1
|
Farhat T, Akram S, Rashid M, Jaffar A, Bhatti SM, Iqbal MA. A deep learning-based ensemble for autism spectrum disorder diagnosis using facial images. PLoS One 2025; 20:e0321697. [PMID: 40261913 PMCID: PMC12013875 DOI: 10.1371/journal.pone.0321697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder leading to an inability to socially communicate and in extreme cases individuals are completely dependent on caregivers. ASD detection at early ages is crucial as early detection can reduce the effect on social impairment. Deep learning models have shown capability to detect ASD earlier compared to traditional detection methods used by clinics and experts. Ensemble models, renowned for their ability to enhance predictive performance by combining multiple models, have emerged as a powerful tool in machine learning. This study harnesses the strength of ensemble learning to address the critical challenge of ASD diagnosis. This study proposed a deep ensemble model leveraging the strengths of VGG16 and Xception net trained on Facial Images for ASD detection overcoming limitations in existing datasets through extensive preprocessing. Proposed model preprocessed the training dataset of facial images by converting side posed images into frontal face images, using Histogram Equalization (HE) to enhance colors, data augmentation techniques application, and using the Hue Saturation Value (HSV) color model. By integrating the feature extraction strengths of VGG16 and Xception with fully connected layers, our model has achieved a notable 97% accuracy on the Kaggle ASD Face Image Dataset. This approach supports early detection of ASD and aligns with Sustainable Development Goal 3, which focuses on improving health and well-being.
Collapse
Affiliation(s)
- Tayyaba Farhat
- Faculty of Computer Science and Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Sheeraz Akram
- Faculty of Computer Science and Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Muhammad Rashid
- Department of Computer Science, National University of Technology, Islamabad, Pakistan
| | - Arfan Jaffar
- Faculty of Computer Science and Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Sohail Masood Bhatti
- Faculty of Computer Science and Information Technology, The Superior University, Lahore, Pakistan
- Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan
| | - Muhammad Amjad Iqbal
- Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Okimura T, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable and transportable resting-state neural signatures characterized by functional networks, neurotransmitters, and clinical symptoms in autism. Mol Psychiatry 2025; 30:1466-1478. [PMID: 39342041 PMCID: PMC11919695 DOI: 10.1038/s41380-024-02759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Drug Discovery Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Quantum Life Science, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef, Inc., Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan.
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
3
|
Aghdam MA, Bozdag S, Saeed F. Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation. Brain Inform 2025; 12:8. [PMID: 40117001 PMCID: PMC11928716 DOI: 10.1186/s40708-025-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/16/2025] [Indexed: 03/23/2025] Open
Abstract
Clinical diagnosis of Alzheimer's disease (AD) is usually made after symptoms such as short-term memory loss are exhibited, which minimizes the intervention and treatment options. The existing screening techniques cannot distinguish between stable MCI (sMCI) cases (i.e., patients who do not convert to AD for at least three years) and progressive MCI (pMCI) cases (i.e., patients who convert to AD in three years or sooner). Delayed diagnosis of AD also disproportionately affects underrepresented and socioeconomically disadvantaged populations. The significant positive impact of an early diagnosis solution for AD across diverse ethno-racial and demographic groups is well-known and recognized. While advancements in high-throughput technologies have enabled the generation of vast amounts of multimodal clinical, and neuroimaging datasets related to AD, most methods utilizing these data sets for diagnostic purposes have not found their way in clinical settings. To better understand the landscape, we surveyed the major preprocessing, data management, traditional machine-learning (ML), and deep learning (DL) techniques used for diagnosing AD using neuroimaging data such as structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Once we had a good understanding of the methods available, we conducted a study to assess the reproducibility and generalizability of open-source ML models. Our evaluation shows that existing models show reduced generalizability when different cohorts of the data modality are used while controlling other computational factors. The paper concludes with a discussion of major challenges that plague ML models for AD diagnosis and biomarker discovery.
Collapse
Affiliation(s)
- Maryam Akhavan Aghdam
- Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas (UNT), Denton, TX, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Science (KFSCIS), Florida International University (FIU), Miami, FL, USA.
| |
Collapse
|
4
|
Khan NA, Shang X. A short investigation of the effect of the selection of human brain atlases on the performance of ASD's classification models. Front Neurosci 2025; 19:1497881. [PMID: 39981402 PMCID: PMC11841380 DOI: 10.3389/fnins.2025.1497881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
This study investigated the impact of brain atlas selection on the classification accuracy of Autism Spectrum Disorder (ASD) models using functional Magnetic Resonance Imaging (fMRI) data. Brain atlases, such as AAL, CC200, Harvard-Oxford, and Yeo 7/17, are used to define regions of interest (ROIs) for fMRI analysis and play a crucial role in enabling researchers to study connectivity patterns and neural dynamics in ASD patients. Through a systematic review, we examined the performance of different atlases in various machine-learning and deep-learning frameworks for ASD classification. The results reveal that atlas selection significantly affects classification accuracy, with denser atlases, such as CC400, providing higher granularity, whereas coarser atlases such as AAL, offer computational efficiency. Furthermore, we discuss the dynamics of combining multiple atlases to enhance feature extraction and explore the implications of atlas selection across diverse datasets. Our findings emphasize the need for standardized approaches to atlas selection and highlight future research directions, including the integration of novel atlases, advanced data augmentation techniques, and end-to-end deep-learning models. This study provides valuable insights into optimizing fMRI-based ASD diagnosis and underscores the importance of interpreting atlas-specific features for an improved understanding of brain connectivity in ASD.
Collapse
Affiliation(s)
- Naseer Ahmed Khan
- School of Computer Science and Technology, Changan Campus, Northwestern Polytechnical University, Xi'an, China
| | | |
Collapse
|
5
|
Huda S, Khan DM, Masroor K, Warda, Rashid A, Shabbir M. Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review. Cogn Neurodyn 2024; 18:3585-3601. [PMID: 39712105 PMCID: PMC11656001 DOI: 10.1007/s11571-024-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 12/24/2024] Open
Abstract
Autism Spectrum Disorder(ASD) is a type of neurological disorder that is common among children. The diagnosis of this disorder at an early stage is the key to reducing its effects. The major symptoms include anxiety, lack of communication, and less social interaction. This paper presents a systematic review conducted based on PRISMA guidelines for automated diagnosis of ASD. With rapid development in the field of Data Science, numerous methods have been proposed that can diagnose the disease at an early stage which can minimize the effects of the disorder. Machine learning and deep learning have proven suitable techniques for the automated diagnosis of ASD. These models have been developed on various datasets such as ABIDE I and ABIDE II, a frequently used dataset based on rs-fMRI images. Approximately 26 articles have been reviewed after the screening process. The paper highlights a comparison between different algorithms used and their accuracy as well. It was observed that most researchers used DL algorithms to develop the ASD detection model. Different accuracies were recorded with a maximum accuracy close to 0.99. Recommendations for future work have also been discussed in a later section. This analysis derived a conclusion that AI-emerged DL and ML technologies can diagnose ASD through rs-fMRI images with maximum accuracy. The comparative analysis has been included to show the accuracy range.
