1
|
Zhang X, Xie G, Rao L, Tian C. Citrullination in health and disease: From physiological function to gene regulation. Genes Dis 2025; 12:101355. [PMID: 40271192 PMCID: PMC12017988 DOI: 10.1016/j.gendis.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 04/25/2025] Open
Abstract
Protein citrullination involves the deimination of arginine or methylarginine residues in peptide chains to form citrulline by peptidyl arginine deiminases. This process is an important protein post-translational modification that affects molecular structure and function of various proteins, including histones. In recent years, protein citrullination has attracted widespread attention for its influence on gene transcription. Studies on the impact of protein citrullination modification on chromatin structure remodeling and the establishment of gene regulatory networks have made rapid progress. In this review, we briefly summarize the physiological functions of protein citrullination modification. Specifically, we comprehensively outline the latest progress in the study of the role of protein citrullination modification in gene transcription regulation, focusing on the interaction of protein citrullination with other post-translational modifications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Guiqiu Xie
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Rhind SG, Shiu MY, Vartanian O, Tenn C, Nakashima A, Jetly R, Yang Z, Wang KK. Circulating Brain-Reactive Autoantibody Profiles in Military Breachers Exposed to Repetitive Occupational Blast. Int J Mol Sci 2024; 25:13683. [PMID: 39769446 PMCID: PMC11728191 DOI: 10.3390/ijms252413683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers (n = 18) with extensive blast exposure against unexposed military controls (n = 19). Using high-sensitivity immunoassays, we quantified IgG and IgM autoantibodies targeting glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and pituitary (PIT) antigens. Breachers exhibited significantly elevated levels of anti-GFAP IgG (p < 0.001) and anti-PIT IgG (p < 0.001) compared to controls, while anti-MBP autoantibody levels remained unchanged. No significant differences were observed for any IgM autoantibody measurements. These patterns suggest that repetitive blast exposure induces a chronic, adaptive immune response rather than a short-lived acute phase. The elevated IgG autoantibodies highlight the vulnerability of astrocytes, myelin, and the hypothalamic-pituitary axis to ongoing immune-mediated injury following repeated blast insults, likely reflecting sustained blood-brain barrier disruption and neuroinflammatory processes. Our findings underscore the potential of CNS-targeted IgG autoantibodies as biomarkers of cumulative brain injury and immune dysregulation in blast-exposed populations. Further research is warranted to validate these markers in larger, more diverse cohorts, and to explore their utility in guiding interventions aimed at mitigating neuroinflammation, neuroendocrine dysfunction, and long-term neurodegenerative risks in military personnel and similarly exposed groups.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | - Zhihui Yang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
| | - Kevin K. Wang
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (Z.Y.); (K.K.W.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, The Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Mercer A, Sancandi M, Maclatchy A, Lange S. Brain-Region-Specific Differences in Protein Citrullination/Deimination in a Pre-Motor Parkinson's Disease Rat Model. Int J Mol Sci 2024; 25:11168. [PMID: 39456949 PMCID: PMC11509057 DOI: 10.3390/ijms252011168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Marco Sancandi
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK; (A.M.); (M.S.)
| | - Amy Maclatchy
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK;
| |
Collapse
|
4
|
Yusuf IO, Parsi S, Ostrow LW, Brown RH, Thompson PR, Xu Z. PAD2 dysregulation and aberrant protein citrullination feature prominently in reactive astrogliosis and myelin protein aggregation in sporadic ALS. Neurobiol Dis 2024; 192:106414. [PMID: 38253209 PMCID: PMC11003460 DOI: 10.1016/j.nbd.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sepideh Parsi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02110, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert H Brown
- Department of Neurology, RNA Therapeutic Institute, Neuroscience Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Mitra S, Harvey-Jones K, Kraev I, Verma V, Meehan C, Mintoft A, Norris G, Campbell E, Tucker K, Robertson NJ, Hristova M, Lange S. The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures. Int J Mol Sci 2023; 24:11529. [PMID: 37511288 PMCID: PMC10380774 DOI: 10.3390/ijms241411529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.
Collapse
Affiliation(s)
- Subhabrata Mitra
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Kelly Harvey-Jones
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Vinita Verma
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Christopher Meehan
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Alison Mintoft
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Georgina Norris
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Ellie Campbell
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Katie Tucker
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Nicola J. Robertson
- Department of Neonatology, Institute for Women’s Health, University College London, London WC1E 6BT, UK; (K.H.-J.); (V.V.); (C.M.); (A.M.); (G.N.); (E.C.); (K.T.); (N.J.R.)
