1
|
Hokett E, Lao P, Avila-Rieger J, Turney IC, Adkins-Jackson PB, Johnson DA, Davidson P, Chen R, Shechter A, Osorio RS, Brickman AM, Palta P, Manly JJ. Interactions among neighborhood conditions, sleep quality, and episodic memory across the adult lifespan. ETHNICITY & HEALTH 2024; 29:809-827. [PMID: 39044310 PMCID: PMC11410512 DOI: 10.1080/13557858.2024.2379116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES On average, adults racialized as non-Hispanic Black and Hispanic sleep more poorly than adults racialized as non-Hispanic White (hereafter, Black, Hispanic, White), but associations between factors that may moderate sleep-memory associations in these groups, such as neighborhood conditions, are unclear. Poorer neighborhood conditions (e.g. lower neighborhood cohesion) may be negatively associated with sleep quality and multiplicatively influence sleep-memory associations. We hypothesized lower ratings of neighborhood conditions would be associated with poorer sleep quality and moderate the association between sleep quality and episodic memory, especially in Black and Hispanic adults, who are disproportionately situated in poor neighborhood conditions. DESIGN Seven-hundred-thirty-six adults across the adult lifespan (27-89 years) were recruited from the northern Manhattan community as a part of the Offspring Study of Racial and Ethnic Disparities in Alzheimer's disease. Sleep quality was assessed using a modified version of the Pittsburgh Sleep Quality Index, and episodic memory was evaluated with the Buschke Selective Reminding Test. With multiple regression models, we measured associations between perceived neighborhood conditions and sleep quality and the interaction between sleep quality and neighborhood conditions on episodic memory stratified by racial/ethnic and gender identity groups. RESULTS Overall, poorer neighborhood conditions were associated with poorer sleep quality. In Black and Hispanic women, the sleep-memory association was moderated by neighborhood conditions. With more favorable neighborhood conditions, Black women showed an association between higher sleep quality and higher memory performance, and Hispanic women showed a protective effect of neighborhood (higher memory even when sleep quality was poor). CONCLUSION Poorer neighborhood experiences may contribute to poorer sleep quality across groups. In Black and Hispanic women, the association between sleep quality and episodic memory performance was dependent upon neighborhood conditions. These findings may inform tailored, structural level sleep interventions, aimed to improve neighborhood experiences and thereby sleep quality and episodic memory.
Collapse
Affiliation(s)
- Emily Hokett
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Patrick Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Justina Avila-Rieger
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Indira C. Turney
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | | | | | - Per Davidson
- Department of Psychology, Kristianstad University
| | - Ruijia Chen
- Department of Epidemiology, Boston University
| | | | | | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Priya Palta
- Department of Neurology, University of North Carolina, Chapel Hill
| | - Jennifer J. Manly
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
2
|
Saletin JM, Wolfson AR, Wahlstrom KL, Honaker SM, Owens JA, Seixas AA, Wong P, Carskadon MA, Meltzer LJ. Instructional approach, sleep, and perceived academic well-being in adolescents during COVID-19: Evidence from the NESTED study. Sleep Health 2024; 10:485-492. [PMID: 38876932 DOI: 10.1016/j.sleh.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES At the peak of COVID-19, adolescent life was disrupted as schools adapted their instructional approaches such as online, in-person, or hybrid instruction. We and others have previously commented on how these shifts facilitated longer, later and (more developmentally appropriate) sleep. Here, we report how sleep contributed to associations between remote instruction and broader academic well-being (e.g., cognitive function, school connectedness, and stress). METHODS Adolescents from all 50 U.S. states (n = 4068) completed online self-report surveys in fall 2020. Instructional approach was operationalized from fully in-person instruction to fully asynchronous online education. Sleep parameters included sleep timing and duration, sleep disturbances, and sleep-related impairments. Perceived academic well-being was defined as cognitive function, school connectedness, and school-related stress. Sleep and perceived academic well-being are examined across instructional approaches, in their association, and in structural models. RESULTS Sleep and perceived academic well-being differed between hybrid and online instruction groups. Less variable or disturbed sleep was associated both with in-person instruction, and with positive outcomes in cognitive function, school connectedness, and stress domains. Sleep mediated a substantial portion of variance in perceived academic well-being attributable to instructional approach. CONCLUSION These data highlight the need to protect both healthy sleep and in-person instruction. Appropriate sleep timing and duration, fewer sleep disturbances and sleep-related impairments accounted for a substantial degree of variance in the association between remote instruction on academic outcomes. While many students experienced "lost learning" because of COVID-19, this study joins a broader discussion of ensuring developmentally appropriate school-start times to support both sleep and achievement.
Collapse
Affiliation(s)
- Jared M Saletin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, Rhode Island, USA; E.P. Bradley Hospital, East Providence, Rhode Island, USA.
| | - Amy R Wolfson
- Department of Psychology, Loyola University Maryland, Baltimore, Maryland, USA
| | - Kyla L Wahlstrom
- Department of Organizational Leadership, Policy, and Development, University of Minnesota, St. Paul, Missouri, USA
| | - Sarah M Honaker
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Judith A Owens
- Department of Neurology, Boston Children's Hospital; Harvard Medical School, Boston, Massachusetts, USA
| | - Azizi A Seixas
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Patricia Wong
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, Rhode Island, USA; E.P. Bradley Hospital, East Providence, Rhode Island, USA
| | - Mary A Carskadon
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, Rhode Island, USA; E.P. Bradley Hospital, East Providence, Rhode Island, USA
| | - Lisa J Meltzer
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
3
|
Boutin A, Gabitov E, Pinsard B, Boré A, Carrier J, Doyon J. Temporal cluster-based organization of sleep spindles underlies motor memory consolidation. Proc Biol Sci 2024; 291:20231408. [PMID: 38196349 PMCID: PMC10777148 DOI: 10.1098/rspb.2023.1408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain unclear. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles' clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.