Collapse
Affiliation(s)
- Shiza Huda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Danish Mahmood Khan
- Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, 47500 Petaling Jaya, Selangor Malaysia
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Komal Masroor
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Warda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Ayesha Rashid
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Mariam Shabbir
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| |
Collapse
|
6
|
Liu X, Hasan MR, Gedeon T, Hossain MZ. MADE-for-ASD: A multi-atlas deep ensemble network for diagnosing Autism Spectrum Disorder. Comput Biol Med 2024; 182:109083. [PMID: 39232404 DOI: 10.1016/j.compbiomed.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In response to the global need for efficient early diagnosis of Autism Spectrum Disorder (ASD), this paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions. We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data through a weighted deep ensemble network. Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance and offers a more holistic perspective on patient profiling. We experiment with the well-known publicly available ABIDE (Autism Brain Imaging Data Exchange) I dataset, consisting of resting state fMRI data from 17 different laboratories around the globe. Our proposed system achieves 75.20% accuracy on the entire dataset and 96.40% on a specific subset - both surpassing reported ASD diagnosis accuracy in ABIDE I fMRI studies. Specifically, our model improves by 4.4 percentage points over prior works on the same amount of data. The model exhibits a sensitivity of 82.90% and a specificity of 69.70% on the entire dataset, and 91.00% and 99.50%, respectively, on the specific subset. We leverage the F-score to pinpoint the top 10 ROI in ASD diagnosis, such as precuneus and anterior cingulate/ventromedial. The proposed system can potentially pave the way for more cost-effective, efficient and scalable strategies in ASD diagnosis. Codes and evaluations are publicly available at https://github.com/hasan-rakibul/MADE-for-ASD.
Collapse
Affiliation(s)
- Xuehan Liu
- Australian National University, Canberra, ACT, 2601, Australia.
| | - Md Rakibul Hasan
- Curtin University, Bentley, WA, 6102, Australia; BRAC University, Dhaka, 1212, Bangladesh.
| | - Tom Gedeon
- Curtin University, Bentley, WA, 6102, Australia; Obuda University, Budapest, 1034, Hungary.
| | - Md Zakir Hossain
- Australian National University, Canberra, ACT, 2601, Australia; Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
7
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10591-10605. [PMID: 37027556 DOI: 10.1109/tnnls.2023.3243000] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.
Collapse
|
8
|
Zhou Y, Jia G, Ren Y, Ren Y, Xiao Z, Wang Y. Advancing ASD identification with neuroimaging: a novel GARL methodology integrating Deep Q-Learning and generative adversarial networks. BMC Med Imaging 2024; 24:186. [PMID: 39054419 PMCID: PMC11270770 DOI: 10.1186/s12880-024-01360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects an individual's behavior, speech, and social interaction. Early and accurate diagnosis of ASD is pivotal for successful intervention. The limited availability of large datasets for neuroimaging investigations, however, poses a significant challenge to the timely and precise identification of ASD. To address this problem, we propose a breakthrough approach, GARL, for ASD diagnosis using neuroimaging data. GARL innovatively integrates the power of GANs and Deep Q-Learning to augment limited datasets and enhance diagnostic precision. We utilized the Autistic Brain Imaging Data Exchange (ABIDE) I and II datasets and employed a GAN to expand these datasets, creating a more robust and diversified dataset for analysis. This approach not only captures the underlying sample distribution within ABIDE I and II but also employs deep reinforcement learning for continuous self-improvement, significantly enhancing the capability of the model to generalize and adapt. Our experimental results confirmed that GAN-based data augmentation effectively improved the performance of all prediction models on both datasets, with the combination of InfoGAN and DQN's GARL yielding the most notable improvement.
Collapse
Affiliation(s)
- Yujing Zhou
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Guangbo Jia
- Shenzhen Mental Health Center & Shenzhen Kangning Hospital, Shenzhen, China
| | - Yingtong Ren
- Biomedical Engineering, Northeastern University, Shenyang, China
| | - Yingxin Ren
- Automation, Northeastern University, Shenyang, China
| | - Zhifeng Xiao
- China Nanhu Academy of Electronics And Information Technology, Jiaxing, China.
| | - Yinmei Wang
- Psychiatric Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
9
|
Gao L, Wang Z, Long Y, Zhang X, Su H, Yu Y, Hong J. Autism spectrum disorders detection based on multi-task transformer neural network. BMC Neurosci 2024; 25:27. [PMID: 38872076 DOI: 10.1186/s12868-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders that cause people difficulties in social interaction and communication. Identifying ASD patients based on resting-state functional magnetic resonance imaging (rs-fMRI) data is a promising diagnostic tool, but challenging due to the complex and unclear etiology of autism. And it is difficult to effectively identify ASD patients with a single data source (single task). Therefore, to address this challenge, we propose a novel multi-task learning framework for ASD identification based on rs-fMRI data, which can leverage useful information from multiple related tasks to improve the generalization performance of the model. Meanwhile, we adopt an attention mechanism to extract ASD-related features from each rs-fMRI dataset, which can enhance the feature representation and interpretability of the model. The results show that our method outperforms state-of-the-art methods in terms of accuracy, sensitivity and specificity. This work provides a new perspective and solution for ASD identification based on rs-fMRI data using multi-task learning. It also demonstrates the potential and value of machine learning for advancing neuroscience research and clinical practice.
Collapse
Affiliation(s)
- Le Gao
- School of Computer Engineering, Guangzhou Huali College, Guangzhou, 511325, China
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, 529000, China
| | - Zhimin Wang
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, 529000, China
| | - Yun Long
- State Key Laboratory of Public Big Data, Guizhou University, Guizhou, 550025, China.
| | - Xin Zhang
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, 529000, China
| | - Hexing Su
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, 529000, China
| | - Yong Yu
- School of Computer Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Jin Hong
- School of Information Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Zhang J, Guo J, Lu D, Cao Y. ASD-SWNet: a novel shared-weight feature extraction and classification network for autism spectrum disorder diagnosis. Sci Rep 2024; 14:13696. [PMID: 38871844 DOI: 10.1038/s41598-024-64299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The traditional diagnostic process for autism spectrum disorder (ASD) is subjective, where early and accurate diagnosis significantly affects treatment outcomes and life quality. Thus, improving ASD diagnostic methods is critical. This paper proposes ASD-SWNet, a new shared-weight feature extraction and classification network. It resolves the issue found in previous studies of inefficiently integrating unsupervised and supervised learning, thereby enhancing diagnostic precision. The approach utilizes functional magnetic resonance imaging to improve diagnostic accuracy, featuring an autoencoder (AE) with Gaussian noise for robust feature extraction and a tailored convolutional neural network (CNN) for classification. The shared-weight mechanism utilizes features learned by the AE to initialize the convolutional layer weights of the CNN, thereby integrating AE and CNN for joint training. A novel data augmentation strategy for time-series medical data is also introduced, tackling the problem of small sample sizes. Tested on the ABIDE-I dataset through nested ten-fold cross-validation, the method achieved an accuracy of 76.52% and an AUC of 0.81. This approach surpasses existing methods, showing significant enhancements in diagnostic accuracy and robustness. The contribution of this paper lies not only in proposing new methods for ASD diagnosis but also in offering new approaches for other neurological brain diseases.
