1
|
Winkelman MJ, Szabo A, Frecska E. The potential of psychedelics for the treatment of Alzheimer's disease and related dementias. Eur Neuropsychopharmacol 2023; 76:3-16. [PMID: 37451163 DOI: 10.1016/j.euroneuro.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's Disease (AD) is a currently incurable but increasingly prevalent fatal and progressive neurodegenerative disease, demanding consideration of therapeutically relevant natural products and their synthetic analogues. This paper reviews evidence for effectiveness of natural and synthetic psychedelics in the treatment of AD causes and symptoms. The plastogenic effects of serotonergic psychedelics illustrate that they have efficacy for addressing multiple facets of AD pathology. We review findings illustrating neuroplasticity mechanisms of classic (serotonergic) and non-classic psychedelics that indicate their potential as treatments for AD and related dementias. Classic psychedelics modulate glutamatergic neurotransmission and stimulate synaptic and network remodeling that facilitates synaptic, structural and behavioral plasticity. Up-regulation of neurotrophic factors enable psychedelics to promote neuronal survival and glutamate-driven neuroplasticity. Muscimol modulation of GABAAR reduces Aβ-induced neurotoxicity and psychedelic Sig-1R agonists provide protective roles in Aβ toxicity. Classic psychedelics also activate mTOR intracellular effector pathways in brain regions that show atrophy in AD. The potential of psychedelics to treat AD involves their ability to induce structural and functional neural plasticity in brain circuits and slow or reverse brain atrophy. Psychedelics stimulate neurotrophic pathways, increase neurogenesis and produce long-lasting neural changes through rewiring pathological neurocircuitry. Psychedelic effects on 5-HT receptor target genes and induction of synaptic, structural, and functional changes in neurons and networks enable them to promote and enhance brain functional connectivity and address diverse mechanisms underlying degenerative neurological disorders. These findings provide a rationale for immediate investigation of psychedelics as treatments for AD patients.
Collapse
Affiliation(s)
- Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Terheyden-Keighley D, Leibinger M, Zeitler C, Fischer D. Transneuronal Delivery of Cytokines to Stimulate Mammalian Spinal Cord Regeneration. Methods Mol Biol 2023; 2636:85-99. [PMID: 36881297 DOI: 10.1007/978-1-0716-3012-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The spinal cord contains multiple fiber tracts necessary for locomotion. However, as a part of the central nervous system, they are extremely limited in regenerating after injury. Many of these key fiber tracts originate from deep brain stem nuclei that are difficult to access. Here we detail a new methodology that achieves functional regeneration in mice after a complete spinal cord crush, describing the crushing procedure itself, intracortical treatment application, and a set of appropriate validation steps. The regeneration is achieved by the one-time transduction of neurons in the motor cortex with a viral vector expressing the designer cytokine hIL-6. This potent stimulator of the JAK/STAT3 pathway and regeneration is transported in axons and then transneuronally delivered to critical deep brain stem nuclei via collateral axon terminals, resulting in previously paralyzed mice walking again after 3-6 weeks. With no previously known strategy accomplishing this degree of recovery, this model is well suited to studying the functional impact of compounds/treatments currently only known to promote anatomical regeneration.