Collapse
Affiliation(s)
- Arnaud Boutin
- CIAMS, Université Paris-Saclay, 91405 Orsay, France
- CIAMS, Université d'Orléans, 45067 Orléans, France
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada H3A 2B4
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
- Department of Psychology, Université de Montréal, Montréal, QC, Canada H3T 1J4
| | - Ella Gabitov
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada H3A 2B4
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
- Department of Psychology, Université de Montréal, Montréal, QC, Canada H3T 1J4
| | - Basile Pinsard
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
- Department of Psychology, Université de Montréal, Montréal, QC, Canada H3T 1J4
| | - Arnaud Boré
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
| | - Julie Carrier
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
- Department of Psychology, Université de Montréal, Montréal, QC, Canada H3T 1J4
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada H4J 1C5
| | - Julien Doyon
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
- Functional Neuroimaging Unit, C.R.I.U.G.M, Montréal, QC, Canada H3W 1W5
| |
Collapse
|
4
|
Matorina N, Tseng J, Ladyka-Wojcik N, Olsen R, Mabbott DJ, Barense MD. Sleep Differentially and Profoundly Impairs Recall Memory in a Patient with Fornix Damage. J Cogn Neurosci 2023; 35:1635-1655. [PMID: 37584584 DOI: 10.1162/jocn_a_02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In March 2020, C.T., a kind, bright, and friendly young woman underwent surgery for a midline tumor involving her septum pellucidum and extending down into her fornices bilaterally. Following tumor diagnosis and surgery, C.T. experienced significant memory deficits: C.T.'s family reported that she could remember things throughout the day, but when she woke up in the morning or following a nap, she would expect to be in the hospital, forgetting all the information that she had learned before sleep. The current study aimed to empirically validate C.T.'s pattern of memory loss and explore its neurological underpinnings. On two successive days, C.T. and age-matched controls watched an episode of a TV show and took a nap or stayed awake before completing a memory test. Although C.T. performed numerically worse than controls in both conditions, sleep profoundly exacerbated her memory impairment, such that she could not recall any details following a nap. This effect was replicated in a second testing session. High-resolution MRI scans showed evidence of the trans-callosal surgical approach's impact on the mid-anterior corpus callosum, indicated that C.T. had perturbed white matter particularly in the right fornix column, and demonstrated that C.T.'s hippocampal volumes did not differ from controls. These findings suggest that the fornix is important for processing episodic memories during sleep. As a key output pathway of the hippocampus, the fornix may ensure that specific memories are replayed during sleep, maintain the balance of sleep stages, or allow for the retrieval of memories following sleep.
Collapse
Affiliation(s)
| | - Julie Tseng
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Donald J Mabbott
- University of Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Morgan D Barense
- University of Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Simor P, Peigneux P, Bódizs R. Sleep and dreaming in the light of reactive and predictive homeostasis. Neurosci Biobehav Rev 2023; 147:105104. [PMID: 36804397 DOI: 10.1016/j.neubiorev.2023.105104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Dreams are often viewed as fascinating but irrelevant mental epihenomena of the sleeping mind with questionable functional relevance. Despite long hours of oneiric activity, and high individual differences in dream recall, dreams are lost into oblivion. Here, we conceptualize dreaming and dream amnesia as inherent aspects of the reactive and predictive homeostatic functions of sleep. Mental activity during sleep conforms to the interplay of restorative processes and future anticipation, and particularly during the second half of the night, it unfolds as a special form of non-constrained, self-referent, and future-oriented cognitive process. Awakening facilitates constrained, goal-directed prospection that competes for shared neural resources with dream production and dream recall, and contributes to dream amnesia. We present the neurophysiological aspects of reactive and predictive homeostasis during sleep, highlighting the putative role of cortisol in predictive homeostasis and forgetting dreams. The theoretical and methodological aspects of our proposal are discussed in relation to the study of dreaming, dream recall, and sleep-related cognitive processes.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary; UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Reverberi S, Dolfen N, Van Roy A, Albouy G, King BR. Sleep does not influence schema-facilitated motor memory consolidation. PLoS One 2023; 18:e0280591. [PMID: 36656898 PMCID: PMC9851548 DOI: 10.1371/journal.pone.0280591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
STUDY OBJECTIVES Novel information is rapidly learned when it is compatible with previous knowledge. This "schema" effect, initially described for declarative memories, was recently extended to the motor memory domain. Importantly, this beneficial effect was only observed 24 hours-but not immediately-following motor schema acquisition. Given the established role of sleep in memory consolidation, we hypothesized that sleep following the initial learning of a schema is necessary for the subsequent rapid integration of novel motor information. METHODS Two experiments were conducted to investigate the effect of diurnal and nocturnal sleep on schema-mediated motor sequence memory consolidation. In Experiment 1, participants first learned an 8-element motor sequence through repeated practice (Session 1). They were then afforded a 90-minute nap opportunity (N = 25) or remained awake (N = 25) before learning a second motor sequence (Session 2) which was highly compatible with that learned prior to the sleep/wake interval. Experiment 2 was similar; however, Sessions 1 and 2 were separated by a 12-hour interval that included nocturnal sleep (N = 28) or only wakefulness (N = 29). RESULTS For both experiments, we found no group differences in motor sequence performance (reaction time and accuracy) following the sleep/wake interval. Furthermore, in Experiment 1, we found no correlation between sleep features (non-REM sleep duration, spindle and slow wave activity) and post-sleep behavioral performance. CONCLUSIONS The results of this research suggest that integration of novel motor information into a cognitive-motor schema does not specifically benefit from post-learning sleep.
Collapse
Affiliation(s)
- Serena Reverberi
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
| | - Genevieve Albouy
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
- * E-mail:
| | - Bradley R. King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
7
|
Hokett E, Arunmozhi A, Campbell J, Verhaeghen P, Duarte A. A systematic review and meta-analysis of individual differences in naturalistic sleep quality and episodic memory performance in young and older adults. Neurosci Biobehav Rev 2021; 127:675-688. [PMID: 34000349 PMCID: PMC8330880 DOI: 10.1016/j.neubiorev.2021.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023]
Abstract
Better sleep quality has been associated with better episodic memory performance in young adults. However, the strength of sleep-memory associations in aging has not been well characterized. It is also unknown whether factors such as sleep measurement method (e.g., polysomnography, actigraphy, self-report), sleep parameters (e.g., slow wave sleep, sleep duration), or memory task characteristics (e.g., verbal, pictorial) impact the strength of sleep-memory associations. Here, we assessed if the aforementioned factors modulate sleep-memory relationships. Across age groups, sleep-memory associations were similar for sleep measurement methods, however, associations were stronger for PSG than self-report. Age group moderated sleep-memory associations for certain sleep parameters. Specifically, young adults demonstrated stronger positive sleep-memory associations for slow wave sleep than the old, while older adults demonstrated stronger negative associations between greater wake after sleep onset and poorer memory performance than the young. Collectively, these data show that young and older adults maintain similar strength in sleep-memory relationships, but age impacts the specific sleep correlates that contribute to these relationships.
