1
|
Kollenburg L, Arnts H, Green A, Strauss I, Vinke S, Kurt E. The cingulum: anatomy, connectivity and what goes beyond. Brain Commun 2025; 7:fcaf048. [PMID: 39949403 PMCID: PMC11824423 DOI: 10.1093/braincomms/fcaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
For over half a century, the cingulum has been the subject of neuroanatomical and therapeutic investigations owing to its wide range of functions and involvement in various neurological and psychiatric diseases. Recent clinical studies investigating neurosurgical techniques targeting the cingulum, like deep brain stimulation of the anterior cingulate cortex and cingulotomy, have further boosted interests in this central 'hub' as a target for chronic intractable pain. Proper targeting within the cingulum is essential to achieve sufficient pain relief. Despite the cingulum being the centre of research for over a century, its structural and functional organization remains a subject to debate, consequently complicating neurosurgical targeting of this area. This study aims to review anatomical and connectivity data of the cingulum from a clinical perspective in order to improve understanding of its role in pain. For the current study, a systematic literature search was performed to assess the anatomy and functional and structural connectivity of the cingulate bundle and cortex. These outcomes focus on MRI and PET data. Articles were searched within the PubMed database, and additional articles were found manually through reviews or references cited within the articles. After exclusion, 70 articles remained included in this analysis, with 50, 29 and 10 studies describing human, monkey and rat subjects, respectively. Outcomes of this analysis show the presence of various anatomical models, each describing other subdivisions within the cingulum. Moreover, connectivity data suggest that the cingulate bundle consists of three distinct fibre projections, including the thalamocortical, cingulate gyrus and anterior frontal and posterior parietal projections. Further, the cingulum is responsible for a variety of functions involved in chronic pain, like sensory processing, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Based on the current outcomes, it can be concluded that the cingulum is a central 'hub' for pain processing, because it is a melting pot for memory, cognition and affect that are involved in the complex phenomenon of pain experience, memory, spatial functioning, reward, cognition, emotion, visceromotor and endocrine control. Variability in anatomical and connectivity models complicate proper and standardized neurosurgical targeting, consequently leading to clinicians often being reluctant on stimulation and/or lesioning of the cingulum. Hence, future research should be dedicated to the standardization of these models, to allow for optimal targeting and management of patients with chronic intractable pain.
Collapse
Affiliation(s)
- Linda Kollenburg
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Hisse Arnts
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Clinical Neuroscience and Surgery, University of Oxford, Oxford OX39DU, UK
| | - Ido Strauss
- Department of Neurosurgery, Functional Neurosurgery Unit, Tel Aviv Medical Center, Tel Aviv 6801298, Israel
| | - Saman Vinke
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Functional Neurosurgery Unit, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
- Department of Pain & Palliative Care, Radboud University Medical Center, Nijmegen 6525 GA,Netherlands
| |
Collapse
|
2
|
Yuan J, Dong K, Wu H, Zeng X, Liu X, Liu Y, Dai J, Yin J, Chen Y, Guo Y, Luo W, Liu N, Sun Y, Zhang S, Su B. Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution. CELL GENOMICS 2024; 4:100703. [PMID: 39631404 DOI: 10.1016/j.xgen.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
The anterior cingulate cortex (ACC) of the human brain is involved in higher-level cognitive functions such as emotion and self-awareness. We generated profiles of human and macaque ACC gene expression and chromatin accessibility at single-nucleus resolution. We characterized the conserved patterns of gene expression, chromatin accessibility, and transcription factor binding in different cell types. Combining the published mouse data, we discovered the molecular identities and cell-lineage origin of the primate von Economo neurons (VENs). Our in vitro and in vivo experiments identified a group of primate-shared and human-specific VEN marker genes, such as PCSK6, ADAMTSL3, and CDHR3, potentially contributing to VEN morphogenesis. We demonstrated that the human-specific sequence changes account for the cellular and functional innovations in the ACC during primate evolution and human origin. These findings provide new insights into understanding the cellular composition and molecular regulation of ACC and its evolutionary role in shaping human-owned higher cognitive skills.
