1
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Rimehaug AE, Dale AM, Arkhipov A, Einevoll GT. Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis. PLoS Comput Biol 2024; 20:e1011830. [PMID: 39666739 DOI: 10.1371/journal.pcbi.1011830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/26/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. The contributions from different cortical layers within V1 could however not be robustly separated and identified with LPA. This is likely due to substantial synchrony in population firing rates across layers, which may be reduced with other stimulus protocols in the future. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.
Collapse
Affiliation(s)
| | - Anders M Dale
- Department of Neuroscience, University of California San Diego, San Diego, California, United States of America
| | - Anton Arkhipov
- Allen Institute, Seattle, Washington, United States of America
| | - Gaute T Einevoll
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
López-Madrona VJ, Trébuchon A, Bénar CG, Schön D, Morillon B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun Biol 2024; 7:1570. [PMID: 39592826 PMCID: PMC11599602 DOI: 10.1038/s42003-024-07297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha oscillations in the auditory cortex have been associated with attention and the suppression of irrelevant information. However, their anatomical organization and interaction with other neural processes remain unclear. Do alpha oscillations function as a local mechanism within most neural sources to regulate their internal excitation/inhibition balance, or do they belong to separated inhibitory sources gating information across the auditory network? To address this question, we acquired intracerebral electrophysiological recordings from epilepsy patients during rest and tones listening. Thanks to independent component analysis, we disentangled the different neural sources and labeled them as "oscillatory" if they presented strong alpha oscillations at rest, and/or "evoked" if they displayed a significant evoked response to the stimulation. Our results show that 1) sources are condition-specific and segregated in the auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha suppression, 3) only oscillatory sources present a sustained alpha suppression during all the stimulation period. We hypothesize that there are two different alpha oscillations in the auditory cortex: an induced bottom-up response indicating a selective engagement of the primary cortex to process the stimuli, and a sustained suppression reflecting a general disinhibited state of the network to process sensory information.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Institute of Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France.
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
- APHM, Timone Hospital, Functional and stereotactic neurosurgery, Marseille, 13005, France
| | - Christian G Bénar
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Daniele Schön
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Benjamin Morillon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
4
|
López-Madrona VJ, Trébuchon A, Mindruta I, Barbeau EJ, Barborica A, Pistol C, Oane I, Alario FX, Bénar CG. Identification of Early Hippocampal Dynamics during Recognition Memory with Independent Component Analysis. eNeuro 2024; 11:ENEURO.0183-23.2023. [PMID: 38514193 PMCID: PMC10993203 DOI: 10.1523/eneuro.0183-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
The hippocampus is generally considered to have relatively late involvement in recognition memory, its main electrophysiological signature being between 400 and 800 ms after stimulus onset. However, most electrophysiological studies have analyzed the hippocampus as a single responsive area, selecting only a single-site signal exhibiting the strongest effect in terms of amplitude. These classical approaches may not capture all the dynamics of this structure, hindering the contribution of other hippocampal sources that are not located in the vicinity of the selected site. We combined intracerebral electroencephalogram recordings from epileptic patients with independent component analysis during a recognition memory task involving the recognition of old and new images. We identified two sources with different responses emerging from the hippocampus: a fast one (maximal amplitude at ∼250 ms) that could not be directly identified from raw recordings and a latter one, peaking at ∼400 ms. The former component presented different amplitudes between old and new items in 6 out of 10 patients. The latter component had different delays for each condition, with a faster activation (∼290 ms after stimulus onset) for recognized items. We hypothesize that both sources represent two steps of hippocampal recognition memory, the faster reflecting the input from other structures and the latter the hippocampal internal processing. Recognized images evoking early activations would facilitate neural computation in the hippocampus, accelerating memory retrieval of complementary information. Overall, our results suggest that the hippocampal activity is composed of several sources with an early activation related to recognition memory.