Collapse
Affiliation(s)
- Jian Zhang
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China.
| | - Jifeng Guo
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, 540004, China
| | - Donglei Lu
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China
| | - Yuanyuan Cao
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China
| |
Collapse
|
11
|
Zhang H, Chen J, Liao B, Wu FX, Bi XA. Deep Canonical Correlation Fusion Algorithm Based on Denoising Autoencoder for ASD Diagnosis and Pathogenic Brain Region Identification. Interdiscip Sci 2024; 16:455-468. [PMID: 38573456 DOI: 10.1007/s12539-024-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental condition distinguished by unconventional neural activities. Early intervention is key to managing the progress of ASD, and current research primarily focuses on the use of structural magnetic resonance imaging (sMRI) or resting-state functional magnetic resonance imaging (rs-fMRI) for diagnosis. Moreover, the use of autoencoders for disease classification has not been sufficiently explored. In this study, we introduce a new framework based on autoencoder, the Deep Canonical Correlation Fusion algorithm based on Denoising Autoencoder (DCCF-DAE), which proves to be effective in handling high-dimensional data. This framework involves efficient feature extraction from different types of data with an advanced autoencoder, followed by the fusion of these features through the DCCF model. Then we utilize the fused features for disease classification. DCCF integrates functional and structural data to help accurately diagnose ASD and identify critical Regions of Interest (ROIs) in disease mechanisms. We compare the proposed framework with other methods by the Autism Brain Imaging Data Exchange (ABIDE) database and the results demonstrate its outstanding performance in ASD diagnosis. The superiority of DCCF-DAE highlights its potential as a crucial tool for early ASD diagnosis and monitoring.
Collapse
Affiliation(s)
- Huilian Zhang
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Jie Chen
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Bo Liao
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N5A9, Canada
| | - Xia-An Bi
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China.
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China.
- College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
12
|
Huang ZA, Liu R, Zhu Z, Tan KC. Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8161-8175. [PMID: 36459608 DOI: 10.1109/tnnls.2022.3225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
Collapse
|
13
|
Zhang X, Gao Y, Zhang Y, Li F, Li H, Lei F. Identification of Autism Spectrum Disorder Using Topological Data Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1023-1037. [PMID: 38351222 PMCID: PMC11169318 DOI: 10.1007/s10278-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive brain development disease. Recently, the incidence rate of ASD has increased year by year and posed a great threat to the lives and families of individuals with ASD. Therefore, the study of ASD has become very important. A suitable feature representation that preserves the data intrinsic information and also reduces data complexity is very vital to the performance of established models. Topological data analysis (TDA) is an emerging and powerful mathematical tool for characterizing shapes and describing intrinsic information in complex data. In TDA, persistence barcodes or diagrams are usually regarded as visual representations of topological features of data. In this paper, the Regional Homogeneity (ReHo) data of subjects obtained from Autism Brain Imaging Data Exchange (ABIDE) database were used to extract features by using TDA. The average accuracy of cross validation on ABIDE I database was 95.6% that was higher than any other existing methods (the highest accuracy among existing methods was 93.59%). The average accuracy for sampling with the same resolutions with the ABIDE I on the ABIDE II database was 96.5% that was also higher than any other existing methods (the highest accuracy among existing methods was 75.17%).
Collapse
Affiliation(s)
- Xudong Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yaru Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yunge Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengling Li
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China.
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
14
|
Guan Z, Yu J, Shi Z, Liu X, Yu R, Lai T, Yang C, Dong H, Chen R, Wei L. Dynamic graph transformer network via dual-view connectivity for autism spectrum disorder identification. Comput Biol Med 2024; 174:108415. [PMID: 38599070 DOI: 10.1016/j.compbiomed.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that requires objective and accurate identification methods for effective early intervention. Previous population-based methods via functional connectivity (FC) analysis ignore the differences between positive and negative FCs, which provide the potential information complementarity. And they also require additional information to construct a pre-defined graph. Meanwhile, two challenging demand attentions are the imbalance of performance caused by the class distribution and the inherent heterogeneity of multi-site data. In this paper, we propose a novel dynamic graph Transformer network based on dual-view connectivity for ASD Identification. It is based on the Autoencoders, which regard the input feature as individual feature and without any inductive bias. First, a dual-view feature extractor is designed to extract individual and complementary information from positive and negative connectivity. Then Graph Transformer network is innovated with a hot plugging K-Nearest Neighbor (KNN) algorithm module which constructs a dynamic population graph without any additional information. Additionally, we introduce the PolyLoss function and the Vrex method to address the class imbalance and improve the model's generalizability. The evaluation experiment on 1102 subjects from the ABIDE I dataset demonstrates our method can achieve superior performance over several state-of-the-art methods and satisfying generalizability for ASD identification.
Collapse
Affiliation(s)
- Zihao Guan
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaming Yu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenshan Shi
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Xiumei Liu
- Developmental and Behavior Pediatrics Department, Fujian Children's Hospital - Fujian Branch of Shanghai Children's Medical Center, Fuzhou, 350002, China; College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350012, China
| | - Renping Yu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Taotao Lai
- College of Computer and Control Engineering, Minjiang University, Fuzhou, 350108, China
| | - Changcai Yang
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Heng Dong
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Riqing Chen
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lifang Wei
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Wang C, Xiao Z, Xu Y, Zhang Q, Chen J. A novel approach for ASD recognition based on graph attention networks. Front Comput Neurosci 2024; 18:1388083. [PMID: 38659616 PMCID: PMC11039788 DOI: 10.3389/fncom.2024.1388083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Early detection and diagnosis of Autism Spectrum Disorder (ASD) can significantly improve the quality of life for affected individuals. Identifying ASD based on brain functional connectivity (FC) poses a challenge due to the high heterogeneity of subjects' fMRI data in different sites. Meanwhile, deep learning algorithms show efficacy in ASD identification but lack interpretability. In this paper, a novel approach for ASD recognition is proposed based on graph attention networks. Specifically, we treat the region of interest (ROI) of the subjects as node, conduct wavelet decomposition of the BOLD signal in each ROI, extract wavelet features, and utilize them along with the mean and variance of the BOLD signal as node features, and the optimized FC matrix as the adjacency matrix, respectively. We then employ the self-attention mechanism to capture long-range dependencies among features. To enhance interpretability, the node-selection pooling layers are designed to determine the importance of ROI for prediction. The proposed framework are applied to fMRI data of children (younger than 12 years old) from the Autism Brain Imaging Data Exchange datasets. Promising results demonstrate superior performance compared to recent similar studies. The obtained ROI detection results exhibit high correspondence with previous studies and offer good interpretability.