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
| | - Sigrun Lange
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK;
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Pathobiology and Extracellular Vesicle Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
6
|
Mercer A, Jaunmuktane Z, Hristova M, Lange S. Differential, Stage Dependent Detection of Peptidylarginine Deiminases and Protein Deimination in Lewy Body Diseases-Findings from a Pilot Study. Int J Mol Sci 2022; 23:13117. [PMID: 36361903 PMCID: PMC9658624 DOI: 10.3390/ijms232113117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Over 10 million people worldwide live with Parkinson's disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination-which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
7
|
Yusuf IO, Qiao T, Parsi S, Tilvawala R, Thompson PR, Xu Z. Protein citrullination marks myelin protein aggregation and disease progression in mouse ALS models. Acta Neuropathol Commun 2022; 10:135. [PMID: 36076282 PMCID: PMC9458309 DOI: 10.1186/s40478-022-01433-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Increased protein citrullination (PC) and dysregulated protein arginine deiminase (PAD) activity have been observed in several neurodegenerative diseases. PC is a posttranslational modification catalyzed by the PADs. PC converts peptidyl-arginine to peptidyl-citrulline, thereby reducing the positive charges and altering structure and function of proteins. Of the five PADs, PAD2 is the dominant isoform in the central nervous system (CNS). Abnormal PC and PAD dysregulation are associated with numerous pathological conditions, including inflammatory diseases and neurodegeneration. Animal model studies have shown therapeutic efficacy from inhibition of PADs, thus suggesting a role of PC in pathogenesis. To determine whether PC contribute to amyotrophic lateral sclerosis (ALS), a deadly neurodegenerative disease characterized by loss of motor neurons, paralysis, and eventual death, we investigated alterations of PC and PAD2 in two different transgenic mouse models of ALS expressing human mutant SOD1G93A and PFN1C71G, respectively. PC and PAD2 expression are altered dynamically in the spinal cord during disease progression in both models. PC and PAD2 increase progressively in astrocytes with the development of reactive astrogliosis, while decreasing in neurons. Importantly, in the spinal cord white matter, PC accumulates in protein aggregates that contain the myelin proteins PLP and MBP. PC also accumulates progressively in insoluble protein fractions during disease progression. Finally, increased PC and PAD2 expression spatially correlate with areas of the CNS with the most severe motor neuron degeneration. These results suggest that altered PC is an integral part of the neurodegenerative process and potential biomarkers for disease progression in ALS. Moreover, increased PC may contribute to disease-associated processes such as myelin protein aggregation, myelin degeneration, and astrogliosis.
Collapse
Affiliation(s)
- Issa O. Yusuf
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tao Qiao
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.423286.90000 0004 0507 1326Present Address: Astellas Pharma, 33 Locke Dr, Marlborough, MA 01752 USA
| | - Sepideh Parsi
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.38142.3c000000041936754XPresent Address: Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Ronak Tilvawala
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.509226.aPresent Address: Scorpion Therapeutics, 1 Winthrop Square, Boston, MA 02110 USA
| | - Paul R. Thompson
- grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Ganne A, Balasubramaniam M, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Glial Fibrillary Acidic Protein: A Biomarker and Drug Target for Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071354. [PMID: 35890250 PMCID: PMC9322874 DOI: 10.3390/pharmaceutics14071354] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament structural protein involved in cytoskeleton assembly and integrity, expressed in high abundance in activated glial cells. GFAP is neuroprotective, as knockout mice are hypersensitive to traumatic brain injury. GFAP in cerebrospinal fluid is a biomarker of Alzheimer’s disease (AD), dementia with Lewy bodies, and frontotemporal dementia (FTD). Here, we present novel evidence that GFAP is markedly overexpressed and differentially phosphorylated in AD hippocampus, especially in AD with the apolipoprotein E [ε4, ε4] genotype, relative to age-matched controls (AMCs). Kinases that phosphorylate GFAP are upregulated in AD relative to AMC. A knockdown of these kinases in SH-SY5Y-APPSw human neuroblastoma cells reduced amyloid accrual and lowered protein aggregation and associated behavioral traits in C. elegans models of polyglutamine aggregation (as observed in Huntington’s disease) and of Alzheimer’s-like amyloid formation. In silico screening of the ChemBridge structural library identified a small molecule, MSR1, with stable and specific binding to GFAP. Both MSR1 exposure and GF AP-specific RNAi knockdown reduce aggregation with remarkably high concordance of aggregate proteins depleted. These data imply that GFAP and its phosphorylation play key roles in neuropathic aggregate accrual and provide valuable new biomarkers, as well as novel therapeutic targets to alleviate, delay, or prevent AD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - W. Sue T. Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| |