Collapse
Affiliation(s)
| | - Agnès Trébuchon
- Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille 13005, France
- Functional and Stereotactic Neurosurgery, APHM, Timone Hospital, Marseille 13005, France
| | - Ioana Mindruta
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Emmanuel J Barbeau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier Toulouse, Toulouse 31052, France
- Centre National de la Recherche Scientifique, CerCo (UMR5549), Toulouse 31052, France
| | | | - Costi Pistol
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Irina Oane
- Physics Department, University of Bucharest, Bucharest, Romania
| | | | - Christian G Bénar
- Inst Neurosci Syst, INS, INSERM, Aix Marseille Univ, Marseille 13005, France
| |
Collapse
|
5
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
López-Madrona VJ, Villalon SM, Velmurugan J, Semeux-Bernier A, Garnier E, Badier JM, Schön D, Bénar CG. Reconstruction and localization of auditory sources from intracerebral SEEG using independent component analysis. Neuroimage 2023; 269:119905. [PMID: 36720438 DOI: 10.1016/j.neuroimage.2023.119905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Stereo-electroencephalography (SEEG) is the surgical implantation of electrodes in the brain to better localize the epileptic network in pharmaco-resistant epileptic patients. This technique has exquisite spatial and temporal resolution. Still, the number and the position of the electrodes in the brain is limited and determined by the semiology and/or preliminary non-invasive examinations, leading to a large number of unexplored brain structures in each patient. Here, we propose a new approach to reconstruct the activity of non-sampled structures in SEEG, based on independent component analysis (ICA) and dipole source localization. We have tested this approach with an auditory stimulation dataset in ten patients. The activity directly recorded from the auditory cortex served as ground truth and was compared to the ICA applied on all non-auditory electrodes. Our results show that the activity from the auditory cortex can be reconstructed at the single trial level from contacts as far as ∼40 mm from the source. Importantly, this reconstructed activity is localized via dipole fitting in the proximity of the original source. In addition, we show that the size of the confidence interval of the dipole fitting is a good indicator of the reliability of the result, which depends on the geometry of the SEEG implantation. Overall, our approach allows reconstructing the activity of structures far from the electrode locations, partially overcoming the spatial sampling limitation of intracerebral recordings.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France; APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille 13005, France
| | - Jayabal Velmurugan
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Jean-Michel Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Daniele Schön
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France
| | - Christian-G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille 13005, France.
| |
Collapse
|
7
|
López-Madrona VJ, Medina Villalon S, Badier JM, Trébuchon A, Jayabal V, Bartolomei F, Carron R, Barborica A, Vulliémoz S, Alario FX, Bénar CG. Magnetoencephalography can reveal deep brain network activities linked to memory processes. Hum Brain Mapp 2022; 43:4733-4749. [PMID: 35766240 PMCID: PMC9491290 DOI: 10.1002/hbm.25987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large‐scale neocortical networks. In the present study, we disentangled mesial activity and large‐scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo‐electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.
Collapse
Affiliation(s)
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | | | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | | | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine Geneva, Geneva, Switzerland
| | | | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
8
|
Aguilera M, Douchamps V, Battaglia D, Goutagny R. How Many Gammas? Redefining Hippocampal Theta-Gamma Dynamic During Spatial Learning. Front Behav Neurosci 2022; 16:811278. [PMID: 35177972 PMCID: PMC8843838 DOI: 10.3389/fnbeh.2022.811278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
The hippocampal formation is one of the brain systems in which the functional roles of coordinated oscillations in information representation and communication are better studied. Within this circuit, neuronal oscillations are conceived as a mechanism to precisely coordinate upstream and downstream neuronal ensembles, underlying dynamic exchange of information. Within a global reference framework provided by theta (θ) oscillations, different gamma-frequency (γ) carriers would temporally segregate information originating from different sources, thereby allowing networks to disambiguate convergent inputs. Two γ sub-bands were thus defined according to their frequency (slow γ, 30–80 Hz; medium γ, 60–120 Hz) and differential power distribution across CA1 dendritic layers. According to this prevalent model, layer-specific γ oscillations in CA1 would reliably identify the temporal dynamics of afferent inputs and may therefore aid in identifying specific memory processes (encoding for medium γ vs. retrieval for slow γ). However, this influential view, derived from time-averages of either specific γ sub-bands or different projection methods, might not capture the complexity of CA1 θ-γ interactions. Recent studies investigating γ oscillations at the θ cycle timescale have revealed a more dynamic and diverse landscape of θ-γ motifs, with many θ cycles containing multiple γ bouts of various frequencies. To properly capture the hippocampal oscillatory complexity, we have argued in this review that we should consider the entirety of the data and its multidimensional complexity. This will call for a revision of the actual model and will require the use of new tools allowing the description of individual γ bouts in their full complexity.
