1
|
Noguchi‐Shinohara M, Shuta K, Murakami H, Mori Y, Komatsu J, Kobayashi C, Hersch S, Horie K, Ono K. Lecanemab-Associated Amyloid-β Protofibril in Cerebrospinal Fluid Correlates with Biomarkers of Neurodegeneration in Alzheimer's Disease. Ann Neurol 2025; 97:993-1006. [PMID: 39761671 PMCID: PMC12010060 DOI: 10.1002/ana.27175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 04/22/2025]
Abstract
OBJECTIVE The Clarity AD phase III trial showed that lecanemab reduced amyloid markers in early Alzheimer's disease (AD) and resulted in less decline on measures of cognition and function than placebo. Herein, we aimed to characterize amyloid-β (Aβ) protofibril (PF) captured by lecanemab in human cerebrospinal fluid (CSF) from living participants with different stages in AD, which enable an enhanced understanding of the dynamic changes of lecanemab-associated Aβ-PF (Lec-PF) in vivo. METHODS We newly developed a unique and highly sensitive immunoassay method using lecanemab that selectively captures Lec-PF. The CSF level of Lec-PF, Aβ42, Aβ40, p-tau181, p-tau 217, total tau, and neurogranin were measured in Japanese participants (n = 163). The participants in this study consisted of 48 cognitively unimpaired Aβ-negative (CU-), 8 cognitively impaired diagnosed as suspected non-Alzheimer's disease pathophysiology, 9 cognitively unimpaired Aβ-positive (CU+), 34 Aβ-positive with mild cognitive impairment (MCI+), and 64 Aβ-positive with AD dementia (AD+). RESULTS The CSF Lec-PF levels significantly increased in the groups of MCI+ and AD+ compared with CU- group. Notably, CSF Lec-PF showed modest correlation with plaque-associated biomarkers in Aβ-positive participants and stronger correlation with neurodegeneration biomarkers, such as CSF total tau and neurogranin, suggesting that CSF Lec-PF levels proximally reflect neurodegeneration as well as the amount of senile amyloid plaques. INTERPRETATION This is the first report describing Aβ-PF species captured by lecanemab in human CSF and supporting that Lec-PF is correlated with neurodegeneration in AD and may explain the mechanism of the clinical effect of lecanemab. ANN NEUROL 2025;97:993-1006.
Collapse
Affiliation(s)
| | - Kazuyoshi Shuta
- Deep Human Biology Learning (DHBL)Eisai Co., LtdTsukubaJapan
| | - Hidetomo Murakami
- Department of Neurology, School of MedicineShowa UniversityTokyoJapan
| | - Yukiko Mori
- Department of Neurology, School of MedicineShowa UniversityTokyoJapan
| | - Junji Komatsu
- Department of NeurologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | | | - Steven Hersch
- Deep Human Biology Learning (DHBL)Eisai Inc.NutleyNJUSA
| | - Kanta Horie
- Deep Human Biology Learning (DHBL)Eisai Inc.NutleyNJUSA
| | - Kenjiro Ono
- Department of NeurologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
2
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
3
|
Lehmann S, Gabelle A, Duchiron M, Busto G, Morchikh M, Delaby C, Hirtz C, Mondesert E, Cristol JP, Barnier-Figue G, Perrein F, Turpinat C, Jurici S, Bennys K. The ratio of plasma pTau217 to Aβ42 outperforms individual measurements in detecting brain amyloidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.07.24318640. [PMID: 39830279 PMCID: PMC11741441 DOI: 10.1101/2024.12.07.24318640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
IMPORTANCE Early detection of brain amyloidosis (Aβ+) is pivotal for diagnosing Alzheimer's disease (AD) and optimizing patient management, especially in light of emerging treatments. While plasma biomarkers are promising, their combined diagnostic value through specific ratios remains underexplored. OBJECTIVE To evaluate the diagnostic accuracy of plasma pTau isoform (pTau181 and pTau217) to Aβ42 ratios in detecting Aβ+ status. DESIGN SETTING AND PARTICIPANTS This study included 423 participants from the multicenter prospective ALZAN cohort, recruited for cognitive complaints. Aβ+ status was determined using cerebrospinal fluid (CSF) biomarkers. Validation of the key findings was performed in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, where Aβ+ status was determined using PET imaging. EXPOSURES Plasma biomarkers (pTau181, pTau217, Aβ40, Aβ42) were measured using immunoassays and mass spectrometry, with specific ratios calculated. In the ALZAN cohort, the impact of confounding factors such as age, renal function, ApoE4 status, body mass index, and the delay between blood collection and processing was also evaluated to assess their influence on biomarker concentrations and diagnostic performance. MAIN OUTCOMES AND MEASURES The primary outcome was the diagnostic performance of plasma biomarkers and their ratios for detecting Aβ+ status. Secondary outcomes included the proportion of patients classified as low, intermediate, or high risk for Aβ+ using a two-cutoff approach. RESULTS The pTau181/Aβ42 ratio matched the diagnostic performance of pTau217 with AUC of 0.911 (0.880-0.936). The pTau217/Aβ42 ratio demonstrated the highest diagnostic accuracy in the ALZAN cohort, with an AUC of 0.927 (0.898-0.950), outperforming individual biomarkers. Both ratios effectively mitigated confounding factors, such as variations in renal function, and were particularly excellent in identifying Aβ+ status in individuals with early cognitive decline. Validation in the ADNI cohort confirmed these findings, with consistent performance across different measurement methods. The two-cutoff workflow using pTau217/Aβ42 reduced the intermediate-risk zone from 16% to 8%, enhancing stratification for clinical decision-making. CONCLUSIONS AND RELEVANCE The pTau217/Aβ42 ratio offers superior diagnostic accuracy for detecting Aβ+ compared to individual biomarkers and reduces diagnostic uncertainty. These findings highlight the clinical utility of plasma biomarker ratios for early AD detection, paving the way for broader implementation in clinical and research settings.