Collapse
Affiliation(s)
- Jiamiao Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kangning Dong
- School of Mathematics, Renmin University of China, Beijing 100872, China; NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixu Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Jichao Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongjie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenhao Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Liu
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; Chinese Brain Bank Center, South-Central Minzu University, Wuhan 430074, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China; National Key Laboratory of Genetic Evolution and Animal Model, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
3
|
McNamara P, Grafman J. Advances in brain and religion studies: a review and synthesis of recent representative studies. Front Hum Neurosci 2024; 18:1495565. [PMID: 39677407 PMCID: PMC11638176 DOI: 10.3389/fnhum.2024.1495565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
We review and synthesize recent religion and brain studies and find that at a broad network neuroscience level, religious/spiritual experiences (RSEs) appear to depend crucially upon interactions between the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). We see this general result as broadly consistent with Menon's et al. "Triple Network or Tripartite Model" (TPM) of neuropsychiatric function/dysfunction. A TPM cycling model is here offered to account for details of neural bases of an array of RSE phenomena including ecstatic seizures, neuroimaging of religious participants, psychedelically induced mystical states and perceptions of supernatural agents. To adequately account for SA perceptions, however, recent evidence suggests that REM sleep and dreaming mechanisms likely play a role. Future research should examine neurodevelopmental mechanisms of acquired SA perceptions as well as societal-level effects such as brain mediated religious beliefs of in-group cohesion and out-group hostility.
Collapse
Affiliation(s)
- Patrick McNamara
- Department of Psychology, National University, San Diego, CA, United States
- Boston University School of Medicine, Boston, MA, United States
- Center for Mind and Culture, Boston, MA, United States
| | - Jordan Grafman
- Cognitive Neuroscience Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Psychology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Medvediev VV, Cherkasov VG, Marushchenko MO, Vaslovych VV, Tsymbaliuk VI. Giant Fusiform Cells of the Brain: Discovery, Identification, and Probable Functions. CYTOL GENET+ 2024; 58:411-427. [DOI: 10.3103/s0095452724050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 01/05/2025]
|
5
|
Prkačin MV, Petanjek Z, Banovac I. A novel approach to cytoarchitectonics: developing an objective framework for the morphological analysis of the cerebral cortex. Front Neuroanat 2024; 18:1441645. [PMID: 39188851 PMCID: PMC11345133 DOI: 10.3389/fnana.2024.1441645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The cytoarchitectonic boundaries between cortical regions and layers are usually defined by the presence or absence of certain cell types. However, these cell types are often not clearly defined and determining the exact boundaries of regions and layers can be challenging. Therefore, in our research, we attempted to define cortical regions and layers based on clear quantitative criteria. Methods We performed immunofluorescent anti-NeuN labelling on five adult human brains in three cortical regions-Brodmann areas (BA) 9, 14r, and 24. We reconstructed the cell bodies of 90,723 NeuN-positive cells and analyzed their morphometric characteristics by cortical region and layer. We used a supervised neural network prediction algorithm to classify the reconstructions into morphological cell types. We used the results of the prediction algorithm to determine the proportions of different cell types in BA9, BA14r and BA24. Results Our analysis revealed that the cytoarchitectonic descriptions of BA9, BA14r and BA24 were reflected in the morphometric measures and cell classifications obtained by the prediction algorithm. BA9 was characterized by the abundance of large pyramidal cells in layer III, BA14r was characterized by relatively smaller and more elongated cells compared to BA9, and BA24 was characterized by the presence of extremely elongated cells in layer V as well as relatively higher proportions of irregularly shaped cells. Discussion The results of the prediction model agreed well with the qualitative expected cytoarchitectonic descriptions. This suggests that supervised machine learning could aid in defining the morphological characteristics of the cerebral cortex.
