain forms and how neurodevelopmental disorders originate.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Yu HH, Rowley DP, Price NSC, Rosa MGP, Zavitz E. A twisted visual field map in the primate dorsomedial cortex predicted by topographic continuity. SCIENCE ADVANCES 2020; 6:6/44/eaaz8673. [PMID: 33115750 PMCID: PMC7608794 DOI: 10.1126/sciadv.aaz8673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Adjacent neurons in visual cortex have overlapping receptive fields within and across area boundaries, an arrangement theorized to minimize wiring cost. This constraint is traditionally thought to create retinotopic maps of opposing field signs (mirror and nonmirror visual field representations) in adjacent areas, a concept that has become central in current attempts to subdivide the extrastriate cortex. We simulated the formation of retinotopic maps using a model that balances constraints imposed by smoothness in the representation within an area and by congruence between areas. As in the primate cortex, this model usually leads to alternating mirror and nonmirror maps. However, we found that it can also produce a more complex type of map, consisting of sectors with opposing field sign within a single area. Using fully quantitative electrode array recordings, we then demonstrate that this type of inhomogeneous map exists in the controversial dorsomedial region of the primate extrastriate cortex.
Collapse
Affiliation(s)
- Hsin-Hao Yu
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
- IBM Research Australia, Southbank, VIC, Australia
| | - Declan P Rowley
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Zavitz
- Department of Physiology and Neuroscience Program Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Parker EM, Kindja NL, Cheetham CEJ, Sweet RA. Sex differences in dendritic spine density and morphology in auditory and visual cortices in adolescence and adulthood. Sci Rep 2020; 10:9442. [PMID: 32523006 PMCID: PMC7287134 DOI: 10.1038/s41598-020-65942-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are small protrusions on dendrites that endow neurons with the ability to receive and transform synaptic input. Dendritic spine number and morphology are altered as a consequence of synaptic plasticity and circuit refinement during adolescence. Dendritic spine density (DSD) is significantly different based on sex in subcortical brain regions associated with the generation of sex-specific behaviors. It is largely unknown if sex differences in DSD exist in auditory and visual brain regions and if there are sex-specific changes in DSD in these regions that occur during adolescent development. We analyzed dendritic spines in 4-week-old (P28) and 12-week-old (P84) male and female mice and found that DSD is lower in female mice due in part to fewer short stubby, long stubby and short mushroom spines. We found striking layer-specific patterns including a significant age by layer interaction and significantly decreased DSD in layer 4 from P28 to P84. Together these data support the possibility of developmental sex differences in DSD in visual and auditory regions and provide evidence of layer-specific refinement of DSD over adolescent brain development.
Collapse
Affiliation(s)
- Emily M Parker
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Nathan L Kindja
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Claire E J Cheetham
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Pittsburgh, USA
| | - Robert A Sweet
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
7
|
Bottom RT, Krubitzer LA, Huffman KJ. Early postnatal gene expression in the developing neocortex of prairie voles (Microtus ochrogaster) is related to parental rearing style. J Comp Neurol 2020; 528:3008-3022. [PMID: 31930725 DOI: 10.1002/cne.24856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/10/2022]
Abstract
The earliest and most prevalent sensory experience includes tactile, thermal, and olfactory stimulation delivered to the young via contact with the mother, and in some mammals, the father. Prairie voles (Microtus ochrogaster), like humans, are biparental and serve as a model for understanding the impact of parent/offspring interactions on the developing brain. Prairie voles also exhibit natural variation in the level of tactile stimulation delivered by the parents to the offspring, and this has been well documented and quantified. Previous studies revealed that adult prairie vole offspring who received either high (HC) or low (LC) tactile contact from their parents have differences in the size of cortical fields and the connections of somatosensory cortex. In the current investigation, we examined gene expression, intraneocortical connectivity, and cortical thickness in newborn voles to appreciate when differences in HC and LC offspring begin to emerge. We observed differences in developmentally regulated genes, as well as variation in prelimbic and anterior cingulate cortical thickness at postnatal Day 1 (P1) in HC and LC voles. Results from this study suggest that parenting styles, such as those involving high or low physical contact, impact the developing neocortex via very early sensory experience as well as differences in epigenetic modifications that may emerge in HC and LC voles.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
8
|
Miterko LN, Lackey EP, Heck DH, Sillitoe RV. Shaping Diversity Into the Brain's Form and Function. Front Neural Circuits 2018; 12:83. [PMID: 30364100 PMCID: PMC6191489 DOI: 10.3389/fncir.2018.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
The brain contains a large diversity of unique cell types that use specific genetic programs to control development and instruct the intricate wiring of sensory, motor, and cognitive brain regions. In addition to their cellular diversity and specialized connectivity maps, each region's dedicated function is also expressed in their characteristic gross external morphologies. The folds on the surface of the cerebral cortex and cerebellum are classic examples. But, to what extent does structure relate to function and at what spatial scale? We discuss the mechanisms that sculpt functional brain maps and external morphologies. We also contrast the cryptic structural defects in conditions such as autism spectrum disorders to the overt microcephaly after Zika infections, taking into consideration that both diseases disrupt proper cognitive development. The data indicate that dynamic processes shape all brain areas to fit into jigsaw-like patterns. The patterns in each region reflect circuit connectivity, which ultimately supports local signal processing and accomplishes multi-areal integration of information processing to optimize brain functions.