Collapse
|
4
|
Johansson L, Sandberg A, Nyström S, Hammarström P, Hallbeck M. Amyloid beta 1-40 and 1-42 fibril ratios and maturation level cause conformational differences with minimal impact on autophagy and cytotoxicity. J Neurochem 2024; 168:3308-3322. [PMID: 39133499 DOI: 10.1111/jnc.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
The amyloid β (Aβ) peptide has a central role in Alzheimer's disease (AD) pathology. The peptide length can vary between 37 and 49 amino acids, with Aβ1-42 being considered the most disease-related length. However, Aβ1-40 is also found in Aβ plaques and has shown to form intertwined fibrils with Aβ1-42. The peptides have previously also shown to form different fibril conformations, proposed to be related to disease phenotype. To conduct more representative in vitro experiments, it is vital to uncover the impact of different fibril conformations on neurons. Hence, we fibrillized different Aβ1-40:42 ratios in concentrations of 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 for either 24 h (early fibrils) or 7 days (aged fibrils). These were then characterized based on fibril width, LCO-staining and antibody-staining. We further challenged differentiated neuronal-like SH-SY5Y human cells with the different fibrils and measured Aβ content, cytotoxicity and autophagy function at three different time-points: 3, 24, and 72 h. Our results revealed that both Aβ1-40:42 ratio and fibril maturation affect conformation of fibrils. We further show the impact of these conformation changes on the affinity to commonly used Aβ antibodies, primarily affecting Aβ1-40 rich aggregates. In addition, we demonstrate uptake of the aggregates by neuronally differentiated human cells, where aggregates with higher Aβ1-42 ratios generally caused higher cellular levels of Aβ. These differences in Aβ abundance did not cause changes in cytotoxicity nor in autophagy activation. Our results show the importance to consider conformational differences of Aβ fibrils, as this can have fundamental impact on Aβ antibody detection. Overall, these insights underline the need for further exploration of the impact of conformationally different fibrils and the need to reliably produce disease relevant Aβ aggregates.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Alexander Sandberg
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Niemeyer CS, Traina-Dorge V, Doyle-Meyers L, Das A, Looper J, Mescher T, Feia B, Medina E, Nagel MA, Mahalingam R, Bubak AN. Simian varicella virus infection and reactivation in rhesus macaques trigger cytokine and Aβ40/42 alterations in serum and cerebrospinal fluid. J Neurovirol 2024; 30:86-99. [PMID: 38453879 DOI: 10.1007/s13365-024-01196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aβ42/Aβ40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aβ42/Aβ40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aβ42/Aβ40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.
Collapse
Affiliation(s)
- Christy S Niemeyer
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Jayme Looper
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Teresa Mescher
- Department of Psychiatry Behavioral Health and Wellness Program, University of Colorado School of Medicine, Aurora, Co, 80045, USA
| | - Brittany Feia
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Eva Medina
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Co, 80045, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Mail Stop B182, Aurora, Co, 80045, USA.
| |
Collapse
|
6
|
Howard E, Moody JN, Prieto S, Hayes JP. Higher Cerebrospinal Fluid Levels of Amyloid-β40 Following Traumatic Brain Injury Relate to Confrontation Naming Performance. J Alzheimers Dis 2024; 100:539-550. [PMID: 38943392 DOI: 10.3233/jad-240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Background Traumatic brain injury (TBI) may confer risk for Alzheimer's disease (AD) through amyloid-β (Aβ) overproduction. However, the relationship between TBI and Aβ levels in cerebrospinal fluid (CSF) remains unclear. Objective To explore whether Aβ overproduction is implicated in the relationship between TBI and AD, we compared CSF levels of Aβ in individuals with a TBI history versus controls (CTRLs) and related CSF Aβ levels to cognitive markers associated with preclinical AD. Methods Participants were 112 non-impaired Veterans (TBI = 56, CTRL = 56) from the Alzheimer's Disease Neuroimaging Initiative-Department of Defense database with available cognitive data (Boston Naming Test [BNT], Rey Auditory Verbal Learning Test [AVLT]) and CSF measures of Aβ42, Aβ40, and Aβ38. Mediation models explored relationships between TBI history and BNT scores with Aβ peptides as mediators. Results The TBI group had higher CSF Aβ40 (t = -2.43, p = 0.017) and Aβ38 (t = -2.10, p = 0.038) levels than the CTRL group, but groups did not differ in CSF Aβ42 levels or Aβ42/Aβ40 ratios (p > 0.05). Both Aβ peptides negatively correlated with BNT (Aβ40: rho = -0.20, p = 0.032; Aβ38: rho = -0.19, p = 0.048) but not AVLT (p > 0.05). Aβ40 had a significant indirect effect on the relationship between TBI and BNT performance (β= -0.16, 95% CI [-0.393, -0.004], PM = 0.54). Conclusions TBI may increase AD risk and cognitive vulnerability through Aβ overproduction. Biomarker models incorporating multiple Aβ peptides may help identify AD risk among those with TBI.
Collapse
Affiliation(s)
- Erica Howard
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Jena N Moody
- Psychology Department, The Ohio State University, Columbus, OH, USA
| | - Sarah Prieto
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Niemeyer CS, Traina-Dorge V, Doyle-Meyers L, Das A, Looper J, Mescher T, Feia B, Medina E, Nagel MA, Mahalingam R, Bubak AN. Simian Varicella Virus Infection and Reactivation in Rhesus Macaques Trigger Cytokine and Aβ40/42 Alterations in Serum and Cerebrospinal Fluid. RESEARCH SQUARE 2023:rs.3.rs-3367215. [PMID: 37886544 PMCID: PMC10602180 DOI: 10.21203/rs.3.rs-3367215/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aβ42/Aβ40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aβ42/Aβ40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aβ42/Aβ40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.