Collapse
Affiliation(s)
- Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
6
|
Larner AJ, Triarhou LC. Herbert Major on the insula: An early depiction of von Economo neurones? J Chem Neuroanat 2024; 138:102435. [PMID: 38823600 DOI: 10.1016/j.jchemneu.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Herbert Major (1850-1921) undertook histopathological studies of human and non-human primate brains at the West Riding Lunatic Asylum in Wakefield, England, during the 1870s. Two of his papers specifically investigated the structure of the island of Reil, or insula, "with the view of ascertaining its exact structure". In addition to describing and illustrating its lamination as six-layered, Major also identified "spindle-shaped" cells in the lower layers of human brains, but not in non-human primates. His written description, including measurements of cell body size, and illustration are suggestive that these were the neurones later described in the frontoinsular and anterior cingulate cortex by Constantin von Economo and Georg N. Koskinas and which were subsequently given the eponym "von Economo neurones". von Economo noted that this special neuronal type had been previously seen by Betz (1881), Hammarberg (1895), and Ramón y Cajal (1899-1904), but he did not mention Major's works. Major also ascribed linguistic functions to the insula. Hence, with respect to both anatomical and physiological features, Major may have pre-empted the findings of later research on this structure.
Collapse
Affiliation(s)
- Andrew J Larner
- Department of Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, United Kingdom.
| | - Lazaros C Triarhou
- Department of Psychology, Division of Brain, Behavior and Cognition, Aristotelian University Faculty of Philosophy, Thessaloníki, Greece
| |
Collapse
|
7
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
8
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
9
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
11
|
Kim B, Kim D, Schulmann A, Patel Y, Caban-Rivera C, Kim P, Jambhale A, Johnson KR, Feng N, Xu Q, Kang SJ, Mandal A, Kelly M, Akula N, McMahon FJ, Lipska B, Marenco S, Auluck PK. Cellular Diversity in Human Subgenual Anterior Cingulate and Dorsolateral Prefrontal Cortex by Single-Nucleus RNA-Sequencing. J Neurosci 2023; 43:3582-3597. [PMID: 37037607 PMCID: PMC10184745 DOI: 10.1523/jneurosci.0830-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses. Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited considerable variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional differences between the two regions. We used these molecular definitions to determine which cell classes might be enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcriptional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental illness.SIGNIFICANCE STATEMENT Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizophrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychiatric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molecular pathways involved in psychiatric disorders.
Collapse
Affiliation(s)
- Billy Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Dowon Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Anton Schulmann
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Yash Patel
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Carolina Caban-Rivera
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Paul Kim
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Ananya Jambhale
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Kory R Johnson
- Information Technology and Bioinformatics Program, National Institute of Neurological Disorders and Stroke-Intramural Research Program, Bethesda, Maryland 20892
| | - Ningping Feng
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Qing Xu
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Sun Jung Kang
- Genetic Epidemiology Research Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Michael Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland 20892
| | - Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Barbara Lipska
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, Maryland 20892
| |
Collapse
|
12
|
Vid Prkačin M, Banovac I, Petanjek Z, Hladnik A. Cortical interneurons in schizophrenia - cause or effect? Croat Med J 2023; 64:110-122. [PMID: 37131313 PMCID: PMC10183954 DOI: 10.3325/cmj.2023.64.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/15/2023] [Indexed: 12/09/2024] Open
Abstract
GABAergic cortical interneurons are important components of cortical microcircuits. Their alterations are associated with a number of neurological and psychiatric disorders, and are thought to be especially important in the pathogenesis of schizophrenia. Here, we reviewed neuroanatomical and histological studies that analyzed different populations of cortical interneurons in postmortem human tissue from patients with schizophrenia and adequately matched controls. The data strongly suggests that in schizophrenia only selective interneuron populations are affected, with alterations of somatostatin and parvalbumin neurons being the most convincing. The most prominent changes are found in the prefrontal cortex, which is consistent with the impairment of higher cognitive functions characteristic of schizophrenia. In contrast, calretinin neurons, the most numerous interneuron population in primates, seem to be largely unaffected. The selective alterations of cortical interneurons are in line with the neurodevelopmental model and the multiple-hit hypothesis of schizophrenia. Nevertheless, a large number of data on interneurons in schizophrenia is still inconclusive, with different studies yielding opposing findings. Furthermore, no studies found a clear link between interneuron alterations and clinical outcomes. Future research should focus on the causes of changes in the cortical microcircuitry in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | - Ivan Banovac
- Ivan Banovac, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, 10 000 Zagreb, Croatia,
| | | | | |
Collapse
|
13
|
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023; 17:1133367. [PMID: 37020493 PMCID: PMC10067884 DOI: 10.3389/fnhum.2023.1133367] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis and interpretation of studies on cognitive and affective dysregulation often draw upon the network paradigm, especially the Triple Network Model, which consists of the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). DMN activity is primarily dominant during cognitive leisure and self-monitoring processes. The FPN peaks during task involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic "switch" between the DMN and FPN, in line with salience and cognitive demand. In the cognitive and affective domains, dysfunctions involving SN activity are connected to a broad spectrum of deficits and maladaptive behavioral patterns in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD (in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses, bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and neurological data from various research domains and present an integrated perspective indicating that these conditions can be associated with a widespread disruption in predictive coding at multiple hierarchical levels. We delineate the fundamental ideas of the brain network paradigm and contrast them with the conventional modular method in the first section of this article. Following this, we outline the interaction model of the key functional brain networks and highlight recent studies coupling SN-related dysfunctions with cognitive and affective impairments.