Collapse
Affiliation(s)
- Canhua Wang
- School of Computer, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhiyong Xiao
- School of Electronic & Information Engineering, Jiangxi Institute of Economic Administrators, Nanchang, China
| | - Yilu Xu
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Qi Zhang
- Department of Medical Imaging, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingfang Chen
- Department of Medical Imaging, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Patel K, Xie Z, Yuan H, Islam SMS, Xie Y, He W, Zhang W, Gottlieb A, Chen H, Giancardo L, Knaack A, Fletcher E, Fornage M, Ji S, Zhi D. Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging. Commun Biol 2024; 7:414. [PMID: 38580839 PMCID: PMC10997628 DOI: 10.1038/s42003-024-06096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or computed from limited amounts of data. Here, we present an approach to derive brain imaging phenotypes using unsupervised deep representation learning. We train a 3-D convolutional autoencoder model with reconstruction loss on 6130 UK Biobank (UKBB) participants' T1 or T2-FLAIR (T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880 discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based decoder interpretation approach to show that these loci are associated with UDIPs mapped to multiple relevant brain regions. Our results established unsupervised deep learning can derive robust, unbiased, heritable, and interpretable brain imaging phenotypes.
Collapse
Affiliation(s)
- Khush Patel
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ziqian Xie
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hao Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Yaochen Xie
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Wei He
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Wanheng Zhang
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Assaf Gottlieb
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Han Chen
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Luca Giancardo
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Alexander Knaack
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Evan Fletcher
- Department of Neurology and Imaging of Dementia and Aging (IDeA) Laboratory, University of California at Davis, Davis, CA, 95618, USA
| | - Myriam Fornage
- School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Shuiwang Ji
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Degui Zhi
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Alharthi AG, Alzahrani SM. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput Biol Med 2023; 167:107667. [PMID: 37939407 DOI: 10.1016/j.compbiomed.2023.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a condition observed in children who display abnormal patterns of interaction, behavior, and communication with others. Despite extensive research efforts, the underlying causes of this neurodevelopmental disorder and its biomarkers remain unknown. However, advancements in artificial intelligence and machine learning have improved clinicians' ability to diagnose ASD. This review paper investigates various MRI modalities to identify distinct features that characterize individuals with ASD compared to typical control subjects. The review then moves on to explore deep learning models for ASD diagnosis, including convolutional neural networks (CNNs), autoencoders, graph convolutions, attention networks, and other models. CNNs and their variations are particularly effective due to their capacity to learn structured image representations and identify reliable biomarkers for brain disorders. Computer vision transformers often employ CNN architectures with transfer learning techniques like fine-tuning and layer freezing to enhance image classification performance, surpassing traditional machine learning models. This review paper contributes in three main ways. Firstly, it provides a comprehensive overview of a recommended architecture for using vision transformers in the systematic ASD diagnostic process. To this end, the paper investigates various pre-trained vision architectures such as VGG, ResNet, Inception, InceptionResNet, DenseNet, and Swin models that were fine-tuned for ASD diagnosis and classification. Secondly, it discusses the vision transformers of 2020th like BiT, ViT, MobileViT, and ConvNeXt, and applying transfer learning methods in relation to their prospective practicality in ASD classification. Thirdly, it explores brain transformers that are pre-trained on medically rich data and MRI neuroimaging datasets. The paper recommends a systematic architecture for ASD diagnosis using brain transformers. It also reviews recently developed brain transformer-based models, such as METAFormer, Com-BrainTF, Brain Network, ST-Transformer, STCAL, BolT, and BrainFormer, discussing their deep transfer learning architectures and results in ASD detection. Additionally, the paper summarizes and discusses brain-related transformers for various brain disorders, such as MSGTN, STAGIN, and MedTransformer, in relation to their potential usefulness in ASD. The study suggests that developing specialized transformer-based models, following the success of natural language processing (NLP), can offer new directions for image classification problems in ASD brain biomarkers learning and classification. By incorporating the attention mechanism, treating MRI modalities as sequence prediction tasks trained on brain disorder classification problems, and fine-tuned on ASD datasets, brain transformers can show a great promise in ASD diagnosis.
Collapse
Affiliation(s)
- Asrar G Alharthi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia.
| | - Salha M Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia
| |
Collapse
|
18
|
Zhang S, Chen X, Shen X, Ren B, Yu Z, Yang H, Jiang X, Shen D, Zhou Y, Zhang XY. A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders. Med Image Anal 2023; 90:102932. [PMID: 37657365 DOI: 10.1016/j.media.2023.102932] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shengjie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xiang Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xin Shen
- Department of Mathematics, Beijing Normal University, Beijing, 100032, China
| | - Bohan Ren
- Department of School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Ziqi Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xi Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200030, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Yuan Zhou
- School of Data Science, Fudan University, Shanghai, 200433, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
19
|
Almuqhim F, Saeed F. ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2023; 2023:2837-2843. [PMID: 39021439 PMCID: PMC11254319 DOI: 10.1109/bibm58861.2023.10385743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder in children, and the current clinical diagnosis is accomplished using behavioral, cognitive, developmental, and language metrics. These clinical metrics can be imperfect measures as they are subject to high test-retest variability, and are influenced by assessment factors such as environment, social structure, or comorbid disorders. Advances in neuroimaging coupled with machine-learning provides an opportunity to develop methods that are more quantifiable, and reliable than existing clinical techniques. In this paper, we design and develop a deep-learning model that operates on functional magnetic resonance imaging (fMRI) data, and can classify between ASD and neurotypical brains. We introduce a novel strategy to transform time-series data extracted from fMRI signals into Gramian Angular Field (GAF) while locking in the temporal and spatial patterns in the data. Our motivation is to design and develop a novel framework that could encode the time-series, acquired from fMRI data, into images that can be used by deep-learning architectures that have been successful in computer vision. In our proposed framework called ASD-GResTM, we used a Convolutional Neural Network (CNN) to extract useful features from GAF images. We then used a Long Short-Term Memory (LSTM) layer to learn the activities between the regions. Finally, the output representations of the last LSTM layer are applied to a single-layer perceptron (SPL) to get the final classification. Our extensive experimentation demonstrates high accuracy across 4 centers, and outperforms state-of-the-art models on two centers with an increase in the accuracy of 17.58% and 6.7%, respectively as compared to the state of the art. Our model achieved the maximum accuracy of 81.78% with high degree of sensitivity and specificity. All training, validation, and testing was accomplished using openly available ABIDE-I benchmarking dataset.