Collapse
Affiliation(s)
| | | | | | | | - Jayme Looper
- Louisiana State University School of Veterinary Medicine
| | - Teresa Mescher
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Brittany Feia
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Eva Medina
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Maria A Nagel
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Ravi Mahalingam
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| | - Andrew N Bubak
- University of Colorado School of Medicine: University of Colorado Anschutz Medical Campus School of Medicine
| |
Collapse
|
8
|
Motta C, Di Donna MG, Bonomi CG, Assogna M, Chiaravalloti A, Mercuri NB, Koch G, Martorana A. Different associations between amyloid-βeta 42, amyloid-βeta 40, and amyloid-βeta 42/40 with soluble phosphorylated-tau and disease burden in Alzheimer's disease: a cerebrospinal fluid and fluorodeoxyglucose-positron emission tomography study. Alzheimers Res Ther 2023; 15:144. [PMID: 37649105 PMCID: PMC10466826 DOI: 10.1186/s13195-023-01291-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Despite the high sensitivity of cerebrospinal fluid (CSF) amyloid beta (Aβ)42 to detect amyloid pathology, the Aβ42/Aβ40 ratio (amyR) better estimates amyloid load, with higher specificity for Alzheimer's disease (AD). However, whether Aβ42 and amyR have different meanings and whether Aβ40 represents more than an Aβ42-corrective factor remain to be clarified. Our study aimed to compare the ability of Aβ42 and amyR to detect AD pathology in terms of p-tau/Aβ42 ratio and brain glucose metabolic patterns using fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS CSF biomarkers were analyzed with EUROIMMUN ELISA. We included 163 patients showing pathological CSF Aβ42 and normal p-tau (A + T - = 98) or pathological p-tau levels (A + T + = 65) and 36 control subjects (A - T -). A + T - patients were further stratified into those with normal (CSFAβ42 + /amyR - = 46) and pathological amyR (CSFAβ42 + /amyR + = 52). We used two distinct cut-offs to determine pathological values of p-tau/Aβ42: (1) ≥ 0.086 and (2) ≥ 0.122. FDG-PET patterns were evaluated in a subsample of patients (n = 46) and compared to 24 controls. RESULTS CSF Aβ40 levels were the lowest in A - T - and in CSFAβ42 + /amyR - , higher in CSFAβ42 + /amyR + and highest in A + T + (F = 50.75; p < 0.001), resembling CSF levels of p-tau (F = 192; p < 0.001). We found a positive association between Aβ40 and p-tau in A - T - (β = 0.58; p < 0.001), CSFAβ42 + /amyR - (β = 0.47; p < 0.001), and CSFAβ42 + /amyR + patients (β = 0.48; p < 0.001) but not in A + T + . Investigating biomarker changes as a function of amyR, we observed a weak variation in CSF p-tau (+ 2 z-scores) and Aβ40 (+ 0.8 z-scores) in the normal amyR range, becoming steeper over the pathological threshold of amyR (p-tau: + 5 z-scores, Aβ40: + 4.5 z-score). CSFAβ42 + /amyR + patients showed a significantly higher probability of having pathological p-tau/Aβ42 than CSFAβ42 + /amyR - (cut-off ≥ 0.086: OR 23.3; cut-off ≥ 0.122: OR 8.8), which however still showed pathological values of p-tau/Aβ42 in some cases (cut-off ≥ 0.086: 35.7%; cut-off ≥ 0.122: 17.3%) unlike A - T - . Accordingly, we found reduced FDG metabolism in the temporoparietal regions of CSFAβ42 + /amyR - compared to controls, and further reduction in frontal areas in CSFAβ42 + /amyR + , like in A + T + . CONCLUSIONS Pathological p-tau/Aβ42 and FDG hypometabolism typical of AD can be found in patients with decreased CSF Aβ42 levels alone. AmyR positivity, associated with higher Aβ40 levels, is accompanied by higher CSF p-tau and widespread FDG hypometabolism.
Collapse
Affiliation(s)
- Caterina Motta
- UOSD Centro Demenze, University of Rome "Tor Vergata", Rome, Italy.
| | | | | | - Martina Assogna
- UOSD Centro Demenze, University of Rome "Tor Vergata", Rome, Italy
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | | | - Giacomo Koch
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
9
|
Toniolo S, Di Lorenzo F, Bernardini S, Mercuri NB, Sancesario GM. Blood-Brain Barrier Dysfunction and Aβ42/40 Ratio Dose-Dependent Modulation with the ApoE Genotype within the ATN Framework. Int J Mol Sci 2023; 24:12151. [PMID: 37569528 PMCID: PMC10418506 DOI: 10.3390/ijms241512151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023] Open
Abstract
The definition of Alzheimer's disease (AD) now considers the presence of the markers of amyloid (A), tau deposition (T), and neurodegeneration (N) essential for diagnosis. AD patients have been reported to have increased blood-brain barrier (BBB) dysfunction, but that has not been tested within the ATN framework so far. As the field is moving towards the use of blood-based biomarkers, the relationship between BBB disruption and AD-specific biomarkers requires considerable attention. Moreover, other factors have been previously implicated in modulating BBB permeability, including age, gender, and ApoE status. A total of 172 cognitively impaired individuals underwent cerebrospinal fluid (CSF) analysis for AD biomarkers, and data on BBB dysfunction, demographics, and ApoE status were collected. Our data showed that there was no difference in BBB dysfunction across different ATN subtypes, and that BBB damage was not correlated with cognitive impairment. However, patients with BBB disruption, if measured with a high Qalb, had low Aβ40 levels. ApoE status did not affect BBB function but had a dose-dependent effect on the Aβ42/40 ratio. These results might highlight the importance of understanding dynamic changes across the BBB in future studies in patients with AD.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3AZ, UK
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Francesco Di Lorenzo
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Non-Invasive Brain Simulation Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| | - Sergio Bernardini
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Giulia Maria Sancesario
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Biobank Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
10
|