Collapse
Affiliation(s)
- Matthieu Aguilera
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, Strasbourg, France
| | - Vincent Douchamps
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, Strasbourg, France
| | - Demian Battaglia
- Institut de Neurosciences des Systèmes, CNRS, Aix-Marseille Université, Marseille, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Romain Goutagny
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Faculté de Psychologie, Université de Strasbourg, Strasbourg, France
- *Correspondence: Romain Goutagny,
| |
Collapse
|
9
|
Dvorak D, Chung A, Park EH, Fenton AA. Dentate spikes and external control of hippocampal function. Cell Rep 2021; 36:109497. [PMID: 34348165 PMCID: PMC8369486 DOI: 10.1016/j.celrep.2021.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022] Open
Abstract
Mouse hippocampus CA1 place-cell discharge typically encodes current location, but during slow gamma dominance (SGdom), when SG oscillations (30-50 Hz) dominate mid-frequency gamma oscillations (70-90 Hz) in CA1 local field potentials, CA1 discharge switches to represent distant recollected locations. We report that dentate spike type 2 (DSM) events initiated by medial entorhinal cortex II (MECII)→ dentate gyrus (DG) inputs promote SGdom and change excitation-inhibition coordinated discharge in DG, CA3, and CA1, whereas type 1 (DSL) events initiated by lateral entorhinal cortex II (LECII)→DG inputs do not. Just before SGdom, LECII-originating SG oscillations in DG and CA3-originating SG oscillations in CA1 phase and frequency synchronize at the DSM peak when discharge within DG and CA3 increases to promote excitation-inhibition cofiring within and across the DG→CA3→CA1 pathway. This optimizes discharge for the 5-10 ms DG-to-CA1 neuro-transmission that SGdom initiates. DSM properties identify extrahippocampal control of SGdom and a cortico-hippocampal mechanism that switches between memory-related modes of information processing.
Collapse
Affiliation(s)
- Dino Dvorak
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ain Chung
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10003, USA.
| |
Collapse
|
10
|
Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus. BIOLOGY 2021; 10:biology10080692. [PMID: 34439925 PMCID: PMC8389192 DOI: 10.3390/biology10080692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary The activity in the hippocampus is characterized by a strong oscillation at theta frequency that organizes the neuronal firing. We have recently shown that different theta oscillations are present in the hippocampus, opening the possibility to multiple interactions between theta rhythms. In this work, we analyzed the functional connectivity between theta generators during the exploration of a known environment with or without a novel stimulus. The directionality of the interactions was determined using tools based on Granger causality and transfer entropy. We found significant interactions between activity components originated in CA3 and in layers II and III of the entorhinal cortex. During exploration with a novel stimulus, the connectivity from the entorhinal cortex layer II increased, while the influence of CA3 decreased. These results suggest that the entorhinal cortex layer II may drive theta interactions and synchronization in the hippocampus during novelty exploration. Abstract Theta oscillations organize neuronal firing in the hippocampus during context exploration and memory formation. Recently, we have shown that multiple theta rhythms coexist in the hippocampus, reflecting the activity in their afferent regions in CA3 (Schaffer collaterals) and the entorhinal cortex layers II (EC-II, perforant pathway) and III (EC-III, temporoammonic pathway). Frequency and phase coupling between theta rhythms were modulated by the behavioral state, with synchronized theta rhythmicity preferentially occurring in tasks involving memory updating. However, information transmission between theta generators was not investigated. Here, we used source separation techniques to disentangle the current generators recorded in the hippocampus of rats exploring a known environment with or without a novel stimulus. We applied analytical tools based on Granger causality and transfer entropy to investigate linear and non-linear directed interactions, respectively, between the theta activities. Exploration in the novelty condition was associated with increased theta power in the generators with EC origin. We found a significant directed interaction from the Schaffer input over the EC-III input in CA1, and a bidirectional interaction between the inputs in the hippocampus originating in the EC, likely reflecting the connection between layers II and III. During novelty exploration, the influence of the EC-II over the EC-III generator increased, while the Schaffer influence decreased. These results associate the increase in hippocampal theta activity and synchrony during novelty exploration with an increase in the directed functional connectivity from EC-II to EC-III.