Collapse
Affiliation(s)
- Fahad Almuqhim
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| |
Collapse
|
20
|
Alharthi AG, Alzahrani SM. Multi-Slice Generation sMRI and fMRI for Autism Spectrum Disorder Diagnosis Using 3D-CNN and Vision Transformers. Brain Sci 2023; 13:1578. [PMID: 38002538 PMCID: PMC10670036 DOI: 10.3390/brainsci13111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Researchers have explored various potential indicators of ASD, including changes in brain structure and activity, genetics, and immune system abnormalities, but no definitive indicator has been found yet. Therefore, this study aims to investigate ASD indicators using two types of magnetic resonance images (MRI), structural (sMRI) and functional (fMRI), and to address the issue of limited data availability. Transfer learning is a valuable technique when working with limited data, as it utilizes knowledge gained from a pre-trained model in a domain with abundant data. This study proposed the use of four vision transformers namely ConvNeXT, MobileNet, Swin, and ViT using sMRI modalities. The study also investigated the use of a 3D-CNN model with sMRI and fMRI modalities. Our experiments involved different methods of generating data and extracting slices from raw 3D sMRI and 4D fMRI scans along the axial, coronal, and sagittal brain planes. To evaluate our methods, we utilized a standard neuroimaging dataset called NYU from the ABIDE repository to classify ASD subjects from typical control subjects. The performance of our models was evaluated against several baselines including studies that implemented VGG and ResNet transfer learning models. Our experimental results validate the effectiveness of the proposed multi-slice generation with the 3D-CNN and transfer learning methods as they achieved state-of-the-art results. In particular, results from 50-middle slices from the fMRI and 3D-CNN showed a profound promise in ASD classifiability as it obtained a maximum accuracy of 0.8710 and F1-score of 0.8261 when using the mean of 4D images across the axial, coronal, and sagittal. Additionally, the use of the whole slices in fMRI except the beginnings and the ends of brain views helped to reduce irrelevant information and showed good performance of 0.8387 accuracy and 0.7727 F1-score. Lastly, the transfer learning with the ConvNeXt model achieved results higher than other transformers when using 50-middle slices sMRI along the axial, coronal, and sagittal planes.
Collapse
Affiliation(s)
| | - Salha M. Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
21
|
Sidulova M, Park CH. Conditional Variational Autoencoder for Functional Connectivity Analysis of Autism Spectrum Disorder Functional Magnetic Resonance Imaging Data: A Comparative Study. Bioengineering (Basel) 2023; 10:1209. [PMID: 37892939 PMCID: PMC10604768 DOI: 10.3390/bioengineering10101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Generative models, such as Variational Autoencoders (VAEs), are increasingly employed for atypical pattern detection in brain imaging. During training, these models learn to capture the underlying patterns within "normal" brain images and generate new samples from those patterns. Neurodivergent states can be observed by measuring the dissimilarity between the generated/reconstructed images and the input images. This paper leverages VAEs to conduct Functional Connectivity (FC) analysis from functional Magnetic Resonance Imaging (fMRI) scans of individuals with Autism Spectrum Disorder (ASD), aiming to uncover atypical interconnectivity between brain regions. In the first part of our study, we compare multiple VAE architectures-Conditional VAE, Recurrent VAE, and a hybrid of CNN parallel with RNN VAE-aiming to establish the effectiveness of VAEs in application FC analysis. Given the nature of the disorder, ASD exhibits a higher prevalence among males than females. Therefore, in the second part of this paper, we investigate if introducing phenotypic data could improve the performance of VAEs and, consequently, FC analysis. We compare our results with the findings from previous studies in the literature. The results showed that CNN-based VAE architecture is more effective for this application than the other models.
Collapse
Affiliation(s)
- Mariia Sidulova
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA;
| | - Chung Hyuk Park
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA;
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
22
|
Artiles O, Al Masry Z, Saeed F. Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data. Neuroinformatics 2023; 21:651-668. [PMID: 37581850 PMCID: PMC11877654 DOI: 10.1007/s12021-023-09639-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/16/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuroscience to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17 ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and 7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectivity computed from the ABIDE rs-fMRI multi-site data.
Collapse
Affiliation(s)
- Oswaldo Artiles
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA
| | - Zeina Al Masry
- SUPMICROTECH, CNRS, institut FEMTO-ST, 24 rue Alain Savary, Besançon, F-25000, France
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA.
| |
Collapse
|
23
|
Wang M, Guo J, Wang Y, Yu M, Guo J. Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3664-3674. [PMID: 37698959 DOI: 10.1109/tnsre.2023.3314516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.
Collapse
|
24
|
Ji J, Zhang Y. Deep Hashing Mutual Learning for Brain Network Classification. IEEE J Biomed Health Inform 2023; 27:4489-4499. [PMID: 37318974 DOI: 10.1109/jbhi.2023.3286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, clinical phenotypic semantic information has begun to play an important role in some brain network classification methods based on deep learning. However, most current methods only consider the phenotypic semantic information of individual brain networks but ignore the potential phenotypic characteristics among group brain networks. To address this problem, we present a deep hashing mutual learning (DHML)-based brain network classification method. Specifically, we first design a separable CNN-based deep hashing learning to extract individual topological features of brain networks and map them into hash codes. Secondly, we construct a group brain network relationship graph based on the similarity of phenotypic semantic information, in which each node is a brain network, and the properties of the nodes are the individual features extracted in the previous step. Then, we adopt a GCN-based deep hashing learning to extract the group topological features of the brain network and map them to hash codes. Finally, the two deep hashing learning models perform mutual learning by measuring the distribution differences between the hash codes to achieve the interaction of individual and group features. The experimental results on the three commonly used brain atlases (AAL Atlas, Dosenbach160 Atlas, and CC200 Atlas) of the ABIDE I dataset show that our proposed DHML method achieves optimal classification performance compared with some state-of-the-art methods.
Collapse
|
25
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
26
|
Cui W, Du J, Sun M, Zhu S, Zhao S, Peng Z, Tan L, Li Y. Dynamic multi-site graph convolutional network for autism spectrum disorder identification. Comput Biol Med 2023; 157:106749. [PMID: 36921455 DOI: 10.1016/j.compbiomed.2023.106749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Multi-site learning has attracted increasing interests in autism spectrum disorder (ASD) identification tasks by its efficacy on capturing data heterogeneity of neuroimaging taken from different medical sites. However, existing multi-site graph convolutional network (MSGCN) often ignores the correlations between different sites, and may obtain suboptimal identification results. Moreover, current feature extraction methods characterizing temporal variations of functional magnetic resonance imaging (fMRI) signals require the time series to be of the same length and cannot be directly applied to multi-site fMRI datasets. To address these problems, we propose a dual graph based dynamic multi-site graph convolutional network (DG-DMSGCN) for multi-site ASD identification. First, a sliding-window dual-graph convolutional network (SW-DGCN) is introduced for feature extraction, simultaneously capturing temporal and spatial features of fMRI data with different series lengths. Then we aggregate the features extracted from multiple medical sites through a novel dynamic multi-site graph convolutional network (DMSGCN), which effectively considers the correlations between different sites and is beneficial to improve identification performance. We evaluate the proposed DG-DMSGCN on public ABIDE I dataset containing data from 17 medical sites. The promising results obtained by our framework outperforms the state-of-the-art methods with increase in identification accuracy, indicating that it has a potential clinical prospect for practical ASD diagnosis. Our codes are available on https://github.com/Junling-Du/DG-DMSGCN.