Garcia Castro J, Méndez Del Sol H, Rodríguez Fraga O, Hernández Barral M, Serrano López S, Frank García A, Martín Montes Á. CSF Aβ40 Levels Do Not Correlate with the Clinical Manifestations of Alzheimer's Disease. NEURODEGENER DIS 2023; 22:151-158. [PMID: 37231965 DOI: 10.1159/000530907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) biomarker quantification provides physicians with a reliable diagnosis of Alzheimer's disease (AD). However, the relationship between their concentration and disease course has not been clearly elucidated. This work aimed to investigate the clinical and prognostic significance of Aβ40 CSF levels. METHODS A retrospective cohort of 76 patients diagnosed with AD using a decreased Aβ42/Aβ40 ratio was subclassified into hyposecretors (Aβ40 <7,755 pg/mL), normosecretors (Aβ40 7,755-16,715 pg/mL), and hypersecretors (Aβ40 >16,715 pg/mL). Potential differences in AD phenotype, Montreal Cognitive Assessment (MoCA) scores, and Global Deterioration Scale (GDS) stages were assessed. Correlation tests for biomarker concentrations were also performed. RESULTS Participants were classified as hyposecretors (n = 22, median Aβ40 5,870.500 pg/mL, interquartile range [IQR] 1,431), normosecretors (n = 47, median Aβ40 10,817 pg/mL, IQR 3,622), and hypersecretors (n = 7, 19,767 pg/mL, IQR 3,088). The distribution of positive phosphorylated Tau (p-Tau) varied significantly between subgroups and was more common in the normo- and hypersecretor categories (p = 0.003). Aβ40 and p-Tau concentrations correlated positively (ρ = 0.605, p < 0.001). No significant differences were found among subgroups regarding age, initial MoCA score, initial GDS stage, progression to the dementia stage, or changes in the MoCA score. CONCLUSION In this study, we found no significant differences in clinical symptoms or disease progression in AD patients according to their CSF Aβ40 concentration. Aβ40 was positively correlated with p-Tau and total Tau concentrations, supporting their potential interaction in AD pathophysiology.
Collapse
Affiliation(s)
- Jesús Garcia Castro
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain,
| | | | | | - María Hernández Barral
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Soledad Serrano López
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| | - Ana Frank García
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel Martín Montes
- Department of Neurology, Hospital Universitario La Paz, Hospital La Paz Institute for Health Research - IdiPAZ, Madrid, Spain
| |
Collapse
|
11
|
Runge K, Balla A, Fiebich BL, Maier SJ, von Zedtwitz K, Nickel K, Dersch R, Domschke K, Tebartz van Elst L, Endres D. Neurodegeneration Markers in the Cerebrospinal Fluid of 100 Patients with Schizophrenia Spectrum Disorder. Schizophr Bull 2023; 49:464-473. [PMID: 36200879 PMCID: PMC10016411 DOI: 10.1093/schbul/sbac135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Schizophrenia spectrum disorders (SSD) can be associated with neurodegenerative processes causing disruption of neuronal, synaptic, or axonal integrity. Some previous studies have reported alterations of neurodegenerative markers (such as amyloid beta [Aβ], tau, or neurofilaments) in patients with SSD. However, the current state of research remains inconclusive. Therefore, the rationale of this study was to investigate established neurodegenerative markers in the cerebrospinal fluid (CSF) of a large group of patients with SSD. STUDY DESIGN Measurements of Aβ1-40, Aß1-42, phospho- and total-tau in addition to neurofilament light (NFL), medium (NFM), and heavy (NFH) chains were performed in the CSF of 100 patients with SSD (60 F, 40 M; age 33.7 ± 12.0) and 39 controls with idiopathic intracranial hypertension (33 F, 6 M; age 34.6 ± 12.0) using enzyme-linked immunoassays. STUDY RESULTS The NFM levels were significantly increased in SSD patients (P = .009), whereas phospho-tau levels were lower in comparison to the control group (P = .018). No other significant differences in total-tau, beta-amyloid-quotient (Aβ1-42/Aβ1-40), NFL, and NFH were identified. CONCLUSIONS The findings argue against a general tauopathy or amyloid pathology in patients with SSD. However, high levels of NFM, which has been linked to regulatory functions in dopaminergic neurotransmission, were associated with SSD. Therefore, NFM could be a promising candidate for further research on SSD.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Agnes Balla
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina von Zedtwitz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Zhao YL, Ou YN, Ma YH, Huang YY, Bi YL, Tan L, Yu JT. Association between Life’s Simple 7 and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in cognitively intact adults: the CABLE study. Alzheimers Res Ther 2022; 14:74. [PMID: 35619174 PMCID: PMC9134665 DOI: 10.1186/s13195-022-01019-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Introduction
This study sought to explore the association between Life’s Simple 7 (LS7) and cerebrospinal fluid (CSF) Alzheimer’s disease (AD) pathological biomarkers in the cognitively normal northern Chinese population.
Methods
From the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) study, 1106 cognitively normal participants were enrolled. The mean age was 62.34 years, and 39.6% were female. LS7 scores were summed with each metric assigned 0, 1, or 2 scores. The multiple linear regression models were used to investigate the association between LS7 scores and CSF AD biomarkers.
Results
We found that LS7 scores were significantly associated with CSF AD pathologies, including Aβ42/40 (β = 0.034, P = .041), p-tau181 (β = − 0.043, P = .006), and t-tau (β = − 0.044, P = .003). In subscales, the biological metrics (blood pressure, cholesterol, glucose) were significantly related to CSF tau-related biomarkers. These associations were observed in the APOE ε4 allele non-carriers, yet not in carriers. The relationship of behavior metrics was found in the middle age and males.
Conclusion
Improving LS7 scores might do a favor to alleviate the pathology of AD in the preclinical stage, especially among the APOE ε4 allele non-carriers.