Collapse
|
8
|
Puentes-Mestril C, Delorme J, Wang L, Donnelly M, Popke D, Jiang S, Aton SJ. Sleep Loss Drives Brain Region-Specific and Cell Type-Specific Alterations in Ribosome-Associated Transcripts Involved in Synaptic Plasticity and Cellular Timekeeping. J Neurosci 2021; 41:5386-5398. [PMID: 34001629 PMCID: PMC8221591 DOI: 10.1523/jneurosci.1883-20.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep and sleep loss are thought to impact synaptic plasticity, and recent studies have shown that sleep and sleep deprivation (SD) differentially affect gene transcription and protein translation in the mammalian forebrain. However, much less is known regarding how sleep and SD affect these processes in different microcircuit elements within the hippocampus and neocortex, for example, in inhibitory versus excitatory neurons. Here, we use translating ribosome affinity purification (TRAP) and in situ hybridization to characterize the effects of sleep versus SD on abundance of ribosome-associated transcripts in Camk2a-expressing (Camk2a+) pyramidal neurons and parvalbumin-expressing (PV+) interneurons in the hippocampus and neocortex of male mice. We find that while both Camk2a+ neurons and PV+ interneurons in neocortex show concurrent SD-driven increases in ribosome-associated transcripts for activity-regulated effectors of plasticity and transcriptional regulation, these transcripts are minimally affected by SD in hippocampus. Similarly, we find that while SD alters several ribosome-associated transcripts involved in cellular timekeeping in neocortical Camk2a+ and PV+ neurons, effects on circadian clock transcripts in hippocampus are minimal, and restricted to Camk2a+ neurons. Taken together, our results indicate that SD effects on transcripts associated with translating ribosomes are both cell type-specific and brain region-specific, and that these effects are substantially more pronounced in the neocortex than the hippocampus. We conclude that SD-driven alterations in the strength of synapses, excitatory-inhibitory (E-I) balance, and cellular timekeeping are likely more heterogeneous than previously appreciated.SIGNIFICANCE STATEMENT Sleep loss-driven changes in transcript and protein abundance have been used as a means to better understand the function of sleep for the brain. Here, we use translating ribosome affinity purification (TRAP) to characterize changes in abundance of ribosome-associated transcripts in excitatory and inhibitory neurons in mouse hippocampus and neocortex after a brief period of sleep or sleep loss. We show that these changes are not uniform, but are generally more pronounced in excitatory neurons than inhibitory neurons, and more pronounced in neocortex than in hippocampus.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - James Delorme
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - Marcus Donnelly
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - Donald Popke
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48019
| |
Collapse
|
9
|
A new application of TMR: A study on implicit self-esteem. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ong JL, Lau TY, Lee XK, van Rijn E, Chee MWL. A daytime nap restores hippocampal function and improves declarative learning. Sleep 2021; 43:5813764. [PMID: 32227222 PMCID: PMC7487866 DOI: 10.1093/sleep/zsaa058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Daytime naps can confer benefits on subsequent declarative learning, but the physiological correlates of this improvement are less well studied. We examined learning following a daytime nap compared with an equivalent waking period using fMRI and polysomnography. METHODS Forty healthy young adults who slept normally the previous night encoded word pair lists in an MRI scanner at 13:00 and 16:30. Between sessions, participants either stayed awake and watched a documentary (Wake Group; N = 20) or had a 90-minute nap opportunity (Nap Group; N = 20) monitored by polysomnography. Approximately 40 minutes after completing each encoding session, memory for learned words was assessed using cued-recall. RESULTS A significant Session × Group interaction effect (p < 0.001) was observed in which memory was significantly improved in the Nap but not in the Wake group (p < 0.001). There was also a Session × Run × Group interaction effect in the left hippocampus (p = 0.001), whereby activation during word pair encoding increased only following the nap. Both performance improvement (rs = 0.46, p = 0.04) and nap-related increase in hippocampal activation (rs = 0.46, p = 0.04) were correlated with nap spindle count (12-15 Hz) but not with slow oscillation power (p's ≥ 0.18). CONCLUSIONS After a habitual nocturnal sleep, participants who had a 90-minute afternoon nap encoded word pairs better than a comparable group who stayed awake. Increases in hippocampal activation following the nap suggest restored hippocampal function. Naptime spindles may contribute to improved memory.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Te Yang Lau
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Xuan Kai Lee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Elaine van Rijn
- Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
11
|
Individual alpha frequency modulates sleep-related emotional memory consolidation. Neuropsychologia 2020; 148:107660. [PMID: 33075330 DOI: 10.1016/j.neuropsychologia.2020.107660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
Alpha-band oscillatory activity is involved in modulating memory and attention. However, few studies have investigated individual differences in oscillatory activity during the encoding of emotional memory, particularly in sleep paradigms where sleep is thought to play an active role in memory consolidation. The current study aimed to address the question of whether individual alpha frequency (IAF) modulates the consolidation of declarative memory across periods of sleep and wake. 22 participants aged 18-41 years (mean age = 25.77) viewed 120 emotionally valenced images (positive, negative, neutral) and completed a baseline memory task before a 2hr afternoon sleep opportunity and an equivalent period of wake. Following the sleep and wake conditions, participants were required to distinguish between 120 learned (target) images and 120 new (distractor) images. This method allowed us to delineate the role of different oscillatory components of sleep and wake states in the emotional modulation of memory. Linear mixed-effects models revealed interactions between IAF, rapid eye movement sleep theta power, and slow-wave sleep slow oscillatory density on memory outcomes. These results highlight the importance of individual factors in the EEG in modulating oscillatory-related memory consolidation and subsequent behavioural outcomes and test predictions proposed by models of sleep-based memory consolidation.
Collapse
|
12
|
Tamminen J, Newbury CR, Crowley R, Vinals L, Cevoli B, Rastle K. Generalisation in language learning can withstand total sleep deprivation. Neurobiol Learn Mem 2020; 173:107274. [PMID: 32653634 DOI: 10.1016/j.nlm.2020.107274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 07/03/2020] [Indexed: 11/24/2022]
Abstract
Research suggests that sleep plays a vital role in memory. We tested the impact of total sleep deprivation on adults' memory for a newly learned writing system and on their ability to generalise this knowledge to read untrained novel words. We trained participants to read fictitious words printed in a novel artificial orthography, while depriving them of sleep the night after learning (Experiment 1) or the night before learning (Experiment 2). Following two nights of recovery sleep, and again 10 days later, participants were tested on trained words and untrained words, and performance was compared to control groups who had not undergone sleep deprivation. Participants showed a high degree of accuracy in learning the trained words and in generalising their knowledge to untrained words. There was little evidence of impact of sleep deprivation on memory or generalisation. These data support emerging theories which suggest sleep-associated memory consolidation can be accelerated or entirely bypassed under certain conditions, and that such conditions also facilitate generalisation.
Collapse
Affiliation(s)
- Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Chloe R Newbury
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Lydia Vinals
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Benedetta Cevoli
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| | - Kathleen Rastle
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom.
| |
Collapse
|
13
|
Reverberi S, Kohn N, Fernández G. No evidence for an effect of explicit relevance instruction on consolidation of associative memories. Neuropsychologia 2020; 143:107491. [PMID: 32422141 DOI: 10.1016/j.neuropsychologia.2020.107491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Newly encoded memories are stabilized over time through a process or a set of processes termed consolidation, which happens preferentially during sleep. However, not all memories profit equally from this offline stabilization. Previous research suggested that one factor, which determines whether a memory will benefit from sleep consolidation, is future relevance. The aim of our current study was to replicate these findings and expand them to investigate their neural underpinnings. In our experiment, 38 participants learned two sets of object-location associations. The two sets of stimuli were presented to each participant intermixed and in random order. After study, participants performed a baseline retention test and were thereafter instructed that, after a delay containing sleep, they would be tested and rewarded only on one of the two sets of stimuli. This relevance instruction was revoked, however, immediately before the test. Thus, this manipulation affected memory consolidation while having no influence on encoding and retrieval. This retention interval was monitored via actigraphy recordings. While the study session was purely behavioral, the test session was conducted in an MRI scanner, thus we collected neuroimaging data at retrieval of relevant compared with non-relevant items. Behaviorally, we found no effect of the relevance manipulation on memory retention, confidence rating, or reaction time. At a neural level, no effect of relevance on memory retrieval-related brain operations was observed. Contrary to our expectations, the relevance manipulation did not result in improved consolidation, nor in improved subsequent performance at retrieval. These findings challenge previously published results and suggest that future relevance as manipulated here may not be sufficient to produce enhanced memory consolidation.