Collapse
|
11
|
França ASC, Borgesius NZ, Souza BC, Cohen MX. Beta2 Oscillations in Hippocampal-Cortical Circuits During Novelty Detection. Front Syst Neurosci 2021; 15:617388. [PMID: 33664653 PMCID: PMC7921172 DOI: 10.3389/fnsys.2021.617388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
Novelty detection is a core feature of behavioral adaptation and involves cascades of neuronal responses-from initial evaluation of the stimulus to the encoding of new representations-resulting in the behavioral ability to respond to unexpected inputs. In the past decade, a new important novelty detection feature, beta2 (~20-30 Hz) oscillations, has been described in the hippocampus (HC). However, the interactions between beta2 and the hippocampal network are unknown, as well as the role-or even the presence-of beta2 in other areas involved with novelty detection. In this work, we combined multisite local field potential (LFP) recordings with novelty-related behavioral tasks in mice to describe the oscillatory dynamics associated with novelty detection in the CA1 region of the HC, parietal cortex, and mid-prefrontal cortex. We found that transient beta2 power increases were observed only during interaction with novel contexts and objects, but not with familiar contexts and objects. Also, robust theta-gamma phase-amplitude coupling was observed during the exploration of novel environments. Surprisingly, bursts of beta2 power had strong coupling with the phase of delta-range oscillations. Finally, the parietal and mid-frontal cortices had strong coherence with the HC in both theta and beta2. These results highlight the importance of beta2 oscillations in a larger hippocampal-cortical circuit, suggesting that beta2 plays a role in the mechanism for detecting and modulating behavioral adaptation to novelty.
Collapse
Affiliation(s)
- Arthur S. C. França
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
12
|
Sharif F, Tayebi B, Buzsáki G, Royer S, Fernandez-Ruiz A. Subcircuits of Deep and Superficial CA1 Place Cells Support Efficient Spatial Coding across Heterogeneous Environments. Neuron 2021; 109:363-376.e6. [PMID: 33217328 PMCID: PMC7856084 DOI: 10.1016/j.neuron.2020.10.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
The hippocampus is thought to guide navigation by forming a cognitive map of space. Different environments differ in geometry and the availability of cues that can be used for navigation. Although several spatial coding mechanisms are known to coexist in the hippocampus, how they are influenced by various environmental features is not well understood. To address this issue, we examined the spatial coding characteristics of hippocampal neurons in mice and rats navigating in different environments. We found that CA1 place cells located in the superficial sublayer were more active in cue-poor environments and preferentially used a firing rate code driven by intra-hippocampal inputs. In contrast, place cells located in the deep sublayer were more active in cue-rich environments and used a phase code driven by entorhinal inputs. Switching between these two spatial coding modes was supported by the interaction between excitatory gamma inputs and local inhibition.
Collapse
Affiliation(s)
- Farnaz Sharif
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Behnam Tayebi
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Sébastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Antonio Fernandez-Ruiz
- Neuroscience Institute, New York University, Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
13
|
López-Madrona VJ, Pérez-Montoyo E, Álvarez-Salvado E, Moratal D, Herreras O, Pereda E, Mirasso CR, Canals S. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife 2020; 9:57313. [PMID: 32687054 PMCID: PMC7413668 DOI: 10.7554/elife.57313] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Efrén Álvarez-Salvado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - David Moratal
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Herreras
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ernesto Pereda
- Departamento de Ingeniería Industrial & IUNE, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, La Laguna, Spain.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
14
|
Bertone-Cueto NI, Makarova J, Mosqueira A, García-Violini D, Sánchez-Peña R, Herreras O, Belluscio M, Piriz J. Volume-Conducted Origin of the Field Potential at the Lateral Habenula. Front Syst Neurosci 2020; 13:78. [PMID: 31998083 PMCID: PMC6961596 DOI: 10.3389/fnsys.2019.00078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/30/2023] Open
Abstract
Field potentials (FPs) are easily reached signals that provide information about the brain's processing. However, FP should be interpreted cautiously since their biophysical bases are complex. The lateral habenula (LHb) is a brain structure involved in the encoding of aversive motivational values. Previous work indicates that the activity of the LHb is relevant for hippocampal-dependent learning. Moreover, it has been proposed that the interaction of the LHb with the hippocampal network is evidenced by the synchronization of LHb and hippocampal FPs during theta rhythm. However, the origin of the habenular FP has not been analyzed. Hence, its validity as a measurement of LHb activity has not been proven. In this work, we used electrophysiological recordings in anesthetized rats and feed-forward modeling to investigate biophysical basis of the FP recorded in the LHb. Our results indicate that the FP in the LHb during theta rhythm is a volume-conducted signal from the hippocampus. This result highlight that FPs must be thoroughly analyzed before its biological interpretation and argues against the use of the habenular FP signal as a readout of the activity of the LHb.