Collapse
|
13
|
Seto M, Weiner RL, Dumitrescu L, Mahoney ER, Hansen SL, Janve V, Khan OA, Liu D, Wang Y, Menon V, De Jager PL, Schneider JA, Bennett DA, Gifford KA, Jefferson AL, Hohman TJ. RNASE6 is a novel modifier of APOE-ε4 effects on cognition. Neurobiol Aging 2022; 118:66-76. [PMID: 35896049 PMCID: PMC9721357 DOI: 10.1016/j.neurobiolaging.2022.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer's disease (AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain cognitively normal throughout life, suggesting that neuroprotective factors may be present in these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition. Expression of RNASE6 interacted with APOE-ε4 status (p = 4.35 × 10-8) whereby higher RNASE6 expression was associated with worse memory at baseline among APOE-ε4 carriers. This interaction was replicated using RNAseq data from the prefrontal cortex in an independent dataset (N = 535; p = 0.002), suggesting the peripheral effect of RNASE6 is also present in brain tissue. RNASE6 encodes an antimicrobial peptide involved in innate immune response and has been previously observed in a gene co-expression network module with other AD-related inflammatory genes, including TREM2 and MS4A. Together, these data implicate neuroinflammation in cognitive decline, and suggest that innate immune signaling may be detectable in blood and confer differential susceptibility to AD depending on APOE-ε4.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rebecca L Weiner
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shania L Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vaibhav Janve
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Omair A Khan
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dandan Liu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, Souza LCD, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer’s disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022. [DOI: 10.1590/1980-5764-dn-2022-s102en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
ABSTRACT This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer’s disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil
| | | | | | | | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Brasil; Universidade de São Paulo, Brasil
| | | | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Brasil; Universidade Federal de Pernambuco, Brasil; Instituto de Medicina Integral Prof. Fernando Figueira, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, de Souza LC, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer's disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022; 16:25-39. [PMID: 36533157 PMCID: PMC9745995 DOI: 10.1590/1980-5764-dn-2022-s102pt] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer's disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Escola de Medicina, Serviço de Neurologia, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Instituto do Cérebro do Rio Grande do Sul, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Programa de Pós-Graduação em Gerontologia Biomédica, Porto Alegre RS, Brasil
| | | | - Márcia Radanovic
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
| | - Orestes Vicente Forlenza
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, São Paulo SP, Brasil
| | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Departamento de Fonoaudiologia, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Jerusa Smid
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Recife PE, Brasil
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife PE, Brasil
| | | | - Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | - Francisco Assis Carvalho Vale
- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Medicina, São Carlos SP, Brasil
| | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | | | - Márcia Lorena Fagundes Chaves
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre RS, Brasil
| | - Sonia Maria Dozzi Brucki
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Benito Pereira Damasceno
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| |
Collapse
|
16
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
17
|
Mankhong S, Kim S, Lee S, Kwak HB, Park DH, Joa KL, Kang JH. Development of Alzheimer’s Disease Biomarkers: From CSF- to Blood-Based Biomarkers. Biomedicines 2022; 10:biomedicines10040850. [PMID: 35453600 PMCID: PMC9025524 DOI: 10.3390/biomedicines10040850] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
In the 115 years since the discovery of Alzheimer’s disease (AD), our knowledge, diagnosis, and therapeutics have significantly improved. Biomarkers are the primary tools for clinical research, diagnostics, and therapeutic monitoring in clinical trials. They provide much insightful information, and while they are not clinically used routinely, they help us to understand the mechanisms of this disease. This review charts the journey of AD biomarker discovery and development from cerebrospinal fluid (CSF) amyloid-beta 1-42 (Aβ42), total tau (T-tau), and phosphorylated tau (p-tau) biomarkers and imaging technologies to the next generation of biomarkers. We also discuss advanced high-sensitivity assay platforms for CSF Aβ42, T-tau, p-tau, and blood analysis. The recently proposed Aβ deposition/tau biomarker/neurodegeneration or neuronal injury (ATN) scheme might facilitate the definition of the biological status underpinning AD and offer a common language among researchers across biochemical biomarkers and imaging. Moreover, we highlight blood-based biomarkers for AD that offer a scalable alternative to CSF biomarkers through cost-saving and reduced invasiveness, and may provide an understanding of disease initiation and development. We discuss different groups of blood-based biomarker candidates, their advantages and limitations, and paths forward, from identification and analysis to clinical validation. The development of valid blood-based biomarkers may facilitate the implementation of future AD therapeutics and diagnostics.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.)
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (H.-B.K.); (D.-H.P.)
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.)
| | - Seongju Lee
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (H.-B.K.); (D.-H.P.)
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (H.-B.K.); (D.-H.P.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (H.-B.K.); (D.-H.P.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.)
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Korea; (S.L.); (H.-B.K.); (D.-H.P.)
- Correspondence: ; Tel.: +82-32-860-9872
| |
Collapse
|
18
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
19
|
Age, sex and APOE-ε4 modify the balance between soluble and fibrillar β-amyloid in non-demented individuals: topographical patterns across two independent cohorts. Mol Psychiatry 2022; 27:2010-2018. [PMID: 35236958 PMCID: PMC9126807 DOI: 10.1038/s41380-022-01436-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Amyloid (Aβ) pathology is the earliest detectable pathophysiological event along the Alzheimer's continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct Aβ pools, reflecting the clearance of soluble Aβ as opposed to the presence of Aβ fibrils in the brain. An open question is whether risk factors known to increase Alzheimer's' disease (AD) prevalence may promote an imbalance between soluble and deposited Aβ. Unveiling such interactions shall aid our understanding of the biological pathways underlying Aβ deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-ε4 and female sex, on the association between CSF and PET Aβ, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher Aβ deposition for any given level of CSF Aβ42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-ε4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-ε4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral Aβ aggregation, with APOE-ε4 possibly facilitating a co-localization between Aβ and tau along the disease continuum.