Collapse
Affiliation(s)
- Daniel Terheyden-Keighley
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany
| | - Marco Leibinger
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany.,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charlotte Zeitler
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany.,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Faculty of Biology and Biotechnology, Ruhr University of Bochum, Bochum, Germany. .,Center for Pharmacology, Institute II of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Hingorani M, Viviani AML, Sanfilippo JE, Janušonis S. High-resolution spatiotemporal analysis of single serotonergic axons in an in vitro system. Front Neurosci 2022; 16:994735. [PMID: 36353595 PMCID: PMC9638127 DOI: 10.3389/fnins.2022.994735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vertebrate brains have a dual structure, composed of (i) axons that can be well-captured with graph-theoretical methods and (ii) axons that form a dense matrix in which neurons with precise connections operate. A core part of this matrix is formed by axons (fibers) that store and release 5-hydroxytryptamine (5-HT, serotonin), an ancient neurotransmitter that supports neuroplasticity and has profound implications for mental health. The self-organization of the serotonergic matrix is not well understood, despite recent advances in experimental and theoretical approaches. In particular, individual serotonergic axons produce highly stochastic trajectories, fundamental to the construction of regional fiber densities, but further advances in predictive computer simulations require more accurate experimental information. This study examined single serotonergic axons in culture systems (co-cultures and monolayers), by using a set of complementary high-resolution methods: confocal microscopy, holotomography (refractive index-based live imaging), and super-resolution (STED) microscopy. It shows that serotonergic axon walks in neural tissue may strongly reflect the stochastic geometry of this tissue and it also provides new insights into the morphology and branching properties of serotonergic axons. The proposed experimental platform can support next-generation analyses of the serotonergic matrix, including seamless integration with supercomputing approaches.
Collapse
|
4
|
Takiguchi M, Miyashita K, Yamazaki K, Funakoshi K. Chondroitinase ABC Administration Facilitates Serotonergic Innervation of Motoneurons in Rats With Complete Spinal Cord Transection. Front Integr Neurosci 2022; 16:881632. [PMID: 35845919 PMCID: PMC9280451 DOI: 10.3389/fnint.2022.881632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Chondroitinase ABC (ChABC) is an enzyme that degrades glycosaminoglycan side-chains of chondroitin sulfate (CS-GAG) from the chondroitin sulfate proteoglycan (CSPG) core protein. Previous studies demonstrated that the administration of ChABC after spinal cord injury promotes nerve regeneration by removing CS-GAGs from the lesion site and promotes the plasticity of spinal neurons by removing CS-GAGs from the perineuronal nets (PNNs). These effects of ChABC might enhance the regeneration and sprouting of descending axons, leading to the recovery of motor function. Anatomical evidence, indicating that the regenerated axons innervate spinal motoneurons caudal to the lesion site, however, has been lacking. In the present study, we investigated whether descending axons pass through the lesion site and innervate the lumbar motoneurons after ChABC administration in rats with complete spinal cord transection (CST) at the thoracic level. At 3 weeks after CST, 5-hydroxytryptamine (5-HT) fibers were observed to enter the lesion in ChABC-treated rats, but not saline-treated rats. In addition, 92% of motoneurons in the ventral horn of the fifth lumbar segment (L5) in saline-treated rats, and 38% of those in ChABC-treated rats were surrounded by chondroitin sulfate-A (CS-A) positive structures. At 8 weeks after CST, many 5-HT fibers were observed in the ventral horn of the L5, where they terminated in the motoneurons in ChABC-treated rats, but not in saline-treated rats. In total, 54% of motoneurons in the L5 ventral horn in saline-treated rats and 39% of those in ChABC-treated rats were surrounded by CS-A-positive structures. ChABC-treated rats had a Basso, Beattie, and Bresnahan (BBB) motor score of 3.8 at 2 weeks, 7.1 at 3 weeks, and 10.3 at 8 weeks after CST. These observations suggest that ChABC administration to the lesion site immediately after CST may promote the regeneration of descending 5-HT axons through the lesion site and their termination on motoneurons at the level of caudal to the lesion site. ChABC administration might facilitate reinnervation by degrading CS-GAGs around motoneurons. Motor function of the lower limbs was significantly improved in ChABC-treated rats even before the 5-HT axons terminated on the motoneurons, suggesting that other mechanisms may also contribute to the motor function recovery.