Collapse
|
9
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
10
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
11
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
12
|
Compartmentalized citrullination in Muller glial endfeet during retinal degeneration. Proc Natl Acad Sci U S A 2022; 119:2121875119. [PMID: 35197297 PMCID: PMC8917347 DOI: 10.1073/pnas.2121875119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/01/2022] Open
Abstract
Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullination targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved. After laser injury, GFAP polymers that accumulate in reactive MG are citrullinated in MG endfeet and glial cell processes. The enzyme responsible for citrullination, peptidyl arginine deiminase-4 (PAD4), localizes to endfeet and associates with GFAP polymers. Glial cell–specific PAD4 deficiency attenuates retinal hypercitrullination in injured retinas, indicating PAD4 requirement for MG citrullination. In retinas of 1-mo-old JR5558 mice, hypercitrullinated GFAP and PAD4 accumulate in MG endfeet/cell processes in a lesion-specific manner. Finally, we show that human donor maculae from patients with wet-AMD also feature the canonical endfeet localization of hypercitrullinated GFAP. Thus, we propose that endfeet are a “citrullination bunker” that initiates and sustains citrullination in retinal degeneration.
Collapse
|
13
|
Lange S. Peptidylarginine deiminases and extracellular vesicles: prospective drug targets and biomarkers in central nervous system diseases and repair. Neural Regen Res 2021; 16:934-938. [PMID: 33229732 PMCID: PMC8178795 DOI: 10.4103/1673-5374.297058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidylarginine deiminases are a family of calcium-activated enzymes with multifaceted roles in physiological and pathological processes, including in the central nervous system. Peptidylarginine deiminases cause post-translational deimination/citrullination, leading to changes in structure and function of a wide range of target proteins. Deimination can facilitate protein moonlighting, modify protein-protein interaction, cause protein dysfunction and induce inflammatory responses. Peptidylarginine deiminases also regulate the biogenesis of extracellular vesicles, which play important roles in cellular communication through transfer of extracellular vesicle-cargo, e.g., proteins and genetic material. Both peptidylarginine deiminases and extracellular vesicles are linked to a number of pathologies, including in the central nervous system, and their modulation with pharmacological peptidylarginine deiminase inhibitors have shown great promise in several in vitro and in vivo central nervous system disease models. Furthermore, extracellular vesicles derived from mesenchymal stem cells have been assessed for their therapeutic application in central nervous system injury. As circulating extracellular vesicles can be used as non-invasive liquid biopsies, their specific cargo-signatures (including deiminated proteins and microRNAs) may allow for disease “fingerprinting” and aid early central nervous system disease diagnosis, inform disease progression and response to therapy. This mini-review discusses recent advances in the field of peptidylarginine deiminase and extracellular vesicle research in the central nervous system, focusing on several central nervous system acute injury, degeneration and cancer models.
Collapse
Affiliation(s)
- Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
14
|
Vitorino R, Guedes S, Vitorino C, Ferreira R, Amado F, Van Eyk JE. Elucidating Citrullination by Mass Spectrometry and Its Role in Disease Pathogenesis. J Proteome Res 2021; 20:38-48. [PMID: 32966086 PMCID: PMC11009872 DOI: 10.1021/acs.jproteome.0c00474] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on discussing key mechanisms in disease pathogenesis mediated by the protein post-translational modification citrullination. These processes are discussed in depth in the context of complex diseases such as rheumatoid arthritis, cancer, central nervous system disorders, and cardiovascular disease. Additionally, a critical evaluation of challenges in laboratory detection of citrullination sites is also outlined. In this context, the role of mass spectrometry is discussed with a focus on contemporary techniques that offer promising options to detect the exact site of protein citrullination. Novel methods described in the paper have the potential to detect and quantify the occurrence of post-translational modification sites for diagnosis and therapeutic purposes with a high degree of specificity and sensitivity. Furthermore, they offer a much faster performance than traditional techniques making them ideal for large-scale experimentation.