Collapse
Affiliation(s)
- Jakub Schimmelpfennig
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | - Jan Topczewski
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | | | | |
Collapse
|
14
|
Brasso C, Stanziano M, Bosco FM, Morese R, Valentini MC, Vercelli A, Rocca P. Alteration of the Functional Connectivity of the Cortical Areas Characterized by the Presence of Von Economo Neurons in Schizophrenia, a Pilot Study. J Clin Med 2023; 12:jcm12041377. [PMID: 36835913 PMCID: PMC9962963 DOI: 10.3390/jcm12041377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Von Economo neurons (VENs) are rod, stick, or corkscrew cells mostly located in layer V of the frontoinsular and anterior cingulate cortices. VENs are projection neurons related to human-like social cognitive abilities. Post-mortem histological studies found VEN alterations in several neuropsychiatric disorders, including schizophrenia (SZ). This pilot study aimed to evaluate the role of VEN-containing areas in shaping patterns of resting-state brain activation in patients with SZ (n = 20) compared to healthy controls (HCs; n = 20). We performed a functional connectivity analysis seeded in the cortical areas with the highest density of VENs followed by fuzzy clustering. The alterations found in the SZ group were correlated with psychopathological, cognitive, and functioning variables. We found a frontotemporal network that was shared by four clusters overlapping with the salience, superior-frontal, orbitofrontal, and central executive networks. Differences between the HC and SZ groups emerged only in the salience network. The functional connectivity of the right anterior insula and ventral tegmental area within this network were negatively correlated with experiential negative symptoms and positively correlated with functioning. This study provides some evidence to show that in vivo, VEN-enriched cortical areas are associated with an altered resting-state brain activity in people with SZ.
Collapse
Affiliation(s)
- Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
- Struttura Complessa di Psichiatria Universitaria, Dipartimento di Neuroscienze e Salute Mentale, Azienda Ospedaliero-Universitaria “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7720
| | - Mario Stanziano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Francesca Marina Bosco
- Research Group on Inferential Processes in Social Interaction (GIPSI), Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Rosalba Morese
- Faculty of Communication Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Maria Consuelo Valentini
- Struttura Complessa di Neuroradiologia, Dipartimento Diagnostica per Immagini e Radiologia Interventistica, Azienda Ospedaliero-Universitaria “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
- Struttura Complessa di Psichiatria Universitaria, Dipartimento di Neuroscienze e Salute Mentale, Azienda Ospedaliero-Universitaria “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy
| |
Collapse
|
15
|
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
17
|
Taniguchi M, Iwahashi M, Oka Y, Tiong SYX, Sato M. Fezf2-positive fork cell-like neurons in the mouse insular cortex. PLoS One 2022; 17:e0274170. [PMID: 36067159 PMCID: PMC9447900 DOI: 10.1371/journal.pone.0274170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
The fork cell and von Economo neuron, which are found in the insular cortex and/or the anterior cingulate cortex, are defined by their unique morphologies. Their shapes are not pyramidal; the fork cell has two primary apical dendrites and the von Economo neurons are spindle-shaped (bipolar). Presence of such neurons are reported only in the higher animals, especially in human and great ape, indicating that they are specific for most evolved species. Although it is likely that these neurons are involved in higher brain function, lack of results with experimental animals makes further investigation difficult. We here ask whether equivalent neurons exist in the mouse insular cortex. In human, Fezf2 has been reported to be highly expressed in these morphologically distinctive neurons and thus, we examined the detailed morphology of Fezf2-positive neurons in the mouse brain. Although von Economo-like neurons were not identified, Fezf2-positive fork cell-like neurons with two characteristic apical dendrites, were discovered. Examination with electron microscope indicated that these neurons did not embrace capillaries, rather they held another cell. We here term such neurons as holding neurons. We further observed several molecules, including neuromedin B (NMB) and gastrin releasing peptide (GRP) that are known to be localized in the fork cells and/or von Economo cells in human, were localized in the mouse insular cortex. Based on these observations, it is likely that an equivalent of the fork cell is present in the mouse.