Collapse
Affiliation(s)
- Masahito Takiguchi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kanae Miyashita
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Kohei Yamazaki
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
- *Correspondence: Kengo Funakoshi,
| |
Collapse
|
5
|
An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun 2021; 12:7093. [PMID: 34876587 PMCID: PMC8651775 DOI: 10.1038/s41467-021-27419-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinal cord injury (SCI) interrupts long-projecting descending spinal neurons and disrupts the spinal central pattern generator (CPG) that controls locomotion. The intrinsic mechanisms underlying re-wiring of spinal neural circuits and recovery of locomotion after SCI are unclear. Zebrafish shows axonal regeneration and functional recovery after SCI making it a robust model to study mechanisms of regeneration. Here, we use a two-cut SCI model to investigate whether recovery of locomotion can occur independently of supraspinal connections. Using this injury model, we show that injury induces the localization of a specialized group of intraspinal serotonergic neurons (ISNs), with distinctive molecular and cellular properties, at the injury site. This subpopulation of ISNs have hyperactive terminal varicosities constantly releasing serotonin activating 5-HT1B receptors, resulting in axonal regrowth of spinal interneurons. Axon regrowth of excitatory interneurons is more pronounced compared to inhibitory interneurons. Knock-out of htr1b prevents axon regrowth of spinal excitatory interneurons, negatively affecting coordination of rostral-caudal body movements and restoration of locomotor function. On the other hand, treatment with 5-HT1B receptor agonizts promotes functional recovery following SCI. In summary, our data show an intraspinal mechanism where a subpopulation of ISNs stimulates axonal regrowth resulting in improved recovery of locomotor functions following SCI in zebrafish.
Collapse
|
6
|
Patel M, Anderson J, Lei S, Finkel Z, Rodriguez B, Esteban F, Risman R, Li Y, Lee KB, Lyu YL, Cai L. Nkx6.1 enhances neural stem cell activation and attenuates glial scar formation and neuroinflammation in the adult injured spinal cord. Exp Neurol 2021; 345:113826. [PMID: 34343529 DOI: 10.1016/j.expneurol.2021.113826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.
Collapse
Affiliation(s)
- Misaal Patel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Jeremy Anderson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Shunyao Lei
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rebecca Risman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yi Lisa Lyu
- Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Jacobson PB, Goody R, Lawrence M, Mueller BK, Zhang X, Hooker BA, Pfleeger K, Ziemann A, Locke C, Barraud Q, Droescher M, Bernhard J, Popp A, Boeser P, Huang L, Mollon J, Mordashova Y, Cui YF, Savaryn JP, Grinnell C, Dreher I, Gold M, Courtine G, Mothe A, Tator CH, Guest JD. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis 2021; 155:105385. [PMID: 33991647 DOI: 10.1016/j.nbd.2021.105385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.
Collapse
Affiliation(s)
- Peer B Jacobson
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Robin Goody
- Virscio, New Haven, CT, United States of America
| | | | - Bernhard K Mueller
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Xiaomeng Zhang
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Bradley A Hooker
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Kimberly Pfleeger
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Adam Ziemann
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Charles Locke
- Department of Biometrics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Mathias Droescher
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Joerg Bernhard
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Andreas Popp
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Preethne Boeser
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA 01605, United States of America
| | - Jennifer Mollon
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yulia Mordashova
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yi-Fang Cui
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - John P Savaryn
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Christine Grinnell
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ingeborg Dreher
- Department of Bioanalytics, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael Gold
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Andrea Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Division of Neurosurgery, Toronto Western Hospital, and University of Toronto, Toronto, Canada
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
8
|
Flaive A, Fougère M, van der Zouwen CI, Ryczko D. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals. Front Neural Circuits 2020; 14:590299. [PMID: 33224027 PMCID: PMC7674590 DOI: 10.3389/fncir.2020.590299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