Collapse
Affiliation(s)
- Rui Vitorino
- QOPNA & LAQV-REQUIMTE, Departamento de Qúimica, Universidade de Aveiro, Aveiro, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Sofia Guedes
- QOPNA & LAQV-REQUIMTE, Departamento de Qúimica, Universidade de Aveiro, Aveiro, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Departamento de Qúimica, Universidade de Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA & LAQV-REQUIMTE, Departamento de Qúimica, Universidade de Aveiro, Aveiro, Portugal
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinia Medical Center, Los Angeles, California, United States
| |
Collapse
|
15
|
Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, Velasco-Andrada MS, Acuña PJ, Ang MA, Muñoz EL, Diesta CCE, Macalintal-Canlas R, Acuña-Sunshine G, Ozelius LJ, Sharma N, Bragg DC, Sadri-Vakili G. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 2020; 144:105032. [PMID: 32739252 DOI: 10.1016/j.nbd.2020.105032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation plays a pathogenic role in neurodegenerative diseases and recent findings suggest that it may also be involved in X-linked Dystonia-Parkinsonism (XDP) pathogenesis. Previously, fibroblasts and neuronal stem cells derived from XDP patients demonstrated hypersensitivity to TNF-α, dysregulation in NFκB signaling, and an increase in several pro-inflammatory markers. However, the role of inflammatory processes in XDP patient brain remains unknown. Here we demonstrate that there is a significant increase in astrogliosis and microgliosis in human post-mortem XDP prefrontal cortex (PFC) compared to control. Furthermore, there is a significant increase in histone H3 citrullination (H3R2R8R17cit3) with a concomitant increase in peptidylarginine deaminase 2 (PAD2) and 4 (PAD4), the enzymes catalyzing citrullination, in XDP post-mortem PFC. While there is a significant increase in myeloperoxidase (MPO) levels in XDP PFC, neutrophil elastase (NE) levels are not altered, suggesting that MPO may be released by activated microglia or reactive astrocytes in the brain. Similarly, there was an increase in H3R2R8R17cit3, PAD2 and PAD4 levels in XDP-derived fibroblasts. Importantly, treatment of fibroblasts with Cl-amidine, a pan inhibitor of PAD enzymes, reduced histone H3 citrullination and pro-inflammatory chemokine expression, without affecting cell survival. Taken together, our results demonstrate that inflammation is increased in XDP post-mortem brain and fibroblasts and unveil a new epigenetic potential therapeutic target.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Alexandra N Mills
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ellen B Penney
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | | | | | | | - Patrick J Acuña
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Mark A Ang
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Edwin L Muñoz
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | | | | | - Geraldine Acuña-Sunshine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America; Sunshine Care Foundation, Roxas City, 5800, Capiz, Philippines
| | - Laurie J Ozelius
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, United States of America
| | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, Healey Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA 02129, United States of America.
| |
Collapse
|
16
|
Arisan ED, Uysal-Onganer P, Lange S. Putative Roles for Peptidylarginine Deiminases in COVID-19. Int J Mol Sci 2020; 21:E4662. [PMID: 32629995 PMCID: PMC7370447 DOI: 10.3390/ijms21134662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are a family of calcium-regulated enzymes that are phylogenetically conserved and cause post-translational deimination/citrullination, contributing to protein moonlighting in health and disease. PADs are implicated in a range of inflammatory and autoimmune conditions, in the regulation of extracellular vesicle (EV) release, and their roles in infection and immunomodulation are known to some extent, including in viral infections. In the current study we describe putative roles for PADs in COVID-19, based on in silico analysis of BioProject transcriptome data (PRJNA615032 BioProject), including lung biopsies from healthy volunteers and SARS-CoV-2-infected patients, as well as SARS-CoV-2-infected, and mock human bronchial epithelial NHBE and adenocarcinoma alveolar basal epithelial A549 cell lines. In addition, BioProject Data PRJNA631753, analysing patients tissue biopsy data (n = 5), was utilised. We report a high individual variation observed for all PADI isozymes in the patients' tissue biopsies, including lung, in response to SARS-CoV-2 infection, while PADI2 and PADI4 mRNA showed most variability in lung tissue specifically. The other tissues assessed were heart, kidney, marrow, bowel, jejunum, skin and fat, which all varied with respect to mRNA levels for the different PADI isozymes. In vitro lung epithelial and adenocarcinoma alveolar cell models revealed that PADI1, PADI2 and PADI4 mRNA levels were elevated, but PADI3 and PADI6 mRNA levels were reduced in SARS-CoV-2-infected NHBE cells. In A549 cells, PADI2 mRNA was elevated, PADI3 and PADI6 mRNA was downregulated, and no effect was observed on the PADI4 or PADI6 mRNA levels in infected cells, compared with control mock cells. Our findings indicate a link between PADI expression changes, including modulation of PADI2 and PADI4, particularly in lung tissue, in response to SARS-CoV-2 infection. PADI isozyme 1-6 expression in other organ biopsies also reveals putative links to COVID-19 symptoms, including vascular, cardiac and cutaneous responses, kidney injury and stroke. KEGG and GO pathway analysis furthermore identified links between PADs and inflammatory pathways, in particular between PAD4 and viral infections, as well as identifying links for PADs with a range of comorbidities. The analysis presented here highlights roles for PADs in-host responses to SARS-CoV-2, and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, Gebze, 41400 Kocaeli, Turkey;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