Collapse
Affiliation(s)
- Lauren N. Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Elizabeth P. Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
KAWASAKI H. Molecular investigations of development and diseases of the brain of higher mammals using the ferret. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:259-269. [PMID: 28496051 PMCID: PMC5489433 DOI: 10.2183/pjab.93.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 06/07/2023]
Abstract
The brains of higher mammals such as primates and carnivores contain well-developed unique brain structures. Uncovering the physiological functions, developmental mechanisms and evolution of these brain structures would greatly facilitate our understanding of the human brain and its diseases. Although the anatomical and electrophysiological features of these brain structures have been intensively investigated, our knowledge about their molecular bases is still limited. To overcome this limitation, genetic techniques for the brains of carnivores and primates have been established, and molecules whose expression patterns correspond to these brain structures were identified recently. To investigate the functional roles of these molecules, rapid and efficient genetic manipulation methods for higher mammals have been explored. In this review, recent advances in molecular investigations of the brains of higher mammals are discussed, mainly focusing on ferrets (Mustela putorius furo).
Collapse
Affiliation(s)
- Hiroshi KAWASAKI
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
- Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
10
|
Steinhausen C, Zehl L, Haas-Rioth M, Morcinek K, Walkowiak W, Huggenberger S. Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals. Front Neuroanat 2016; 10:91. [PMID: 27746724 PMCID: PMC5043137 DOI: 10.3389/fnana.2016.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022] Open
Abstract
The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses.
Collapse
Affiliation(s)
- Charlene Steinhausen
- Department II of Anatomy, University of CologneCologne, Germany
- Biocenter, University of CologneCologne, Germany
| | - Lyuba Zehl
- Biocenter, University of CologneCologne, Germany
- Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute IJülich, Germany
| | - Michaela Haas-Rioth
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Goethe University of Frankfurt am MainFrankfurt am Main, Germany
| | | | | | - Stefan Huggenberger
- Department II of Anatomy, University of CologneCologne, Germany
- Biocenter, University of CologneCologne, Germany
| |
Collapse
|
11
|
Zoccolan D, Cox DD, Benucci A. Editorial: What can simple brains teach us about how vision works. Front Neural Circuits 2015; 9:51. [PMID: 26483639 PMCID: PMC4586271 DOI: 10.3389/fncir.2015.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies Trieste, Italy
| | - David D Cox
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Andrea Benucci
- Laboratory for Neural Circuit and Behavior, RIKEN Brain Science Institute Wako City, Japan
| |
Collapse
|
12
|
DeFelipe J. The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 2015; 9:104. [PMID: 26347617 PMCID: PMC4542575 DOI: 10.3389/fnana.2015.00104] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
Over the years the field of neuroanatomy has evolved considerably but unraveling the extraordinary structural and functional complexity of the brain seems to be an unattainable goal, partly due to the fact that it is only possible to obtain an imprecise connection matrix of the brain. The reasons why reaching such a goal appears almost impossible to date is discussed here, together with suggestions of how we could overcome this anatomical problem by establishing new methodologies to study the brain and by promoting interdisciplinary collaboration. Generating a realistic computational model seems to be the solution rather than attempting to fully reconstruct the whole brain or a particular brain region.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (Centro de Tecnología Biomédica: UPM), Instituto Cajal (CSIC) and CIBERNED Madrid, Spain
| |
Collapse
|
13
|
Qadri MAJ, Cook RG. Experimental Divergences in the Visual Cognition of Birds and Mammals. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2015; 10:73-105. [PMID: 26207154 PMCID: PMC4507827 DOI: 10.3819/ccbr.2015.100004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The comparative analysis of visual cognition across classes of animals yields important information regarding underlying cognitive and neural mechanisms involved with this foundational aspect of behavior. Birds, and pigeons specifically, have been an important source and model for this comparison, especially in relation to mammals. During these investigations, an extensive number of experiments have found divergent results in how pigeons and humans process visual information. Four areas of these divergences are collected, reviewed, and analyzed. We examine the potential contribution and limitations of experimental, spatial, and attentional factors in the interpretation of these findings and their implications for mechanisms of visual cognition in birds and mammals. Recommendations are made to help advance these comparisons in service of understanding the general principles by which different classes and species generate representations of the visual world.
Collapse
|
14
|
Mitchell JF, Leopold DA. The marmoset monkey as a model for visual neuroscience. Neurosci Res 2015; 93:20-46. [PMID: 25683292 PMCID: PMC4408257 DOI: 10.1016/j.neures.2015.01.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
Abstract
The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset's small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience.
Collapse
Affiliation(s)
- Jude F Mitchell
- Brain and Cognitive Sciences Department, Meliora Hall, University of Rochester, Rochester, NY 14627, USA.
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Cook RG, Qadri MA, Keller AM. The Analysis of Visual Cognition in Birds: Implications for Evolution, Mechanism, and Representation. PSYCHOLOGY OF LEARNING AND MOTIVATION 2015. [DOI: 10.1016/bs.plm.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|