Collapse
Affiliation(s)
- Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Misaki Iwahashi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development (UGSCD), Osaka University, Suita, Japan
| | - Sheena Y. X. Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development (UGSCD), Osaka University, Suita, Japan
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development (UGSCD), Osaka University, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022; 59:4953-4965. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
| | - Monique Esclapez
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Rockland KS. Looking for the origins of axons. eLife 2022; 11:79839. [PMID: 35647816 PMCID: PMC9159749 DOI: 10.7554/elife.79839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons with axons that exit from dendrites rather than the cell body itself are relatively common in non-primates, but rare in monkeys and humans.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology School of Medicine, Boston University, Boston, United States
| |
Collapse
|
20
|
Wahle P, Sobierajski E, Gasterstädt I, Lehmann N, Weber S, Lübke JHR, Engelhardt M, Distler C, Meyer G. Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human. eLife 2022; 11:76101. [PMID: 35441590 PMCID: PMC9159751 DOI: 10.7554/elife.76101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms ‘axon carrying dendrite’ (AcD) and ‘AcD neurons’ have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally ‘privileged’, since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/βIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10–21% of pyramidal cells of layers II–VI had an AcD. In marked contrast, in macaque and human, this proportion was lower and was particularly low for supragranular neurons. A comparison of six cortical areas (being sensory, association, and limbic in nature) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.
Collapse
Affiliation(s)
- Petra Wahle
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Eric Sobierajski
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ina Gasterstädt
- Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Nadja Lehmann
- Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Susanna Weber
- Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | | | | | - Claudia Distler
- Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
Fuentealba-Villarroel FJ, Renner J, Hilbig A, Bruton OJ, Rasia-Filho AA. Spindle-Shaped Neurons in the Human Posteromedial (Precuneus) Cortex. Front Synaptic Neurosci 2022; 13:769228. [PMID: 35087390 PMCID: PMC8787311 DOI: 10.3389/fnsyn.2021.769228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted "single-section" Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.