Collapse
Affiliation(s)
- Nicolas Iván Bertone-Cueto
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | - Alejo Mosqueira
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | - Mariano Belluscio
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Joaquin Piriz
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Hippocampal Network Dynamics during Rearing Episodes. Cell Rep 2019; 23:1706-1715. [PMID: 29742427 PMCID: PMC5978794 DOI: 10.1016/j.celrep.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/19/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources. Theta frequency increased during rearing coupled with an elevated dentate theta sink Robust theta-fast gamma phase coupling in the dentate gyrus accompanied rearing Rearing-specific firing rate increase of putative pyramidal cells was detected Conversely, if rearing occurred in a neuron’s place field, its firing rate decreased
Collapse
|
16
|
Shivacharan RS, Chiang CC, Zhang M, Gonzalez-Reyes LE, Durand DM. Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields. Exp Neurol 2019; 317:119-128. [PMID: 30776338 DOI: 10.1016/j.expneurol.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
It is well documented that synapses play a significant role in the transmission of information between neurons. However, in the absence of synaptic transmission, neural activity has been observed to continue to propagate. Previous studies have shown that propagation of epileptiform activity takes place in the absence of synaptic transmission and gap junctions and is outside the range of ionic diffusion and axonal conduction. Computer simulations indicate that electric field coupling could be responsible for the propagation of neural activity under pathological conditions such as epilepsy. Electric fields can modulate neuronal membrane voltage, but there is no experimental evidence suggesting that electric field coupling can mediate self-regenerating propagation of neural activity. Here we examine the role of electric field coupling by eliminating all forms of neural communications except electric field coupling with a cut through the neural tissue. We show that 4-AP induced activity generates an electric field capable of recruiting neurons on the distal side of the cut. Experiments also show that applied electric fields with amplitudes similar to endogenous values can induce propagating waves. Finally, we show that canceling the electrical field at a given point can block spontaneous propagation. The results from these in vitro electrophysiology experiments suggest that electric field coupling is a critical mechanism for non-synaptic neural propagation and therefore could contribute to the propagation of epileptic activity in the brain.
Collapse
Affiliation(s)
- Rajat S Shivacharan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mingming Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Oliva A, Fernández-Ruiz A, Fermino de Oliveira E, Buzsáki G. Origin of Gamma Frequency Power during Hippocampal Sharp-Wave Ripples. Cell Rep 2018; 25:1693-1700.e4. [PMID: 30428340 PMCID: PMC6310484 DOI: 10.1016/j.celrep.2018.10.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/07/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) support consolidation of recently acquired episodic memories and planning future actions by generating ordered neuronal sequences of previous or future experiences. SPW-Rs are characterized by several spectral components: a slow (5-15 Hz) sharp-wave, a high-frequency "ripple" oscillation (150-200 Hz), and a slow "gamma" oscillation (20-40 Hz). Using laminar hippocampal recordings and optogenetic manipulations, we dissected the origin of these spectral components. We show that increased power in the 20-40 Hz band does not reflect an entrainment of CA1 and CA3 neurons at gamma frequency but the power envelope of overlapping ripples. Spike-local field potential coupling between unit firing in CA1 and CA3 regions during SPW-Rs is lowest in the gamma band. Longer SPW-Rs are preceded by increased firing in the entorhinal cortex. Thus, fusion of SPW-Rs leads to lengthening of their duration associated with increased power in the slow gamma band without the presence of true oscillation.
Collapse
Affiliation(s)
- Azahara Oliva
- New York University Neuroscience Institute, New York, NY 10016, USA; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | | | - Eliezyer Fermino de Oliveira
- New York University Neuroscience Institute, New York, NY 10016, USA; Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
18
|
Martín-Vázquez G, Asabuki T, Isomura Y, Fukai T. Learning Task-Related Activities From Independent Local-Field-Potential Components Across Motor Cortex Layers. Front Neurosci 2018; 12:429. [PMID: 29997474 PMCID: PMC6028710 DOI: 10.3389/fnins.2018.00429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/06/2018] [Indexed: 01/19/2023] Open
Abstract
Motor cortical microcircuits receive inputs from dispersed cortical and subcortical regions in behaving animals. However, how these inputs contribute to learning and execution of voluntary sequential motor behaviors remains elusive. Here, we analyzed the independent components extracted from the local field potential (LFP) activity recorded at multiple depths of rat motor cortex during reward-motivated movement to study their roles in motor learning. Because slow gamma (30-50 Hz), fast gamma (60-120 Hz), and theta (4-10 Hz) oscillations temporally coordinate task-relevant motor cortical activities, we first explored the behavioral state- and layer-dependent coordination of motor behavior in these frequency ranges. Consistent with previous findings, oscillations in the slow and fast gamma bands dominated during distinct movement states, i.e., preparation and execution states, respectively. However, we identified a novel independent component that dominantly appeared in deep cortical layers and exhibited enhanced slow gamma activity during the execution state. Then, we used the four major independent components to train a recurrent network model for the same lever movements as the rats performed. We show that the independent components differently contribute to the formation of various task-related activities, but they also play overlapping roles in motor learning.