Collapse
Affiliation(s)
- Serena Reverberi
- Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands.
| | - Nils Kohn
- Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Guillén Fernández
- Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
14
|
Bartsch U, Simpkin AJ, Demanuele C, Wamsley E, Marston HM, Jones MW. Distributed slow-wave dynamics during sleep predict memory consolidation and its impairment in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:18. [PMID: 31685816 PMCID: PMC6828759 DOI: 10.1038/s41537-019-0086-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
Abstract
The slow waves (SW) of non-rapid eye movement (NREM) sleep reflect neocortical components of network activity during sleep-dependent information processing; their disruption may therefore impair memory consolidation. Here, we quantify sleep-dependent consolidation of motor sequence memory, alongside sleep EEG-derived SW properties and synchronisation, and SW–spindle coupling in 21 patients suffering from schizophrenia and 19 healthy volunteers. Impaired memory consolidation in patients culminated in an overnight improvement in motor sequence task performance of only 1.6%, compared with 15% in controls. During sleep after learning, SW amplitudes and densities were comparable in healthy controls and patients. However, healthy controls showed a significant 45% increase in frontal-to-occipital SW coherence during sleep after motor learning in comparison with a baseline night (baseline: 0.22 ± 0.05, learning: 0.32 ± 0.05); patient EEG failed to show this increase (baseline: 0.22 ± 0.04, learning: 0.19 ± 0.04). The experience-dependent nesting of spindles in SW was similarly disrupted in patients: frontal-to-occipital SW–spindle phase-amplitude coupling (PAC) significantly increased after learning in healthy controls (modulation index baseline: 0.17 ± 0.02, learning: 0.22 ± 0.02) but not in patients (baseline: 0.13 ± 0.02, learning: 0.14 ± 0.02). Partial least-squares regression modelling of coherence and PAC data from all electrode pairs confirmed distributed SW coherence and SW–spindle coordination as superior predictors of overnight memory consolidation in healthy controls but not in patients. Quantifying the full repertoire of NREM EEG oscillations and their long-range covariance therefore presents learning-dependent changes in distributed SW and spindle coordination as fingerprints of impaired cognition in schizophrenia.
Collapse
Affiliation(s)
- Ullrich Bartsch
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK. .,School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Andrew J Simpkin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Charmaine Demanuele
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, 02215, USA.,Athinoula A. Martinos Centicaer for Biomedl Imaging, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Erin Wamsley
- Department of Psychology, Furman University, Greenville, SC, 29613, USA
| | - Hugh M Marston
- Translational & Integrative Neuroscience, Lilly Research Centre, Windlesham, Surrey, GU20 6PH, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
15
|
Schapiro AC, Reid AG, Morgan A, Manoach DS, Verfaellie M, Stickgold R. The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus 2019; 29:1091-1100. [PMID: 31157946 DOI: 10.1002/hipo.23101] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
During sleep, the hippocampus plays an active role in consolidating memories that depend on it for initial encoding. There are hints in the literature that the hippocampus may have a broader influence, contributing to the consolidation of memories that may not initially require the area. We tested this possibility by evaluating learning and consolidation of the motor sequence task (MST) in hippocampal amnesics and demographically matched control participants. While the groups showed similar initial learning, only controls exhibited evidence of overnight consolidation. These results demonstrate that the hippocampus can be required for normal consolidation of a task without being required for its acquisition, suggesting that the area plays a broader role in coordinating memory consolidation than has previously been assumed.
Collapse
Affiliation(s)
- Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allison G Reid
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dara S Manoach
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Dehnavi F, Moghimi S, Sadrabadi Haghighi S, Safaie M, Ghorbani M. Opposite effect of motivated forgetting on sleep spindles during stage 2 and slow wave sleep. Sleep 2019; 42:5427878. [DOI: 10.1093/sleep/zsz085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Memories selectively benefit from sleep. In addition to the importance of the consolidation of relevant memories, the capacity to forget unwanted memories is also crucial. We investigated the effect of suppressing unwanted memories on electroencephalography activity of subsequent sleep using a motivated forgetting (MF) paradigm as compared with a control non-forgetting task. Subjects were randomly assigned to nap or no-nap groups. We used a modified version of the think/no-think paradigm with dominant number of no-think words cued to be forgotten and included only subjects capable of suppressing unwanted memories by performing an initial subject inclusion experiment. In both groups and conditions, the performance of the subjects in recalling the word pairs learned in the beginning of the day was evaluated in a final recall test. We found that both nap and no-nap groups recalled significantly less no-think words in the MF condition compared to the control condition. Moreover, for the nap group, in the MF compared to the control condition, spindle power and density increased during stage 2 (S2) whereas they decreased during slow wave sleep (SWS). Interestingly, recall performance of no-think words was negatively correlated with spindle power during S2 whereas it was positively correlated with spindle power during SWS. These results indicate that sleep spindles are sensitive to the previous MF experiences and suggest a differential role of sleep spindles during S2 and SWS in memory processing during sleep.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Moghimi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mostafa Safaie
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- INSERM UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Langille JJ. Remembering to Forget: A Dual Role for Sleep Oscillations in Memory Consolidation and Forgetting. Front Cell Neurosci 2019; 13:71. [PMID: 30930746 PMCID: PMC6425990 DOI: 10.3389/fncel.2019.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
It has been known since the time of patient H. M. and Karl Lashley's equipotentiality studies that the hippocampus and cortex serve mnestic functions. Current memory models maintain that these two brain structures accomplish unique, but interactive, memory functions. Specifically, most modeling suggests that memories are rapidly acquired during waking experience by the hippocampus, before being later consolidated into the cortex for long-term storage. Sleep has been shown to be critical for the transfer and consolidation of memories in the cortex. Like memory consolidation, a role for sleep in adaptive forgetting has both historical precedent, as Francis Crick suggested in 1983 that sleep was for "reverse-learning," and recent empirical support. In this article I review the evidence indicating that the same brain activity involved in sleep replay associated memory consolidation is responsible for sleep-dependent forgetting. In reviewing the literature, it became clear that both a cellular mechanism for systems consolidation and an agreed upon general, as well as cellular, mechanism for sleep-dependent forgetting is seldom discussed or is lacking. I advocate here for a candidate cellular systems consolidation mechanism wherein changes in calcium kinetics and the activation of consolidative signaling cascades arise from the triple phase locking of non-rapid eye movement sleep (NREMS) slow oscillation, sleep spindle and sharp-wave ripple rhythms. I go on to speculatively consider several sleep stage specific forgetting mechanisms and conclude by discussing a notional function of NREM-rapid eye movement sleep (REMS) cycling. The discussed model argues that the cyclical organization of sleep functions to first lay down and edit and then stabilize and integrate engrams. All things considered, it is increasingly clear that hallmark sleep stage rhythms, including several NREMS oscillations and the REMS hippocampal theta rhythm, serve the dual function of enabling simultaneous memory consolidation and adaptive forgetting. Specifically, the same sleep rhythms that consolidate new memories, in the cortex and hippocampus, simultaneously organize the adaptive forgetting of older memories in these brain regions.