Collapse
|
20
|
Sacchi L, Carandini T, Fumagalli GG, Pietroboni AM, Contarino VE, Siggillino S, Arcaro M, Fenoglio C, Zito F, Marotta G, Castellani M, Triulzi F, Galimberti D, Scarpini E, Arighi A. Unravelling the Association Between Amyloid-PET and Cerebrospinal Fluid Biomarkers in the Alzheimer's Disease Spectrum: Who Really Deserves an A+? J Alzheimers Dis 2021; 85:1009-1020. [PMID: 34897084 DOI: 10.3233/jad-210593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Association between cerebrospinal fluid (CSF)-amyloid-β (Aβ)42 and amyloid-PET measures is inconstant across the Alzheimer's disease (AD) spectrum. However, they are considered interchangeable, along with Aβ 42/40 ratio, for defining 'Alzheimer's Disease pathologic change' (A+). OBJECTIVE Herein, we further characterized the association between amyloid-PET and CSF biomarkers and tested their agreement in a cohort of AD spectrum patients. METHODS We include ed 23 patients who underwent amyloid-PET, MRI, and CSF analysis showing reduced levels of Aβ 42 within a 365-days interval. Thresholds used for dichotomization were: Aβ 42 < 640 pg/mL (Aβ 42+); pTau > 61 pg/mL (pTau+); and Aβ 42/40 < 0.069 (ADratio+). Amyloid-PET scans were visually assessed and processed by four pipelines (SPMCL, SPMAAL, FSGM, FSWC). RESULTS Different pipelines gave highly inter-correlated standardized uptake value ratios (SUVRs) (rho = 0.93-0.99). The most significant findings were: pTau positive correlation with SPMCL SUVR (rho = 0.56, p = 0.0063) and Aβ 42/40 negative correlation with SPMCL and SPMAAL SUVRs (rho = -0.56, p = 0.0058; rho = -0.52, p = 0.0117 respectively). No correlations between CSF-Aβ 42 and global SUVRs were observed. In subregion analysis, both pTau and Aβ 42/40 values significantly correlated with cingulate SUVRs from any pipeline (R2 = 0.55-0.59, p < 0.0083), with the strongest associations observed for the posterior/isthmus cingulate areas. However, only associations observed for Aβ 42/40 ratio were still significant in linear regression models. Moreover, combining pTau with Aβ 42 or using Aβ 42/40, instead of Aβ 42 alone, increased concordance with amyloid-PET status from 74% to 91% based on visual reads and from 78% to 96% based on Centiloids. CONCLUSION We confirmed that, in the AD spectrum, amyloid-PET measures show a stronger association and a better agreement with CSF-Aβ 42/40 and secondarily pTau rather than Aβ 42 levels.
Collapse
Affiliation(s)
- Luca Sacchi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Anna Margherita Pietroboni
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Zito
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Han HF, Yen HC, Wu HC, Tan HY, Xu W, Jiang HS, Tsai PJ, Qian K, Wu YC, Chen CC. Ultrasensitive Detection of Alzheimer's Amyloids on a Plasmonic-Gold Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57036-57042. [PMID: 34843217 DOI: 10.1021/acsami.1c19157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
More than 55 million people live with dementia worldwide in 2021, and there are nearly 10 million new cases every year. Alzheimer's disease (AD) is the most common cause of dementia. Despite urgent need, early detection of AD and long-term monitoring of AD progression have been challenging. This is due to the limited availability of brain imaging facilities and the highly invasive procedure with the cerebrospinal fluid assay to assess the level of AD biomarkers, such as beta-amyloid (Aβ). Reliable measurements of AD biomarkers in blood samples are still difficult because of their very low abundance. Here, we develop a rapid, specific, and ultrasensitive immunoassay using plasmonic-gold nanoisland (pGOLD) chips with near-infrared fluorescence-enhanced detection for Aβ1-40 and Aβ1-42. We show step-by-step processes and results during the platform establishment, including antibody specificity and sensitivity tests, antibody pair examination, condition optimization, and procedure refinement. Finally, we demonstrate the platform performance with detection sensitivity at the subpicogram per milliliter level. This platform, therefore, has a great application potential for early detection of AD using blood samples.
Collapse
Affiliation(s)
- Hsiao-Fen Han
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hung-Chi Yen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, and College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Hsin-Yuan Tan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, and College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Wei Xu
- School of Biomedical Engineering, Shanghai Chest Hospital and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ping-Jui Tsai
- Department of Orthopedics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan City 333, Taiwan
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Chest Hospital and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
22
|
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, Pastor P. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol 2021; 28:1142-1152. [PMID: 33236496 DOI: 10.1111/ene.14658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Recently, some emerging cerebrospinal fluid (CSF) markers have been proposed as diagnostic tools for Alzheimer disease (AD) that can have an effect on disease progression. We analyze the accuracy of these CSF markers for diagnosis of AD in reference to brain amyloid positron emission tomography (PET). We also investigated whether they help in differentiating AD from other dementias and examined their influence in tracing the progression to dementia. METHODS Amyloid-β (Aβ) 1-42, total tau (t-tau), phosphorylated tau, Aβ40 , Aβ38 , beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), neurogranin (ng), phosphorylated neurofilament heavy-chain, and α-synuclein (α-syn) CSF levels were analyzed in 319 subjects, among whom 57 also underwent an amyloid PET scan. We also analyzed longitudinal clinical data from 239 subjects. RESULTS Emerging CSF markers, especially ng/BACE-1 ratio (area under the curve = 0.77) and their combinations with core AD CSF markers (all AUCs >0.85), showed high accuracy to discriminate amyloid PET positivity. Subjects with AD had higher CSF BACE-1, ng, and α-syn levels than those with non-AD dementia. CSF t-tau/α-syn ratio was higher in subjects with dementia with Lewy bodies than in those with frontotemporal dementia. Most emerging/core AD ratios predicted a faster conversion from mild cognitive impairment (MCI) stage to AD and appeared to be helpful when core AD CSF markers were discordant. In addition, the rate of cognitive decline was associated with all CSF core AD markers, several emerging/core AD two-marker ratios, and CSF ng levels. CONCLUSIONS These results suggest that emerging biomarkers in conjunction with core AD markers improve diagnosis of AD, are associated with the conversion from MCI into AD, and predict a faster progression of dementia.