Collapse
Affiliation(s)
- Gonzalo Martín-Vázquez
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
- Lab for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Japan
| | - Toshitake Asabuki
- Lab for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Japan
- Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa, Japan
| | | | - Tomoki Fukai
- Lab for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, Japan
- Department of Complexity Science and Engineering, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
19
|
Dvorak D, Radwan B, Sparks FT, Talbot ZN, Fenton AA. Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1. PLoS Biol 2018; 16:e2003354. [PMID: 29346381 PMCID: PMC5790293 DOI: 10.1371/journal.pbio.2003354] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 12/28/2017] [Indexed: 11/19/2022] Open
Abstract
Behavior is used to assess memory and cognitive deficits in animals like Fmr1-null mice that model Fragile X Syndrome, but behavior is a proxy for unknown neural events that define cognitive variables like recollection. We identified an electrophysiological signature of recollection in mouse dorsal Cornu Ammonis 1 (CA1) hippocampus. During a shocked-place avoidance task, slow gamma (SG) (30–50 Hz) dominates mid-frequency gamma (MG) (70–90 Hz) oscillations 2–3 s before successful avoidance, but not failures. Wild-type (WT) but not Fmr1-null mice rapidly adapt to relocating the shock; concurrently, SG/MG maxima (SGdom) decrease in WT but not in cognitively inflexible Fmr1-null mice. During SGdom, putative pyramidal cell ensembles represent distant locations; during place avoidance, these are avoided places. During shock relocation, WT ensembles represent distant locations near the currently correct shock zone, but Fmr1-null ensembles represent the formerly correct zone. These findings indicate that recollection occurs when CA1 SG dominates MG and that accurate recollection of inappropriate memories explains Fmr1-null cognitive inflexibility. Behavior is often used as proxy to study memory and cognitive deficits in animals like Fmr1-KO mice that model Fragile X Syndrome, the most prevalent single-gene cause of intellectual disability and autism. However, it is unclear what neural events define cognitive variables like recollection of memory and cognitive inflexibility. We identified a signature of recollection in the local field potentials of mouse dorsal CA1 hippocampus. When mice on a rotating platform avoided an invisible, fixed shock zone, slow gamma (30–50 Hz) oscillations dominated mid-frequency gamma (70–90 Hz) oscillations (SGdom) 2–3 s before mice successfully avoided the shock zone. Wild-type but not Fmr1-KO mice adapt to relocating the shock zone; concurrently, SGdom decreases in wild-type but not in cognitively inflexible Fmr1-KO mice. During SGdom, principal cell ensembles represent distant locations; during place avoidance, these are avoided places in the shock zone vicinity. During shock relocation, wild-type ensembles encode distant locations near the currently correct shock zone, but Fmr1-KO ensembles manifest representational inflexibility, encoding the formerly correct zone. These findings suggest evidence for competition amongst CA1 inputs for CA1 information-processing modes and indicate that recollection occurs when CA1 slow gamma dominates mid-frequency gamma and that accurate recollection of inappropriate memories explains Fmr1-KO cognitive inflexibility.
Collapse
Affiliation(s)
- Dino Dvorak
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Basma Radwan
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Fraser T. Sparks
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Zoe Nicole Talbot
- School of Medicine, New York University, New York, New York, United States of America
| | - André A. Fenton
- Center for Neural Science, New York University, New York, New York, United States of America
- Neuroscience Institute at the New York University Langone Medical Center, New York, New York, United States of America
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron 2017; 93:1213-1226.e5. [PMID: 28279355 DOI: 10.1016/j.neuron.2017.02.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.