Collapse
Affiliation(s)
- Jesse J Langille
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Cellini N, Capuozzo A. Shaping memory consolidation via targeted memory reactivation during sleep. Ann N Y Acad Sci 2018; 1426:52-71. [PMID: 29762867 DOI: 10.1111/nyas.13855] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Capuozzo
- International School for Advanced Studies - SISSA, Neuroscience Area, Trieste, Italy
| |
Collapse
|
19
|
Ong JL, Patanaik A, Chee NIYN, Lee XK, Poh JH, Chee MWL. Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function. Sleep 2018; 41:4841646. [PMID: 29425369 PMCID: PMC5946855 DOI: 10.1093/sleep/zsy031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/23/2017] [Indexed: 01/23/2023] Open
Abstract
Study Objectives Slow oscillations (SO) during sleep contribute to the consolidation of learned material. How the encoding of declarative memories during subsequent wakefulness might benefit from their enhancement during sleep is less clear. In this study, we investigated the impact of acoustically enhanced SO during a nap on subsequent encoding of declarative material. Methods Thirty-seven healthy young adults were studied under two conditions: stimulation (STIM) and no stimulation (SHAM), in counter-balanced order following a night of sleep restriction (4 hr time-in-bed [TIB]). In the STIM condition, auditory tones were phase-locked to the SO up-state during a 90 min nap opportunity. In the SHAM condition, corresponding time points were marked but tones were not presented. Thirty minutes after awakening, participants encoded pictures while undergoing fMRI. Picture recognition was tested 60 min later. Results Acoustic stimulation augmented SO across the group, but there was no group level benefit on memory. However, the magnitude of SO enhancement correlated with greater recollection. SO enhancement was also positively correlated with hippocampal activation at encoding. Although spindle activity increased, this did not correlate with memory benefit or shift in hippocampal signal. Conclusions Acoustic stimulation during a nap can benefit encoding of declarative memories. Hippocampal activation positively correlated with SO augmentation.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Amiya Patanaik
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Nicholas I Y N Chee
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Xuan Kai Lee
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Jia-Hou Poh
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| | - Michael W L Chee
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
20
|
Blaskovich B, Szőllősi Á, Gombos F, Racsmány M, Simor P. The Benefit of Directed Forgetting Persists After a Daytime Nap: The Role of Spindles and Rapid Eye Movement Sleep in the Consolidation of Relevant Memories. Sleep 2017; 40:2732008. [PMID: 28364418 DOI: 10.1093/sleep/zsw076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives We aimed to investigate the effect of directed forgetting instruction on memory retention after a 2-hour delay involving a daytime nap or an equivalent amount of time spent awake. We examined the associations between sleep-specific oscillations and the retention of relevant and irrelevant study materials. Methods We applied a list-method directed forgetting paradigm manipulating the perceived relevance of previously encoded lists of words. Participants were randomly assigned to either a nap or an awake group, and to a remember or a forget subgroup. The remember and the forget subgroups were both instructed to study two consecutive lists of words, although, the forget subgroup was manipulated to forget the first list and memorize only the second one. Participants were 112 healthy individuals (44 men; Mage = 21.4 years, SD = 2.4). Results A significant directed forgetting effect emerged after a 2-hour delay both in the awake and sleep conditions; however, the effect was more pronounced within the sleep group. The benefit of directed forgetting, that is, relatively enhanced recall of relevant words in the forget group, was evidenced only in those participants that reached rapid eye movement (REM) phase. Non-rapid eye movement (NREM) sigma power was correlated with memory performance for the relevant (second) list, and sleep spindle amplitude was associated with the retention of both lists. These associations, however, were detected only within the forget subgroup. REM duration correlated with recall performance for the relevant (second) list within the forget subgroup, and with recall performance for the first list within the remember subgroup. Conclusions A directed forgetting effect persists after a 2-hour delay spent awake or asleep. Spindle-related activity and subsequent REM sleep might selectively facilitate the processing of memories that are considered to be relevant for the future.
Collapse
Affiliation(s)
- Borbála Blaskovich
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Szőllősi
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Mihály Racsmány
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Frontostriatal System Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Simor
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary
| |
Collapse
|
21
|
The effects of sleep restriction and sleep deprivation in producing false memories. Neurobiol Learn Mem 2017; 137:107-113. [DOI: 10.1016/j.nlm.2016.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 01/27/2023]
|
22
|
Vigerust DJ. The enigma of sleep. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sleep has a critical role in promoting and maintaining neurological health and organismal homeostasis. Research over the past 135 years has brought significant understanding on various aspects of sleep biology; however, many questions still remain around the role and function of sleep. Sleep clearly has a powerful influence on infectious disease, cardiovascular health and neurological disorders. During the modern age, the majority of investigation into sleep has focused on identifying the biological factors underlying the effect of sleep on various pathological conditions. Disorders of sleep have the power to affect neuroimmunity, cognition and the development of neurological disorders such as Alzheimer's and autism. This present short review will highlight these factors affecting sleep.
Collapse
Affiliation(s)
- David J Vigerust
- Vanderbilt University School of Medicine, Department of Neurological Surgery, Nashville, TN 37212, USA
- MyGenetx Clinical Laboratories, 201 Jordan Rd, Suite 100, Franklin, TN 37067, USA
| |
Collapse
|
23
|
McClain IJ, Lustenberger C, Achermann P, Lassonde JM, Kurth S, LeBourgeois MK. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood. Neural Plast 2016; 2016:3670951. [PMID: 27110405 PMCID: PMC4826705 DOI: 10.1155/2016/3670951] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.