Collapse
Affiliation(s)
- Weigang Cui
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Junling Du
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Mingyi Sun
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
| | - Shimao Zhu
- South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518111, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Ziwen Peng
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, 518020, China.
| | - Li Tan
- School of Computer Science and Engineering, Beijing Technology and Business Universtiy, Beijing, 100048, China.
| | - Yang Li
- Department of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.
| |
Collapse
|
27
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534053. [PMID: 37034620 PMCID: PMC10081283 DOI: 10.1101/2023.03.26.534053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P < 0.05 , family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Laboratory for Drug Discovery and Disease Research, SHIONOGI & CO., LTD, Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Y. Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C. Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef Incorporation, Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryu-ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
29
|
Yousefian A, Shayegh F, Maleki Z. Detection of autism spectrum disorder using graph representation learning algorithms and deep neural network, based on fMRI signals. Front Syst Neurosci 2023; 16:904770. [PMID: 36817947 PMCID: PMC9932324 DOI: 10.3389/fnsys.2022.904770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Can we apply graph representation learning algorithms to identify autism spectrum disorder (ASD) patients within a large brain imaging dataset? ASD is mainly identified by brain functional connectivity patterns. Attempts to unveil the common neural patterns emerged in ASD are the essence of ASD classification. We claim that graph representation learning methods can appropriately extract the connectivity patterns of the brain, in such a way that the method can be generalized to every recording condition, and phenotypical information of subjects. These methods can capture the whole structure of the brain, both local and global properties. Methods The investigation is done for the worldwide brain imaging multi-site database known as ABIDE I and II (Autism Brain Imaging Data Exchange). Among different graph representation techniques, we used AWE, Node2vec, Struct2vec, multi node2vec, and Graph2Img. The best approach was Graph2Img, in which after extracting the feature vectors representative of the brain nodes, the PCA algorithm is applied to the matrix of feature vectors. The classifier adapted to the features embedded in graphs is an LeNet deep neural network. Results and discussion Although we could not outperform the previous accuracy of 10-fold cross-validation in the identification of ASD versus control patients in this dataset, for leave-one-site-out cross-validation, we could obtain better results (our accuracy: 80%). The result is that graph embedding methods can prepare the connectivity matrix more suitable for applying to a deep network.
Collapse
Affiliation(s)
| | - Farzaneh Shayegh
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
30
|
Prediction Model for Sensory Perception Abnormality in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24032367. [PMID: 36768688 PMCID: PMC9916460 DOI: 10.3390/ijms24032367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous clinical phenotypes. Patients often experience abnormal sensory perception, which may further affect the ASD core phenotype, significantly and adversely affecting their quality of life. However, biomarkers for the diagnosis of ASD sensory perception abnormality are currently elusive. We sought to identify potential biomarkers related to ASD sensory perception abnormality to construct a prediction model that could facilitate the early identification of and screening for ASD. Differentially expressed genes in ASD were obtained from the Gene Expression Omnibus database and were screened for genes related to sensory perception abnormality. After enrichment analysis, the random forest method was used to identify disease-characteristic genes. A prediction model was constructed with an artificial neural network. Finally, the results were validated using data from the dorsal root ganglion, cerebral cortex, and striatum of the BTBR T+ Itpr3tf/J (BTBR) ASD mouse model. A total of 1869 differentially expressed genes in ASD were screened, among which 16 genes related to sensory perception abnormality were identified. According to enrichment analysis, these 16 genes were mainly related to actin, cholesterol metabolism, and tight junctions. Using random forest, 15 disease-characteristic genes were screened for model construction. The area under the curve of the training set validation result was 0.999, and for the model function validation, the result was 0.711, indicating high accuracy. The validation of BTBR mice confirmed the reliability of using these disease-characteristic genes for prediction of ASD. In conclusion, we developed a highly accurate model for predicting ASD sensory perception abnormality from 15 disease-characteristic genes. This model provides a new method for the early identification and diagnosis of ASD sensory perception abnormality.
Collapse
|
31
|
Kunda M, Zhou S, Gong G, Lu H. Improving Multi-Site Autism Classification via Site-Dependence Minimization and Second-Order Functional Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:55-65. [PMID: 36054402 DOI: 10.1109/tmi.2022.3203899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Machine learning has been widely used to develop classification models for autism spectrum disorder (ASD) using neuroimaging data. Recently, studies have shifted towards using large multi-site neuroimaging datasets to boost the clinical applicability and statistical power of results. However, the classification performance is hindered by the heterogeneous nature of agglomerative datasets. In this paper, we propose new methods for multi-site autism classification using the Autism Brain Imaging Data Exchange (ABIDE) dataset. We firstly propose a new second-order measure of functional connectivity (FC) named as Tangent Pearson embedding to extract better features for classification. Then we assess the statistical dependence between acquisition sites and FC features, and take a domain adaptation approach to minimize the site dependence of FC features to improve classification. Our analysis shows that 1) statistical dependence between site and FC features is statistically significant at the 5% level, and 2) extracting second-order features from neuroimaging data and minimizing their site dependence can improve over state-of-the-art (SOTA) classification results, achieving a classification accuracy of 73%. The code is available at https://github.com/kundaMwiza/fMRI-site-adaptation.