Collapse
Affiliation(s)
- Ignacio Álvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Monica Diez-Fairen
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Jose Manuel González
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Montse Ysamat
- Centre de Tecnologia Diagnòstica, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Juan Pablo Tartari
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Maria Carcel
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Britta Brix
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Philipp Arendt
- Institute of Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
- Fundació per a la Recerca Biomèdica i Social Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|
23
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
24
|
Massa F, Farotti L, Eusebi P, Capello E, Dottorini ME, Tranfaglia C, Bauckneht M, Morbelli S, Nobili F, Parnetti L. Reciprocal Incremental Value of 18F-FDG-PET and Cerebrospinal Fluid Biomarkers in Mild Cognitive Impairment Patients Suspected for Alzheimer's Disease and Inconclusive First Biomarker. J Alzheimers Dis 2020; 72:1193-1207. [PMID: 31683477 DOI: 10.3233/jad-190539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD) diagnosis, both cerebrospinal fluid (CSF) biomarkers and FDG-PET sometimes give inconclusive results. OBJECTIVE To evaluate the incremental diagnostic value of FDG-PET over CSF biomarkers, and vice versa, in patients with mild cognitive impairment (MCI) and suspected AD, in which the first biomarker resulted inconclusive. METHODS A consecutive series of MCI patients was retrospectively selected from two Memory Clinics where, as per clinical routine, either the first biomarker choice is FDG-PET and CSF biomarkers are only used in patients with uninformative FDG-PET, or vice versa. We defined criteria of uncertainty in interpretation of FDG-PET and CSF biomarkers, according to current evidence. The final diagnosis was established according to clinical-neuropsychological follow-up of at least one year (mean 4.4±2.2). RESULTS When CSF was used as second biomarker after FDG-PET, 14 out of 36 (39%) received informative results. Among these 14 patients, 11 (79%) were correctly classified with respect to final diagnosis, thus with a relative incremental value of CSF over FDG-PET of 30.6%. When FDG-PET was used as second biomarker, 26 out of 39 (67%) received informative results. Among these 26 patients, 15 (58%) were correctly classified by FDG-PET with respect to final diagnosis, thus with a relative incremental value over CSF of 38.5%. CONCLUSION Our real-world data confirm the added values of FDG-PET (or CSF) in a diagnostic pathway where CSF (or FDG-PET) was used as first biomarkers in suspected AD. These findings should be replicated in larger studies with prospective enrolment according to a Phase III design.
Collapse
Affiliation(s)
- Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Lucia Farotti
- Center for Memory Disorders and Laboratory of Clinical Neurochemistry, Neurology Clinic, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy.,Health Planning Service, Department of Epidemiology, Regional Health Authority of Umbria, Perugia, Italy
| | | | - Massimo E Dottorini
- Nuclear Medicine Unit, "S. Maria della Misericordia" Hospital, Perugia, Italy
| | - Cristina Tranfaglia
- Nuclear Medicine Unit, "S. Maria della Misericordia" Hospital, Perugia, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Neurology Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucilla Parnetti
- Center for Memory Disorders and Laboratory of Clinical Neurochemistry, Neurology Clinic, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Carrera-Muñoz I, Triguero-Cueva L, Romero-Fábrega JC, Triviño-Ibáñez EM, Vilchez-Carrillo R, Carnero-Pardo C, Gómez-Río M. PET-Amyloid After Inconclusive Cerebrospinal Fluid Biomarkers in Clinical Practice. Is it Necessary to Duplicate Procedures? Curr Alzheimer Res 2020; 17:698-708. [PMID: 33167840 DOI: 10.2174/1567205017666201109092637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In the absence of a gold standard for in vivo Alzheimer disease (AD) diagnosis, AD biomarkers such as cerebrospinal fluid biomarkers (CSF-B) and PET-Amyloid are considered diagnostically useful in clinical practice guidelines and have consensual appropriate use criteria (AUC). However, little evidence has been published on their utilization in the clinical setting or on approaches to mismatched results. The objective of this work was to evaluate the use of AD biomarkers in clinical practice, focusing on the implementation of PET-Amyloid in cases of inconclusive CSF-B. METHODS This naturalistic, ambispective case series included patients fulfilling AUC for CSF-B and PET-Amyloid whose CSF-B results were non-diagnostic (target population), analyzing the diagnostic certainty, the treatment approach, and the relationship between CSF-B and PET-Amyloid results. RESULTS Out of 2373 eligible patients, AD biomarkers were studied in 417 (17.6%), most frequently due to cognitive impairment in under 65-year-olds, using CSF-B in 311 patients and PET-Amyloid in 150. CSF-B results were non-diagnostic for 44 patients (52.3% male; aged 60.9±6.6 years), who then underwent PET-Amyloid study, which was positive in 31. A 'k' coefficient of 0.108 was obtained between CSF-B and PET-amyloid (54.5% concordance). In multivariate regression analysis, Aβ42 was the only significant predictor (p= 0.018) of a positive PET-Amyloid result. In the target population, PETAmyloid increased diagnostic confidence by 53.7% (p <0.001) and modified the therapeutic approach in 36.4% of cases. CONCLUSION These findings support the duplication of AD biomarkers and demonstrate that the implementation of PET-Amyloid provides an early and certain diagnosis to guide appropriate treatment.