Collapse
|
21
|
Abstract
This article argues that qualia are a likely outcome of the processing of information in local cortical networks. It uses an information-based approach and makes a distinction between information structures (the physical embodiment of information in the brain, primarily patterns of action potentials), and information messages (the meaning of those structures to the brain, and the basis of qualia). It develops formal relationships between these two kinds of information, showing how information structures can represent messages, and how information messages can be identified from structures. The article applies this perspective to basic processing in cortical networks or ensembles, showing how networks can transform between the two kinds of information. The article argues that an input pattern of firing is identified by a network as an information message, and that the output pattern of firing generated is a representation of that message. If a network is encouraged to develop an attractor state through attention or other re-entrant processes, then the message identified each time physical information is cycled through the network becomes “representation of the previous message”. Using an example of olfactory perception, it is shown how this piggy-backing of messages on top of previous messages could lead to olfactory qualia. The message identified on each pass of information could evolve from inner identity, to inner form, to inner likeness or image. The outcome is an olfactory quale. It is shown that the same outcome could result from information cycled through a hierarchy of networks in a resonant state. The argument for qualia generation is applied to other sensory modalities, showing how, through a process of brain-wide constraint satisfaction, a particular state of consciousness could develop at any given moment. Evidence for some of the key predictions of the theory is presented, using ECoG data and studies of gamma oscillations and attractors, together with an outline of what further evidence is needed to provide support for the theory.
Collapse
Affiliation(s)
- Roger Orpwood
- Centre for Pain Research, Department for Health, University of BathBath, UK
| |
Collapse
|
22
|
Herreras O. Local Field Potentials: Myths and Misunderstandings. Front Neural Circuits 2016; 10:101. [PMID: 28018180 PMCID: PMC5156830 DOI: 10.3389/fncir.2016.00101] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022] Open
Abstract
The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
Collapse
Affiliation(s)
- Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute-CSICMadrid, Spain
| |
Collapse
|
23
|
Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex. Neuropsychopharmacology 2016; 41:1376-85. [PMID: 26361057 PMCID: PMC4793122 DOI: 10.1038/npp.2015.289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents.
Collapse
|
24
|
Greenberg A, Whitten TA, Dickson CT. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states. Neuroimage 2016; 133:189-206. [PMID: 26947518 DOI: 10.1016/j.neuroimage.2016.02.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 11/27/2022] Open
Abstract
Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.
Collapse
Affiliation(s)
- Anastasia Greenberg
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Tara A Whitten
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Clayton T Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Psychology, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
25
|
Herreras O, Makarova J, Makarov VA. New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience 2015; 310:486-503. [PMID: 26415769 DOI: 10.1016/j.neuroscience.2015.09.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 11/27/2022]
Abstract
Local field potentials (LFPs) reflect the coordinated firing of functional neural assemblies during information coding and transfer across neural networks. As such, it was proposed that the extraordinary variety of cytoarchitectonic elements in the brain is responsible for the wide range of amplitudes and for the coverage of field potentials, which in most cases receive contributions from multiple pathways and populations. The influence of spatial factors overrides the bold interpretations of customary measurements, such as the amplitude and polarity, to the point that their cellular interpretation is one of the hardest tasks in Neurophysiology. Temporal patterns and frequency bands are not exclusive to pathways but rather, the spatial configuration of the voltage gradients created by each pathway is highly specific and may be used advantageously. Recent technical and analytical advances now make it possible to separate and then reconstruct activity for specific pathways. In this review, we discuss how spatial features specific to cells and populations define the amplitude and extension of LFPs, why they become virtually indecipherable when several pathways are co-activated, and then we present the recent advances regarding their disentanglement using spatial discrimination techniques. The pathway-specific threads of LFPs have a simple cellular interpretation, and the temporal fluctuations obtained can be applied to a variety of new experimental objectives and improve existing approaches. Among others, they facilitate the parallel readout of activity in several populations over multiple time scales correlating them with behavior. Also, they access information contained in irregular fluctuations, facilitating the testing of ongoing plasticity. In addition, they open the way to unravel the synaptic nature of rhythmic oscillations, as well as the dynamic relationships between multiple oscillatory activities. The challenge of understanding which waves belong to which populations, and the pathways that provoke them, may soon be overcome.
Collapse
Affiliation(s)
- O Herreras
- Department of Systems Neuroscience, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid 28002, Spain.
| | - J Makarova
- Department of Systems Neuroscience, Cajal Institute, CSIC, Avenida Doctor Arce 37, Madrid 28002, Spain.
| | - V A Makarov
- Department of Applied Mathematics, School of Mathematics, University Complutense of Madrid, Plaza de Ciencias 3, Ciudad Universitaria, Madrid 28040, Spain.