Collapse
|
32
|
Teng J, Mi C, Liu W, Shi J, Li N. mTBI-DSANet: A deep self-attention model for diagnosing mild traumatic brain injury using multi-level functional connectivity networks. Comput Biol Med 2023; 152:106354. [PMID: 36481760 DOI: 10.1016/j.compbiomed.2022.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
The main approach for analyzing resting-state functional magnetic resonance imaging (rs-fMRI) is the low-order functional connectivity network (LoFCN) based on the correlation between two brain regions. Based on LoFCN, researchers recently proposed the topographical high-order FCN (tHoFCN) and the associated high-order FCN (aHoFCN) to explore the high-order interactions among brain regions. In this work, we designed a Deep Self-Attention (DSA) framework called mTBI-DSANet to diagnose mild traumatic brain injury (mTBI) using multi-level FCNs, including LoFCN, tHoFCN, and aHoFCN. The multilayer perceptron and self-attention mechanism in mTBI-DSANet were designed to capture important features for the mTBI diagnosis. We evaluated the mTBI-DSANet's performance on the real rs-fMRI dataset, which was collected by Third Xiangya Hospital of Central South University from April 2014 to February 2021. We compared the performance of mTBI-DSANet with distinct FCNs and their combinations under 10-fold cross-validation. Based on the LoFCN+aHoFCN combination, the average performance of mTBI-DSANet achieved the best accuracy of 0.834, which is significantly better than peer methods. The experiments demonstrated the potential of the mTBI-DSANet in assisting mTBI diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Wuyi Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
33
|
Yang T, Al-Duailij MA, Bozdag S, Saeed F. Classification of Autism Spectrum Disorder Using rs-fMRI data and Graph Convolutional Networks. PROCEEDINGS : ... IEEE INTERNATIONAL CONFERENCE ON BIG DATA. IEEE INTERNATIONAL CONFERENCE ON BIG DATA 2022; 2022:3131-3138. [PMID: 38952948 PMCID: PMC11215804 DOI: 10.1109/bigdata55660.2022.10021070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Autism spectrum disorder (ASD) affects large number of children and adults in the US, and worldwide. Early and quick diagnosis of ASD can improve the quality of life significantly both for patients and their families. Prior research provides strong evidence that structural and functional magnetic resonance imaging (MRI) data collected from individuals with ASD exhibit distinguishing characteristics that differ in local and global, spatial and temporal neural patterns of the brain - and therefore can be used for diagnostic purposes for various mental disorders. However, the data from MRI are high-dimensional and advanced methods are needed to make sense out of these datasets. In this paper, we present a novel model based on graph convolutional network (GCN) that can utilize resting state fMRI (rs-fMRI) data to classify ASD subjects from health controls (HC). In addition to using the graph from traditional correlation matrices, our proposed GCN model incorporates graphlet topological counting as one of the training features. Our results show that graphlets can preserve the topological information of the graphs obtained from fMRI data. Combined with our GCN, the graphlets retain enough topological information to differentiate between the ASD and HC. Our proposed model gives an average accuracy of 64.27% on the whole ABIDE-I data sets (1035 subjects) and highest site-specific accuracy of 75.9%, which is comparable to other state-of-the-art methods - while potentially open to being more interpretable.
Collapse
Affiliation(s)
- Tianren Yang
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, Florida
| | - Mai A Al-Duailij
- Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Serdar Bozdag
- Department of Computer Science and Engineering, Department of Mathematics, BioDiscovery Institute, University of North Texas, Denton, Texas
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami, Florida
| |
Collapse
|
34
|
Deng X, Zhang J, Liu R, Liu K. Classifying ASD based on time-series fMRI using spatial-temporal transformer. Comput Biol Med 2022; 151:106320. [PMID: 36442277 DOI: 10.1016/j.compbiomed.2022.106320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
Collapse
Affiliation(s)
- Xin Deng
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Jiahao Zhang
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rui Liu
- Department of Computer Science, City University of Hong Kong, 999077, Hong Kong, China.
| | - Ke Liu
- The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
35
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
36
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
37
|
Shi C, Xin X, Zhang J. A novel multigranularity feature-selection method based on neighborhood mutual information and its application in autistic patient identification. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Qin C, Zhu X, Ye L, Peng L, Li L, Wang J, Ma J, Liu T. Autism detection based on multiple time scale model. J Neural Eng 2022; 19. [PMID: 35985297 DOI: 10.1088/1741-2552/ac8b39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Current autism clinical detection relies on doctor observation and filling of clinical scales, which is subjective and easily misdetection. Existing autism research of functional magnetic resonance imaging (fMRI) over-compresses the time-scale information and has poor generalization ability. This study extracts multiple time scale brain features of fMRI, providing objective detection. APPROACH We first use least absolute shrinkage and selection operator (LASSO) to build a sparse network and extract features with a time scale of 1. Then, we use hidden markov model (HMM) to extract features that describe the dynamic changes of the brain, with a time scale of 2. Additionally, to analyze the features of the potential network activity of autism from a higher time scale, we use long short-term memory (LSTM) to construct an auto-encoder to re-encode the original data and extract the features of the at a higher time scale, with a time scale of T, and T is the time length of fMRI. We use Recursive Feature Elimination (RFE) for feature selection for three different time scale features, merge them into multiple time scale features, and finally use one-dimensional convolution neural network (1DCNN) for classification. MAIN RESULTS Compared with well-established models, our method has achieved better results. The accuracy of our method is 76.0%, and the area under the roc curve is 0.83, tested on the completely independent data, so our method has better generalization ability. SIGNIFICANCE This research analyzes fMRI sequences from multiple time scale to detect autism, and it also provides a new framework and research ideas for subsequent fMRI analysis.
Collapse
Affiliation(s)
- Chi Qin
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Xiaofei Zhu
- Tangdu Hospital Fourth Military Medical University, Department of Radiology, Xi'an, Shaanxi, 710038, CHINA
| | - Lin Ye
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Li Peng
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Department of Radiology, Wuhan, Hubei, 430030, CHINA
| | - Long Li
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Jue Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Jin Ma
- Air Force Medical University, School of Aerospace Medicine, Xi'an, 710032, CHINA
| | - Tian Liu
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
39
|
Feng Q, Huang Y, Long Y, Gao L, Gao X. A Deep Spatiotemporal Attention Network for Mild Cognitive Impairment Identification. Front Aging Neurosci 2022; 14:925468. [PMID: 35923552 PMCID: PMC9339621 DOI: 10.3389/fnagi.2022.925468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is a nervous system disease, and its clinical status can be used as an early warning of Alzheimer's disease (AD). Subtle and slow changes in brain structure between patients with MCI and normal controls (NCs) deprive them of effective diagnostic methods. Therefore, the identification of MCI is a challenging task. The current functional brain network (FBN) analysis to predict human brain tissue structure is a new method emerging in recent years, which provides sensitive and effective medical biomarkers for the diagnosis of neurological diseases. Therefore, to address this challenge, we propose a novel Deep Spatiotemporal Attention Network (DSTAN) framework for MCI recognition based on brain functional networks. Specifically, we first extract spatiotemporal features between brain functional signals and FBNs by designing a spatiotemporal convolution strategy (ST-CONV). Then, on this basis, we introduce a learned attention mechanism to further capture brain nodes strongly correlated with MCI. Finally, we fuse spatiotemporal features for MCI recognition. The entire network is trained in an end-to-end fashion. Extensive experiments show that our proposed method significantly outperforms current baselines and state-of-the-art methods, with a classification accuracy of 84.21%.