Collapse
Affiliation(s)
- Ian J. McClain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Caroline Lustenberger
- Child Development Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan M. Lassonde
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Salome Kurth
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
24
|
Igloi K, Gaggioni G, Sterpenich V, Schwartz S. A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans. eLife 2015; 4. [PMID: 26473618 PMCID: PMC4721959 DOI: 10.7554/elife.07903] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores. DOI:http://dx.doi.org/10.7554/eLife.07903.001 Fresh memories are strengthened while we sleep. However, we don’t remember every detail of our daily life experiences. Instead, it is essential that we retain information that promotes our survival, such as what we call "rewards" (including food, money or sex) and dangers that we should avoid. Igloi et al. sought to find out how the human brain picks out important memories to be consolidated during sleep, while discarding irrelevant information. Healthy participants learned series of pictures associated with either high or low rewards. After learning, some of the participants had a nap, while others remained awake. Directly after this and three months later, all the participants returned for a memory test. Igloi et al. found that the highly rewarded pictures were better remembered at both time points (at the expense of lowly rewarded ones), but only for participants who had slept after learning. Further analysis revealed that distinctive bursts of brain activity occurring during sleep, so-called “sleep spindles", favor the reorganization of memories stored in a region of the brain called the hippocampus, often considered to be the organ of memory. These findings uncover how sleep enhances long-term memory selectivity thus demonstratethat sleep does not just passively increase the retention of all memories. In the future, this work may inspire educational strategies that combine the careful use of rewards followed by an overnight period of sleep. DOI:http://dx.doi.org/10.7554/eLife.07903.002
Collapse
Affiliation(s)
- Kinga Igloi
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| | - Giulia Gaggioni
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Murphy C, Duponsel N, Huang XS, Wittich W, Koenekoop RK, Overbury O. Retinal Disorders and Sleep Disorders: Are They Genetically Related? JOURNAL OF VISUAL IMPAIRMENT & BLINDNESS 2015. [DOI: 10.1177/0145482x1510900505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction Sleep is important for optimal physical health and vitality. Recent studies have shown that individuals with visual impairments may be at risk for sleep problems. This research examines the prevalence of sleep problems among those with retinal disorders and the possibility of a genetic link. Methods Subjects with retinitis pigmentosa ( n = 33), Stargardt's disease ( n = 31) and age-related macular degeneration ( n = 43) were recruited from the ophthalmology department of Montreal Children's Hospital. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI) and the Epworth Sleepiness Scale (ESS). Genetic testing was conducted by the Radboud University Medical Center in Nijmegen, Netherlands. Retinal genes were identified as having retina only or pineal and retinal expression. Results The expression patterns of genes causing retinal disorders did not predict sleep quality. The PSQI indicated poor sleep quality in 56% of participants with retinitis pigmentosa, 48% of those with Stargardt's disease, and 53% of those with age-related macular degeneration. The ESS showed that daytime sleepiness was experienced by 20% of individuals with retinitis pigmentosa or Stargardt's disease, and by only one individual with age-related macular degeneration. Discussion Approximately 50% of people with retinal disease have sleep problems. This number compares with up to one-third of the general population. Gene expression did not correlate with sleep quality, and the explanation for such a large percentage of sleep disorders needs further investigation. Implications for practitioners Eye care and rehabilitation specialists need to be aware of the high prevalence of poor sleep quality in individuals with retinal disorders, since this situation may have an important impact on memory and learning, both of which are vital in successful rehabilitation.
Collapse
Affiliation(s)
- Caitlin Murphy
- School of Optometry, University of Montreal, P.O. Box 6128, Station Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - Nathalie Duponsel
- Concordia University, Department of Education, Room LB-579 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada
| | - Xi Sheila Huang
- CSSS du Suroit, St. Mary's Hospital and Jewish General Hospital, 160 Rue Saint Thomas, Salaberry-de-Valleyfield, Qc J6T 2N6, Canada
| | - Walter Wittich
- School of Optometry, University of Montreal; resident researcher, CRIR/MAB-Mackay Rehabilitation Centre; Department of Psychology, Concordia University; adjunct professor, School of Physical and Occupational Therapy, University of Montreal
| | - Robert K. Koenekoop
- Pediatric Ophthalmology, Montreal Children's Hospital, 1001 Boulevard Decarie, Montreal, Quebec H4A 3J1, Canada; clinician-scientist and director, McGill Ocular Genetics Laboratory; associte professor of ophthalmology, McGill University
| | | |
Collapse
|
26
|
Feld GB, Diekelmann S. Sleep smart-optimizing sleep for declarative learning and memory. Front Psychol 2015; 6:622. [PMID: 26029150 PMCID: PMC4428077 DOI: 10.3389/fpsyg.2015.00622] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The last decade has witnessed a spurt of new publications documenting sleep's essential contribution to the brains ability to form lasting memories. For the declarative memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial effect on the consolidation of memories acquired during preceding wakefulness. The finding that newly encoded memories become reactivated during subsequent sleep fostered the idea that reactivation leads to the strengthening and transformation of the memory trace. According to the active system consolidation account, trace reactivation leads to the redistribution of the transient memory representations from the hippocampus to the long-lasting knowledge networks of the cortex. Apart from consolidating previously learned information, sleep also facilitates the encoding of new memories after sleep, which probably relies on the renormalization of synaptic weights during sleep as suggested by the synaptic homeostasis theory. During wakefulness overshooting potentiation causes an imbalance in synaptic weights that is countered by synaptic downscaling during subsequent sleep. This review briefly introduces the basic concepts and central findings of the research on sleep and memory, and discusses implications of this lab-based work for everyday applications to make the best possible use of sleep's beneficial effect on learning and memory.
Collapse
Affiliation(s)
- Gordon B Feld
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Susanne Diekelmann
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| |
Collapse
|
27
|
Heib DPJ, Hoedlmoser K, Anderer P, Gruber G, Zeitlhofer J, Schabus M. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link? J Cogn Neurosci 2015; 27:1648-58. [PMID: 25774427 DOI: 10.1162/jocn_a_00804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.
Collapse
Affiliation(s)
| | | | - Peter Anderer
- Medical University of Vienna.,The Siesta Group, Vienna, Austria
| | - Georg Gruber
- Medical University of Vienna.,The Siesta Group, Vienna, Austria
| | | | | |
Collapse
|
28
|
|
29
|
Abad VC, Guilleminault C. Pharmacological treatment of sleep disorders and its relationship with neuroplasticity. Curr Top Behav Neurosci 2015; 25:503-53. [PMID: 25585962 DOI: 10.1007/7854_2014_365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Collapse
Affiliation(s)
- Vivien C Abad
- Psychiatry and Behavioral Science-Division of Sleep Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
30
|
Scalise A, Pittaro-Cadore I, Serafini A, Simeoni S, Fratticci L, Ecoretti E, Gigli GL. Transcranial magnetic stimulation in sleep fragmentation: a model to better understand sleep disorders. Sleep Med 2014; 15:1386-91. [PMID: 25194582 DOI: 10.1016/j.sleep.2014.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate practice-dependent plasticity and cortical inhibition/excitability in good sleepers after a night of sleep fragmentation (SF), by means of transcranial magnetic stimulation (TMS). METHODS In basal condition (BC), after a full night of spontaneous sleep, and in fragmented condition (FC), after a fragmented night of sleep, motor evoked potential (MEP) amplitude, motor threshold (MT), silent period (SP), and intracortical inhibition were assessed. In both conditions subjects performed, also, a bimanual motor task: MEPs were recorded before and after exercise, and after rest. We evaluated the presence of post-exercise facilitation and delayed facilitation. Subjects reported their alertness level (Stanford Sleepiness Scale-SSS). RESULTS MT and SSS were significantly increased in SF. Instead, no significant differences for MEP amplitude or SP or intracortical inhibition were found. In both conditions post-exercise facilitation and delayed facilitation were present. CONCLUSION SF produces disruption of nocturnal sleep and increases daytime sleepiness. Confirmatory features of this clinical behaviour could be that in FC we observed a significant increase in SSS and in MT. SF was unable to modify cortical inhibition\excitability and\or to influence plasticity-related parameters. These results seem inconsistent with some of TMS alterations observed in sleep deprivation (SD) and restless legs syndrome (RLS). We suggest that SD and SF represent different phenomena that can depend on various networks acting on motor cortex. We speculate that alterations in cortical excitability found in RLS are intrinsically related to the underlying disease itself and are not instead directly associated with the SF present in RLS.