| |
Collapse
|
26
|
Ritter P, Jirsa VK, McIntosh AR, Breakspear M. Editorial: State-dependent brain computation. Front Comput Neurosci 2015; 9:77. [PMID: 26157384 PMCID: PMC4477138 DOI: 10.3389/fncom.2015.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/10/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Petra Ritter
- Minerva Research Group Brain Modes, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Deparment of Neurology, Charité - University Medicine Berlin, Germany ; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience Berlin, Germany ; Berlin School of Mind and Brain and Mind and Brain Institute, Humboldt University Berlin, Germany
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes UMR INSERM 1106, Aix-Marseille Université Faculté de Médecine Marseille, France
| | - Anthony R McIntosh
- Rotman Research Institute of Baycrest Centre, University of Toronto Toronto, ON, Canada
| | - Michael Breakspear
- Systems Neuroscience Group, QIMR Berghofer Brisbane, QLD, Australia ; The Royal Brisbane and Woman's Hospital Brisbane, QLD, Australia
| |
Collapse
|
27
|
Abstract
Locally generated gamma oscillations synchronize spikes, but the nature of coupling between regions remains unclear. In this issue of Neuron, Schomburg et al. (2014) show that afferent gamma input fails to entrain hippocampal output, suggesting limited propagation of gamma waves.
Collapse
Affiliation(s)
- James L Butler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
28
|
Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, Buzsáki G. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 2014; 84:470-85. [PMID: 25263753 DOI: 10.1016/j.neuron.2014.08.051] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/25/2022]
Abstract
Precisely how rhythms support neuronal communication remains obscure. We investigated interregional coordination of gamma oscillations using high-density electrophysiological recordings in the rat hippocampus and entorhinal cortex. We found that 30-80 Hz gamma dominated CA1 local field potentials (LFPs) on the descending phase of CA1 theta waves during navigation, with 60-120 Hz gamma at the theta peak. These signals corresponded to CA3 and entorhinal input, respectively. Above 50 Hz, interregional phase-synchronization of principal cell spikes occurred mostly for LFPs in the axonal target domain. CA1 pyramidal cells were phase-locked mainly to fast gamma (>100 Hz) LFP patterns restricted to CA1, which were strongest at the theta trough. While theta phase coordination of spiking across entorhinal-hippocampal regions depended on memory demands, LFP gamma patterns below 100 Hz in the hippocampus were consistently layer specific and largely reflected afferent activity. Gamma synchronization as a mechanism for interregional communication thus rapidly loses efficacy at higher frequencies.
Collapse
Affiliation(s)
- Erik W Schomburg
- New York University Neuroscience Institute and Center for Neural Science, New York University, New York, NY 10016, USA; Department of Physics and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Antonio Fernández-Ruiz
- New York University Neuroscience Institute and Center for Neural Science, New York University, New York, NY 10016, USA; School of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Kenji Mizuseki
- New York University Neuroscience Institute and Center for Neural Science, New York University, New York, NY 10016, USA; Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Antal Berényi
- New York University Neuroscience Institute and Center for Neural Science, New York University, New York, NY 10016, USA; MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Costas A Anastassiou
- Department of Physics and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Christof Koch
- Department of Physics and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - György Buzsáki
- New York University Neuroscience Institute and Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
29
|
Gupta DS. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol 2014; 5:816. [PMID: 25136321 PMCID: PMC4118025 DOI: 10.3389/fpsyg.2014.00816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/09/2014] [Indexed: 11/13/2022] Open
Abstract
The processing of time intervals in the sub- to supra-second range by the brain is critical for the interaction of primates with their surroundings in activities, such as foraging and hunting. For an accurate processing of time intervals by the brain, representation of physical time within neuronal circuits is necessary. I propose that time dimension of the physical surrounding is represented in the brain by different types of neuronal oscillators, generating spikes or spike bursts at regular intervals. The proposed oscillators include the pacemaker neurons, tonic inputs, and synchronized excitation and inhibition of inter-connected neurons. Oscillators, which are built inside various circuits of brain, help to form modular clocks, processing time intervals or other temporal characteristics specific to functions of a circuit. Relative or absolute duration is represented within neuronal oscillators by "neural temporal unit," defined as the interval between regularly occurring spikes or spike bursts. Oscillator output is processed to produce changes in activities of neurons, named frequency modulator neuron, wired within a separate module, represented by the rate of change in frequency, and frequency of activities, proposed to encode time intervals. Inbuilt oscillators are calibrated by (a) feedback processes, (b) input of time intervals resulting from rhythmic external sensory stimulation, and (c) synchronous effects of feedback processes and evoked sensory activity. A single active clock is proposed per circuit, which is calibrated by one or more mechanisms. Multiple calibration mechanisms, inbuilt oscillators, and the presence of modular connections prevent a complete loss of interval timing functions of the brain.
Collapse
Affiliation(s)
- Daya S Gupta
- Department of Biology, Camden County College Blackwood, NJ, USA
| |
Collapse
|