Collapse
Affiliation(s)
- Quan Feng
- State Key Laboratory of Public Big Data, GuiZhou University, Guizhou, China
| | - Yongjie Huang
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
| | - Yun Long
- Nanjing Huayin Medical Laboratory Co., Ltd., Nanjing, China
| | - Le Gao
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
- *Correspondence: Le Gao
| | - Xin Gao
- Department of PET/MR, Universal Medical Imaging Diagnostic Center, Shanghai, China
- Xin Gao
| |
Collapse
|
40
|
Shi CL, Xin XW, Zhang JC. Domain adaptation based on rough adjoint inconsistency and optimal transport for identifying autistic patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106615. [PMID: 35016084 DOI: 10.1016/j.cmpb.2021.106615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Computer aided diagnosis technology has been widely used to diagnose autism spectrum disorder (ASD) from neural images. The performance of the model usually depends largely on a sufficient number of training samples that reflect the real sample distribution. Due to the lack of labelled neural images data, multisite data are often pooled together to expand the sample size. However, the heterogeneity among sites will inevitably lead to a decline in the generalization of models. To solve this problem, we propose a multisource unsupervised domain adaptation method using rough adjoint inconsistency and optimal transport. METHODS First, we define the concept of rough adjoint inconsistency and propose a double quantization method based on rough adjoint inconsistency and Dempster-Shafer (D-S) evidence theory to estimate the weight coefficient of each source domain to accurately describe the importance of each source domain to the target domain. Second, using optimal transport theory, we weaken the data distribution differences between domains and solve the problem of class imbalance by adjusting the sampling weights among classes. RESULTS The ASD recognition accuracy of the proposed method is improved on all eight tasks, which are 70.67%, 64.86%, 62.50%, 70.80%, 73.08%, 71.19%, 75.41% and 75.76%, respectively. Our proposed model achieves superior performance compared to traditional machine learning methods and other recently proposed deep learning model. CONCLUSIONS Our method demonstrates that the fusion of rough adjoint inconsistency and optimal transport can be a powerful tool for identifying ASD and quantifying the correlations between domains.
Collapse
Affiliation(s)
- Chun-Lei Shi
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China
| | - Xian-Wei Xin
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China
| | - Jia-Cai Zhang
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Intelligent Technology and Educational Application, Ministry of Education, Beijing, 100875, China.
| |
Collapse
|
41
|
A review of methods for classification and recognition of ASD using fMRI data. J Neurosci Methods 2021; 368:109456. [PMID: 34954253 DOI: 10.1016/j.jneumeth.2021.109456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a severe neuropsychiatric brain disorder that affects people's social communication and daily routine. Considering the phenomenon of abnormal brain function in the early stage of ASD, functional magnetic resonance imaging (fMRI), an excellent technique that measures brain activity, provides effective data to study ASD. Therefore, based on fMRI data of ASD cases, this paper reviews the progress of machine learning methods and deep learning methods in ASD classification and recognition in the last three years and summarizes the different research results of fMRI data extracted from the Autism Brain Imaging Data Exchange (ABIDE). From the classification performance of classification and recognition of ASD by the two methods, comparing the important classification indicators such as accuracy, sensitivity and specificity, the current challenges and future development trends are reported, which can provide an essential reference for the early diagnosis of ASD cases.
Collapse
|
42
|
Li J, Wang F, Pan J, Wen Z. Identification of Autism Spectrum Disorder With Functional Graph Discriminative Network. Front Neurosci 2021; 15:729937. [PMID: 34744607 PMCID: PMC8566666 DOI: 10.3389/fnins.2021.729937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a specific brain disease that causes communication impairments and restricted interests. Functional connectivity analysis methodology is widely used in neuroscience research and shows much potential in discriminating ASD patients from healthy controls. However, due to heterogeneity of ASD patients, the performance of conventional functional connectivity classification methods is relatively poor. Graph neural network is an effective graph representation method to model structured data like functional connectivity. In this paper, we proposed a functional graph discriminative network (FGDN) for ASD classification. On the basis of pre-built graph templates, the proposed FGDN is able to effectively distinguish ASD patient from health controls. Moreover, we studied the size of training set for effective training, inter-site predictions, and discriminative brain regions. Discriminative brain regions were determined by the proposed model to investigate its applicability and biomarkers for ASD identification. For functional connectivity classification and analysis, FGDN is not only an effective tool for ASD identification but also a potential technique in neuroscience research.
Collapse
Affiliation(s)
- Jingcong Li
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Fei Wang
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Jiahui Pan
- School of Software, South China Normal University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
43
|
Chaddad A, Li J, Lu Q, Li Y, Okuwobi IP, Tanougast C, Desrosiers C, Niazi T. Can Autism Be Diagnosed with Artificial Intelligence? A Narrative Review. Diagnostics (Basel) 2021; 11:2032. [PMID: 34829379 PMCID: PMC8618159 DOI: 10.3390/diagnostics11112032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.) for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic work of ASD is related to the variation of morphological features of brain thickness that is different from texture analysis. These techniques are based on imaging shape features that can be used with predictive models for predicting ASD. This review explores the progress of ASD-based radiomics with a brief description of ASD and the current non-invasive technique used to classify between ASD and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques will be also described. To consider the texture analysis with deep CNNs, more investigations are suggested to be integrated with additional validation steps on various MRI sites.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Jiali Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Qizong Lu
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Yujie Li
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Idowu Paul Okuwobi
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China; (J.L.); (Q.L.); (Y.L.); (I.P.O.)
| | - Camel Tanougast
- Laboratoire de Conception, Optimisation et Modélisation des Systèmes, University of Lorraine, 57070 Metz, France;
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada;
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada;
| |
Collapse
|
44
|
Matsuda K, Aoyagi S. Sparse autoencoder-based feature extraction from TOF-SIMS image data of human skin structures. Anal Bioanal Chem 2021; 414:1177-1186. [PMID: 34729645 DOI: 10.1007/s00216-021-03744-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a useful and versatile tool for surface analysis, enabling detailed compositional information to be obtained for the surfaces of diverse samples. Furthermore, in the case of two- or three-dimensional imaging, the measurement sensitivity in the higher molecular weight range can be improved by using a cluster ion source, thus further enriching the TOF-SIMS information. Therefore, appropriate analytical methods are required to interpret this TOF-SIMS data. This study explored the capabilities of a sparse autoencoder, a feature extraction method based on artificial neural networks, to process TOF-SIMS image data. The sparse autoencoder was applied to TOF-SIMS images of human skin keratinocytes to extract the distribution of endogenous intercellular lipids and externally penetrated drugs. The results were compared with those obtained using principal component analysis (PCA) and multivariate curve resolution (MCR), which are conventionally used for extracting features from TOF-SIMS data. This confirmed that the sparse autoencoder matches, and often betters, the feature extraction performance of conventional methods, while also offering greater flexibility.
Collapse
Affiliation(s)
- Kazuhiro Matsuda
- Surface Science Laboratories, Toray Research Center, Inc, 3-3-7, Sonoyama, Otsu, Shiga, 520-8567, Japan.
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo, 180-8633, Japan.
| | - Satoka Aoyagi
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo, 180-8633, Japan
| |
Collapse
|
45
|
Khodatars M, Shoeibi A, Sadeghi D, Ghaasemi N, Jafari M, Moridian P, Khadem A, Alizadehsani R, Zare A, Kong Y, Khosravi A, Nahavandi S, Hussain S, Acharya UR, Berk M. Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review. Comput Biol Med 2021; 139:104949. [PMID: 34737139 DOI: 10.1016/j.compbiomed.2021.104949] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
Collapse
Affiliation(s)
- Marjane Khodatars
- Dept. of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran; Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Delaram Sadeghi
- Dept. of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Navid Ghaasemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran; Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yinan Kong
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | | | - U Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, 599489, Singapore; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; Dept. of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|