Collapse
Affiliation(s)
- Anna Scalise
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy.
| | - Italo Pittaro-Cadore
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Anna Serafini
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Sara Simeoni
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Lara Fratticci
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Elisa Ecoretti
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Gian Luigi Gigli
- Center of Sleep Medicine, Neurology Clinic, University-Hospital S. Maria della Misericordia, Udine, Italy
| |
Collapse
|
31
|
Cognitive Effects of Treatment of Depression with Repetitive Transcranial Magnetic Stimulation. Cogn Behav Neurol 2014; 27:77-87. [DOI: 10.1097/wnn.0000000000000031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Abstract
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation of memory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, rapid eye movement (REM) and non-rapid eye movement (NREM) sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent NREM sleep. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exerts powerful effects on molecular, cellular and network mechanisms of plasticity that govern both initial learning and subsequent long-term memory consolidation.
Collapse
|
33
|
Nadeau SE, Davis SE, Wu SS, Dai Y, Richards LG. A pilot randomized controlled trial of D-cycloserine and distributed practice as adjuvants to constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 2014; 28:885-95. [PMID: 24769437 DOI: 10.1177/1545968314532032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Phase III trials of rehabilitation of paresis after stroke have proven the effectiveness of intensive and extended task practice, but they have also shown that many patients do not qualify, because of severity of impairment, and that many of those who are treated are left with clinically significant deficits. Objective. To test the value of 2 potential adjuvants to normal learning processes engaged in constraint-induced movement therapy (CIMT): greater distribution of treatment over time and the coadministration of d-cycloserine, a competitive agonist at the glycine site of the N-methyl-D-aspartate glutamate receptor. Methods. A prospective randomized single-blind parallel-group trial of more versus less condensed therapy (2 vs 10 weeks) and d-cycloserine (50 mg) each treatment day versus placebo (in a 2 × 2 design), as potential adjuvants to 60 hours of CIMT. Results. Twenty-four participants entered the study, and 22 completed it and were assessed at the completion of treatment and 3 months later. Neither greater distribution of treatment nor treatment with d-cycloserine significantly augmented retention of gains achieved with CIMT. Conclusions. Greater distribution of practice and treatment with d-cycloserine do not appear to augment retention of gains achieved with CIMT. However, concentration of CIMT over 2 weeks ("massed practice") appears to confer no advantage either.
Collapse
Affiliation(s)
- Stephen E Nadeau
- Research Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra E Davis
- University of St Augustine for Health Sciences, St Augustine, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Lorie G Richards
- Division of Occupational Therapy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
34
|
Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 2014; 37:10-9. [DOI: 10.1016/j.tins.2013.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
|
35
|
Detyniecki K, Blumenfeld H. Consciousness of seizures and consciousness during seizures: are they related? Epilepsy Behav 2014; 30:6-9. [PMID: 24126026 PMCID: PMC6287500 DOI: 10.1016/j.yebeh.2013.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Recent advances have been made in the network mechanisms underlying impairment of consciousness during seizures. However, less is known about patient awareness of their own seizures. Studying patient reports or documentation of their seizures is currently the most commonly utilized mechanism to scientifically measure patient awareness of seizures. The purpose of this review is to summarize the available evidence regarding the accuracy of patient seizure counts and identify the variables that may influence unreliable seizure reporting. Several groups looking at patient documentation of seizures during continuous EEG monitoring show that patients do not report as many as 50% of their seizures. These studies also suggest that seizures accompanied by loss of consciousness, arising from the left hemisphere or the temporal lobe, or occurring during sleep are associated with significantly reduced reporting. Baseline memory performance does not appear to have a major influence on the accuracy of seizure report. Further prospective studies using validated ictal behavioral testing as well as using correlation with newer electrophysiological and neuroimaging techniques for seizure localization are needed to more fully understand the mechanisms of underreporting of seizures. Better methods to alert caregivers about unrecognized seizures and to improve seizure documentation are under investigation.
Collapse
Affiliation(s)
- Kamil Detyniecki
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus 2013; 23:985-1004. [DOI: 10.1002/hipo.22183] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Geneviève Albouy
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège; Liège Belgium
| | - Julien Doyon
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| |
Collapse
|
37
|
Devore EE, Grodstein F, Schernhammer ES. Shift work and cognition in the Nurses' Health Study. Am J Epidemiol 2013; 178:1296-300. [PMID: 24076971 DOI: 10.1093/aje/kwt214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rotating night-shift work, which can disrupt circadian rhythm, may adversely affect long-term health. Experimental studies indicate that circadian rhythm disruption might specifically accelerate brain aging; thus, we prospectively examined shift-work history at midlife as associated with cognitive function among older women in the Nurses' Health Study. Women reported their history of rotating night-shift work in 1988 and participated in telephone-based cognitive interviews between 1995 and 2001; interviews included 6 cognitive tests that were subsequently repeated 3 times, at 2-year intervals. We focused on shift work through midlife (here, ages 58-68 years) because cognitive decline is thought to begin during this period. Using multivariable-adjusted linear regression, we evaluated mean differences in both "average cognitive status" at older age (averaging cognitive scores from all 4 interviews) and rates of cognitive decline over time across categories of shift-work duration at midlife (none, 1-9, 10-19, or ≥20 years). There was little association between shift work and average cognition in later life or between shift work and cognitive decline. Overall, this study does not clearly support the hypothesis that shift-work history in midlife has long-term effects on cognition in older adults.
Collapse
|
38
|
Gharzi M, Dolatabadi HRD, Reisi P, Javanmard SH. Effects of different doses of doxepin on passive avoidance learning in rats. Adv Biomed Res 2013; 2:66. [PMID: 24223381 PMCID: PMC3814585 DOI: 10.4103/2277-9175.115823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 12/30/2012] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Studies have shown that Doxepin has anti-inflammatory effects and reduces oxidative stress. Due to the fact that other tricyclic antidepressants have been shown to have neuroprotective effects, this study aimed to investigate the effects of different doses of doxepin on passive avoidance learning in rats. MATERIALS AND METHODS Old male Wistar rats were used in this study. Doxepin was administered intraperitoneally (1, 5 and 10 mg/kg) for 21 days. Passive avoidance learning test was used for evaluation of learning and memory. Rats received foot electrical shock on fifteen day, and step through latencies were evaluated one week after the electrical shock in retention phase. RESULTS Administration of Doxepin considerably increased the step through latencies in the rats that received the doses of 1 and 5 mg/kg (P < 0.05). However, in the dose of 10 mg/kg, there wasn't any significant change comparing to control group. CONCLUSION These results indicate that Doxepin has desirable effects on cognitive functions in low doses. Therefore, Doxepin can be considered as memory enhancers that understanding the underling mechanisms need further investigation.