During the last 50 years, the serotonergic (5-HT) system was reported to exert a complex modulation of locomotor activity. Here, we focus on two key factors that likely contribute to such complexity. First, locomotion is modulated directly and indirectly by 5-HT neurons. The locomotor circuitry is directly innervated by 5-HT neurons in the caudal brainstem and spinal cord. Also, indirect control of locomotor activity results from ascending projections of 5-HT cells in the rostral brainstem that innervate multiple brain centers involved in motor action planning. Second, each approach used to manipulate the 5-HT system likely engages different 5-HT-dependent mechanisms. This includes the recruitment of different 5-HT receptors, which can have excitatory or inhibitory effects on cell activity. These receptors can be located far or close to the 5-HT release sites, making their activation dependent on the level of 5-HT released. Here we review the activity of different 5-HT nuclei during locomotor activity, and the locomotor effects of 5-HT precursors, exogenous 5-HT, selective 5-HT reuptake inhibitors (SSRI), electrical or chemical stimulation of 5-HT neurons, genetic deletions, optogenetic and chemogenetic manipulations. We highlight both the coherent and controversial aspects of 5-HT modulation of locomotor activity from basal vertebrates to mammals. This mini review may hopefully inspire future studies aiming at dissecting the complex effects of 5-HT on locomotor function.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Centre des Neurosciences de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Flaive A, Cabelguen JM, Ryczko D. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT 1A receptors. J Neurophysiol 2020; 123:2326-2342. [PMID: 32401145 DOI: 10.1152/jn.00179.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT1A receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT1A receptor antagonist, whereas a 5-HT1A receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT1A receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates.NEW & NOTEWORTHY Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT1A receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Marie Cabelguen
- Neurocentre Magendie, INSERM U 862, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre des neurosciences de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Cell-seeded porous silk fibroin scaffolds promotes axonal regeneration and myelination in spinal cord injury rats. Biochem Biophys Res Commun 2019; 514:273-279. [DOI: 10.1016/j.bbrc.2019.04.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
|
11
|
Sobrido-Cameán D, Robledo D, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys. Dis Model Mech 2019; 12:dmm.037085. [PMID: 30709851 PMCID: PMC6398502 DOI: 10.1242/dmm.037085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Classical neurotransmitters are mainly known for their roles as neuromodulators, but they also play important roles in the control of developmental and regenerative processes. Here, we used the lamprey model of spinal cord injury to study the effect of serotonin in axon regeneration at the level of individually identifiable descending neurons. Pharmacological and genetic manipulations after a complete spinal cord injury showed that endogenous serotonin inhibits axonal regeneration in identifiable descending neurons through the activation of serotonin 1A receptors and a subsequent decrease in cyclic adenosine monophosphate (cAMP) levels. RNA sequencing revealed that changes in the expression of genes that control axonal guidance could be a key factor determining the serotonin effects during regeneration. This study provides new targets of interest for research in non-regenerating mammalian models of traumatic central nervous system injuries and extends the known roles of serotonin signalling during neuronal regeneration.
This article has an associated First Person interview with the first author of the paper. Summary: Pharmacological and genetic manipulations show that endogenous serotonin inhibits axonal regeneration of individually identifiable descending neurons of lampreys after a complete spinal cord injury.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Laura Sánchez
- Department of Genetics, University of Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Janušonis S, Detering N. A stochastic approach to serotonergic fibers in mental disorders. Biochimie 2018; 161:15-22. [PMID: 30056260 DOI: 10.1016/j.biochi.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023]
Abstract
Virtually all brain circuits are physically embedded in a three-dimensional matrix of fibers that release 5-hydroxytryptamine (5-HT, serotonin). The density of this matrix varies across brain regions and cortical laminae, and it is altered in some mental disorders, including Major Depressive Disorder and Autism Spectrum Disorder. We investigate how the regional structure of the serotonergic matrix depends on the stochastic behavior of individual serotonergic fibers and introduce a new framework for the quantitative analysis of this behavior. In particular, we show that a step-wise random walk, based on the von Mises-Fisher probability distribution, can provide a realistic and mathematically concise description of these fibers. We also consider other stochastic models, including the fractional Brownian motion. The proposed approach seeks to advance the current understanding of the ascending reticular activating system (ARAS) and may also support future theory-guided therapeutic approaches.
Collapse
Affiliation(s)
- Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| | - Nils Detering
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA, 93106-3110, USA
| |
Collapse
|