17
|
Beato M, Sharma P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int J Mol Sci 2020; 21:ijms21041351. [PMID: 32079300 PMCID: PMC7072959 DOI: 10.3390/ijms21041351] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Protein arginine deimination leading to the non-coded amino acid citrulline remains a key question in the field of post-translational modifications ever since its discovery by Rogers and Simmonds in 1958. Citrullination is catalyzed by a family of enzymes called peptidyl arginine deiminases (PADIs). Initially, increased citrullination was associated with autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, as well as other neurological disorders and multiple types of cancer. During the last decade, research efforts have focused on how citrullination contributes to disease pathogenesis by modulating epigenetic events, pluripotency, immunity and transcriptional regulation. However, our knowledge regarding the functional implications of citrullination remains quite limited, so we still do not completely understand its role in physiological and pathological conditions. Here, we review the recently discovered functions of PADI2-mediated citrullination of the C-terminal domain of RNA polymerase II in transcriptional regulation in breast cancer cells and the proposed mechanisms to reshape the transcription regulatory network that promotes cancer progression.
Collapse
Affiliation(s)
- Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| | - Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| |
Collapse
|
18
|
Fert-Bober J, Venkatraman V, Hunter CL, Liu R, Crowgey EL, Pandey R, Holewinski RJ, Stotland A, Berman BP, Van Eyk JE. Mapping Citrullinated Sites in Multiple Organs of Mice Using Hypercitrullinated Library. J Proteome Res 2019; 18:2270-2278. [PMID: 30990720 PMCID: PMC10363406 DOI: 10.1021/acs.jproteome.9b00118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein citrullination (or deimination), an irreversible post-translational modification, has been implicated in several physiological and pathological processes, including gene expression regulation, apoptosis, rheumatoid arthritis, and Alzheimer's disease. Several research studies have been carried out on citrullination under many conditions. However, until now, challenges in sample preparation and data analysis have made it difficult to confidently identify a citrullinated protein and assign the citrullinated site. To overcome these limitations, we generated a mouse hyper-citrullinated spectral library and set up coordinates to confidently identify and validate citrullinated sites. Using this workflow, we detect a four-fold increase in citrullinated proteome coverage across six mouse organs compared with the current state-of-the art techniques. Our data reveal that the subcellular distribution of citrullinated proteins is tissue-type-dependent and that citrullinated targets are involved in fundamental physiological processes, including the metabolic process. These data represent the first report of a hyper-citrullinated library for the mouse and serve as a central resource for exploring the role of citrullination in this organism.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | | | - Ruining Liu
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Erin L. Crowgey
- Nemours Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Rakhi Pandey
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ronald J. Holewinski
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandr Stotland
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Benjamin P. Berman
- Bioinformatics and Computational Biology Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
19
|
Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int J Mol Sci 2017; 18:ijms18061196. [PMID: 28587234 PMCID: PMC5486019 DOI: 10.3390/ijms18061196] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exosomes and microvesicles (EMVs) are lipid bilayer-enclosed structures released from cells and participate in cell-to-cell communication via transport of biological molecules. EMVs play important roles in various pathologies, including cancer and neurodegeneration. The regulation of EMV biogenesis is thus of great importance and novel ways for manipulating their release from cells have recently been highlighted. One of the pathways involved in EMV shedding is driven by peptidylarginine deiminase (PAD) mediated post-translational protein deimination, which is calcium-dependent and affects cytoskeletal rearrangement amongst other things. Increased PAD expression is observed in various cancers and neurodegeneration and may contribute to increased EMV shedding and disease progression. Here, we review the roles of PADs and EMVs in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Biomedical Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK.
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark Gallagher
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Sharad Kholia
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Mariya Hristova
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1N 6HX, UK.
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
20
|
The Effects of Blast Exposure on Protein Deimination in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626499 PMCID: PMC5463117 DOI: 10.1155/2017/8398072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI). While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.
Collapse
|