Collapse
Affiliation(s)
- Mahsa Gharzi
- Applied Physiology Research Center, Isfahan, Iran
| | | | | | | |
Collapse
|
39
|
|
40
|
The role of memory reactivation during wakefulness and sleep in determining which memories endure. J Neurosci 2013; 33:6672-8. [PMID: 23575863 DOI: 10.1523/jneurosci.5497-12.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Consolidation makes it possible for memories of our daily experiences to be stored in an enduring way. We propose that memory consolidation depends on the covert reactivation of previously learned material both during sleep and wakefulness. Here we tested whether the operation of covert memory reactivation influences the fundamental selectivity of memory storage--of all the events we experience each day, which will be retained and which forgotten? We systematically manipulated the value of information learned by 60 young subjects; they learned 72 object-location associations while hearing characteristic object sounds, and a number on each object indicated the reward value that could potentially be earned during a future memory test. Recall accuracy declined to a greater extent for low-value than for high-value associations after either a 90 min nap or a 90 min wake interval. Yet, via targeted memory reactivation of half of the low-value associations using the corresponding sounds, these memories were rescued from forgetting. Only cued associations were rescued when sounds were applied during wakefulness, whereas the entire set of low-value associations was rescued from forgetting when the manipulation occurred during sleep. The benefits accrued from presenting corresponding sounds show that covert reactivation is a major factor determining the selectivity of memory consolidation in these circumstances. By extension, covert reactivation may determine the ultimate fate of our memories, though wake and sleep reactivation might play distinct roles in this process, the former helping to strengthen individual, salient memories, and the latter strengthening, while also linking, categorically related memories together.
Collapse
|
41
|
Dynamic changes in parietal activation during encoding: implications for human learning and memory. Neuroimage 2013; 82:44-52. [PMID: 23732887 DOI: 10.1016/j.neuroimage.2013.05.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/22/2013] [Accepted: 05/26/2013] [Indexed: 11/23/2022] Open
Abstract
The ventral posterior parietal cortex (vPPC) monitors successful memory retrieval, yet its role during learning remains unclear. Indeed, increased vPPC activation during stimulus encoding is often negatively correlated with subsequent memory performance, suggesting that this region is suppressed during learning. Alternatively, the vPPC may engage in learning-related processes immediately after stimulus encoding thus facilitating retrieval at a later time. To investigate this possibility, we assessed vPPC activity during item presentation and immediately following its offset when a cue to remember was presented. We observed a dynamic change in vPPC response such that activity was negatively correlated with subsequent memory during stimulus presentation but positively correlated immediately following the stimulus during the cue phase. Furthermore, regional differences in this effect suggest a degree of functional heterogeneity within the vPPC. These findings demonstrate that the vPPC is engaged during learning and acts to facilitate post-encoding memory processes that establish long-term cortical representations.
Collapse
|
42
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
43
|
Oudiette D, Paller KA. Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn Sci 2013; 17:142-9. [PMID: 23433937 DOI: 10.1016/j.tics.2013.01.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
A fundamental feature of human memory is the propensity for beneficial changes in information storage after initial encoding. Recent research findings favor the possibility that memory consolidation during sleep is instrumental for actively maintaining the storehouse of memories that individuals carry through their lives. The information that ultimately remains available for retrieval may tend to be that which is reactivated during sleep. A novel source of support for this idea comes from demonstrations that neurocognitive processing during sleep can benefit memory storage when memories are covertly cued via auditory or olfactory stimulation. Investigations of these subtle manipulations of memory processing during sleep can help elucidate the mechanisms of memory preservation in the human brain.
Collapse
Affiliation(s)
- Delphine Oudiette
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
44
|
Stickgold R, Walker MP. Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci 2013; 16:139-45. [PMID: 23354387 DOI: 10.1038/nn.3303] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/10/2012] [Indexed: 02/05/2023]
Abstract
The brain does not retain all the information it encodes in a day. Much is forgotten, and of those memories retained, their subsequent evolution can follow any of a number of pathways. Emerging data makes clear that sleep is a compelling candidate for performing many of these operations. But how does the sleeping brain know which information to preserve and which to forget? What should sleep do with that information it chooses to keep? For information that is retained, sleep can integrate it into existing memory networks, look for common patterns and distill overarching rules, or simply stabilize and strengthen the memory exactly as it was learned. We suggest such 'memory triage' lies at the heart of a sleep-dependent memory processing system that selects new information, in a discriminatory manner, and assimilates it into the brain's vast armamentarium of evolving knowledge, helping guide each organism through its own, unique life.
Collapse
Affiliation(s)
- Robert Stickgold
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
45
|
Reyes Prieto NM, Romano López A, Pérez Morales M, Pech O, Méndez-Díaz M, Ruiz Contreras AE, Prospéro-García O. Oleamide restores sleep in adult rats that were subjected to maternal separation. Pharmacol Biochem Behav 2012; 103:308-12. [PMID: 22975223 DOI: 10.1016/j.pbb.2012.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
|
46
|
McKeon S, Pace-Schott EF, Spencer RMC. Interaction of sleep and emotional content on the production of false memories. PLoS One 2012; 7:e49353. [PMID: 23145159 PMCID: PMC3492291 DOI: 10.1371/journal.pone.0049353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022] Open
Abstract
Sleep benefits veridical memories, resulting in superior recall relative to off-line intervals spent awake. Sleep also increases false memory recall in the Deese-Roediger-McDermott (DRM) paradigm. Given the suggestion that emotional veridical memories are prioritized for consolidation over sleep, here we examined whether emotion modulates sleep's effect on false memory formation. Participants listened to semantically related word lists lacking a critical lure representing each list's "gist." Free recall was tested after 12 hours containing sleep or wake. The Sleep group recalled more studied words than the Wake group but only for emotionally neutral lists. False memories of both negative and neutral critical lures were greater following sleep relative to wake. Morning and Evening control groups (20-minute delay) did not differ ruling out circadian accounts for these differences. These results support the adaptive function of sleep in both promoting the consolidation of veridical declarative memories and in extracting unifying aspects from memory details.
Collapse
Affiliation(s)
- Shannon McKeon
- Department of Psychology, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Edward F. Pace-Schott
- Department of Psychology, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rebecca M. C. Spencer
- Department of Psychology, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
47
|
van Dongen EV, Thielen JW, Takashima A, Barth M, Fernández G. Sleep supports selective retention of associative memories based on relevance for future utilization. PLoS One 2012; 7:e43426. [PMID: 22916259 PMCID: PMC3420871 DOI: 10.1371/journal.pone.0043426] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
An outstanding question is whether memory consolidation occurs passively or involves active processes that selectively stabilize memories based on future utility. Here, we differentially modulated the expected future relevance of two sets of picture-location associations after learning. Participants first studied two sets of picture-location associations. After a baseline memory test, they were instructed that only one set of associations would be retested after a 14-hour delay. For half of the participants, this test-retest delay contained a night of sleep; for the other half the delay included a normal working day. At retest, participants were re-instructed and against their expectations tested on both sets of associations. Our results show that post-learning instruction about subsequent relevance selectively improves memory retention for specific associative memories. This effect was sleep-dependent; it was present only in the group of subjects for which the test-retest delay contained sleep. Moreover, time spent asleep for participants in this sleep group correlated with retention of relevant but not irrelevant associations; participants who slept longer forgot fewer associations from the relevant category. In contrast, participants that did not sleep forgot more relevant than irrelevant associations across the test-retest delay. In summary, our results indicate that it is possible to modulate the retention of selected memories after learning with simple verbal instructions on their future relevance. The finding that this effect depends on sleep demonstrates this state's active role in memory consolidation and may have utility for educational settings.
Collapse
Affiliation(s)
- Eelco V van Dongen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|