Collapse
Affiliation(s)
- Francisco Javier Fuentealba-Villarroel
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Arlete Hilbig
- Department of Medical Clinics/Neurology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Oliver J Bruton
- Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
22
|
Singleton EH, Pijnenburg YAL, Gami-Patel P, Boon BDC, Bouwman F, Papma JM, Seelaar H, Scheltens P, Grinberg LT, Spina S, Nana AL, Rabinovici GD, Seeley WW, Ossenkoppele R, Dijkstra AA. The behavioral variant of Alzheimer's disease does not show a selective loss of Von Economo and phylogenetically related neurons in the anterior cingulate cortex. Alzheimers Res Ther 2022; 14:11. [PMID: 35057846 PMCID: PMC8772094 DOI: 10.1186/s13195-021-00947-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The neurobiological origins of the early and predominant behavioral changes seen in the behavioral variant of Alzheimer's disease (bvAD) remain unclear. A selective loss of Von Economo neurons (VENs) and phylogenetically related neurons have been observed in behavioral variant frontotemporal dementia (bvFTD) and several psychiatric diseases. Here, we assessed whether these specific neuronal populations show a selective loss in bvAD. METHODS VENs and GABA receptor subunit theta (GABRQ)-immunoreactive pyramidal neurons of the anterior cingulate cortex (ACC) were quantified in post-mortem tissue of patients with bvAD (n = 9) and compared to typical AD (tAD, n = 6), bvFTD due to frontotemporal lobar degeneration based on TDP-43 pathology (FTLD, n = 18) and controls (n = 13) using ANCOVAs adjusted for age and Bonferroni corrected. In addition, ratios of VENs and GABRQ-immunoreactive (GABRQ-ir) pyramidal neurons over all Layer 5 neurons were compared between groups to correct for overall Layer 5 neuronal loss. RESULTS The number of VENs or GABRQ-ir neurons did not differ significantly between bvAD (VENs: 26.0 ± 15.3, GABRQ-ir pyramidal: 260.4 ± 87.1) and tAD (VENs: 32.0 ± 18.1, p = 1.00, GABRQ-ir pyramidal: 349.8 ± 109.6, p = 0.38) and controls (VENs: 33.5 ± 20.3, p = 1.00, GABRQ-ir pyramidal: 339.4 ± 95.9, p = 0.37). Compared to bvFTD, patients with bvAD showed significantly more GABRQ-ir pyramidal neurons (bvFTD: 140.5 ± 82.658, p = 0.01) and no significant differences in number of VENs (bvFTD: 10.9 ± 13.8, p = 0.13). Results were similar when assessing the number of VENs and GABRQ-ir relative to all neurons of Layer 5. DISCUSSION VENs and phylogenetically related neurons did not show a selective loss in the ACC in patients with bvAD. Our results suggest that, unlike in bvFTD, the clinical presentation in bvAD may not be related to the loss of VENs and related neurons in the ACC.
Collapse
Affiliation(s)
- E. H. Singleton
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Y. A. L. Pijnenburg
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - P. Gami-Patel
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - B. D. C. Boon
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - F. Bouwman
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - J. M. Papma
- grid.5645.2000000040459992XNeurology, Erasmus University Medical Center, Rotterdam, the Netherlands ,grid.5645.2000000040459992XRadiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - H. Seelaar
- grid.5645.2000000040459992XNeurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P. Scheltens
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - L. T. Grinberg
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA
| | - S. Spina
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA
| | - A. L. Nana
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA
| | - G. D. Rabinovici
- grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - W. W. Seeley
- grid.266102.10000 0001 2297 6811Departments of Pathology, University of California San Francisco, San Francisco, USA ,grid.266102.10000 0001 2297 6811Departments of Neurology, University of California San Francisco, San Francisco, USA
| | - R. Ossenkoppele
- grid.509540.d0000 0004 6880 3010Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands ,grid.4514.40000 0001 0930 2361Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A. A. Dijkstra
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022; 15:787164. [PMID: 35069126 PMCID: PMC8777274 DOI: 10.3389/fncir.2021.787164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
One of the most salient features defining modern humans is our remarkable cognitive capacity, which is unrivaled by any other species. Although we still lack a complete understanding of how the human brain gives rise to these unique abilities, the past several decades have witnessed significant progress in uncovering some of the genetic, cellular, and molecular mechanisms shaping the development and function of the human brain. These features include an expansion of brain size and in particular cortical expansion, distinct physiological properties of human neurons, and modified synaptic development. Together they specify the human brain as a large primate brain with a unique underlying neuronal circuit architecture. Here, we review some of the known human-specific features of neuronal connectivity, and we outline how novel insights into the human genome led to the identification of human-specific genetic modifiers that played a role in the evolution of human brain development and function. Novel experimental paradigms are starting to provide a framework for understanding how the emergence of these human-specific genomic innovations shaped the structure and function of neuronal circuits in the human brain.
Collapse
Affiliation(s)
- Ewoud R. E. Schmidt
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Ewoud R. E. Schmidt
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
- Franck Polleux
| |
Collapse
|