Collapse
Affiliation(s)
- Ismael Carrera-Muñoz
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Lucía Triguero-Cueva
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Juan C Romero-Fábrega
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Eva M Triviño-Ibáñez
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| | - Rosa Vilchez-Carrillo
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Cristóbal Carnero-Pardo
- Fidyan Neurocenter, Granada, Spain,IBS Granada Bio-Health Research Institute, Granada, Spain
| | - Manuel Gómez-Río
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain,Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| |
Collapse
|
26
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
27
|
Lehmann S, Dumurgier J, Ayrignac X, Marelli C, Alcolea D, Ormaechea JF, Thouvenot E, Delaby C, Hirtz C, Vialaret J, Ginestet N, Bouaziz-Amar E, Laplanche JL, Labauge P, Paquet C, Lleo A, Gabelle A. Cerebrospinal fluid A beta 1-40 peptides increase in Alzheimer's disease and are highly correlated with phospho-tau in control individuals. ALZHEIMERS RESEARCH & THERAPY 2020; 12:123. [PMID: 33008460 PMCID: PMC7532565 DOI: 10.1186/s13195-020-00696-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Amyloid pathology, which is one of the characteristics of Alzheimer's disease (AD), results from altered metabolism of the beta-amyloid (Aβ) peptide in terms of synthesis, clearance, or aggregation. A decrease in cerebrospinal fluid (CSF) level Aβ1-42 is evident in AD, and the CSF ratio Aβ42/Aβ40 has recently been identified as one of the most reliable diagnostic biomarkers of amyloid pathology. Variations in inter-individual levels of Aβ1-40 in the CSF have been observed in the past, but their origins remain unclear. In addition, the variation of Aβ40 in the context of AD studied in several studies has yielded conflicting results. METHODS Here, we analyzed the levels of Aβ1-40 using multicenter data obtained on 2466 samples from six different cohorts in which CSF was collected under standardized protocols, centrifugation, and storage conditions. Tau and p-tau (181) concentrations were measured using commercially available in vitro diagnostic immunoassays. Concentrations of CSF Aβ1-42 and Aβ1-40 were measured by ELISA, xMAP technology, chemiluminescence immunoassay (CLIA), and mass spectrometry. Statistical analyses were calculated for parametric and non-parametric comparisons, linear regression, correlation, and odds ratios. The statistical tests were adjusted for the effects of covariates (age, in particular). RESULTS Regardless of the analysis method used and the cohorts, a slight but significant age-independent increase in the levels of Aβ40 in CSF was observed in AD. We also found a strong positive correlation between the levels of Aβ1-40 and p-tau (181) in CSF, particularly in control patients. CONCLUSIONS These results indicate that an increase in the baseline level of amyloid peptides, which are associated with an increase in p-tau (181), may be a biological characteristic and possibly a risk factor for AD. Further studies will be needed to establish a causal link between increased baseline levels of Aβ40 and the development of the disease.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France.
| | - Julien Dumurgier
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Xavier Ayrignac
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Cecilia Marelli
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea Ormaechea
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eric Thouvenot
- CHU de Nîmes, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Constance Delaby
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Christophe Hirtz
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Jérôme Vialaret
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Nelly Ginestet
- Univ Montpellier, CHU Montpellier (LBPC-PPC), INSERM (IRMB, INM), Montpellier, France
| | - Elodie Bouaziz-Amar
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Jean-Louis Laplanche
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Pierre Labauge
- CHU de Montpellier, Département de Neurologie, INSERM, Univ Montpellier, Montpellier, France
| | - Claire Paquet
- Centre de Neurologie Cognitive et Service de Biochimie et de Biologie Moléculaire, Groupe Hospitalier Lariboisière Fernand-Widal, INSERMU942, Université Paris Diderot, Paris, France
| | - Alberto Lleo
- Sant Pau Memory Unit, Department of Neurology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Audrey Gabelle
- Univ Montpellier, INSERM, CHU Montpellier (CMRR), Montpellier, France
| | | |
Collapse
|
28
|
Somers C, Lewczuk P, Sieben A, Van Broeckhoven C, De Deyn PP, Kornhuber J, Martin JJ, Bjerke M, Engelborghs S. Validation of the Erlangen Score Algorithm for Differential Dementia Diagnosis in Autopsy-Confirmed Subjects. J Alzheimers Dis 2020; 68:1151-1159. [PMID: 30883344 PMCID: PMC6484252 DOI: 10.3233/jad-180563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Despite decades of research on the optimization of the diagnosis of Alzheimer’s disease (AD), its biomarker-based diagnosis is being hampered by the lack of comparability of raw biomarker data. In order to overcome this limitation, the Erlangen Score (ES), among other approaches, was set up as a diagnostic-relevant interpretation algorithm. Objective: To validate the ES algorithm in a cohort of neuropathologically confirmed cases with AD (n = 106) and non-AD dementia (n = 57). Methods: Cerebrospinal fluid (CSF) biomarker concentrations of Aβ1-42, T-tau, and P-tau181 were measured with commercially available single analyte ELISA kits. Based on these biomarkers, ES was calculated as previously reported. Results: This algorithm proved to categorize AD in different degrees of likelihood, ranging from neurochemically “normal”, “improbably having AD”, “possibly having AD”, to “probably having AD”, with a diagnostic accuracy of 74% using the neuropathology as a reference. Conclusion: The ability of the ES to overcome the high variability of raw CSF biomarker data may provide a useful diagnostic tool for comparing neurochemical diagnoses between different labs or methods used.
Collapse
Affiliation(s)
- Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Anne Sieben
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter Paul De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
29
|
Oudart JB, Djerada Z, Nonnonhou V, Badr S, Bertholon LA, Dammak A, Jaidi Y, Novella JL, Pallet N, Gillery P, Mahmoudi R. Incremental Value of CSF Biomarkers in Clinically Diagnosed AD and Non-AD Dementia. Front Neurol 2020; 11:560. [PMID: 32670183 PMCID: PMC7330115 DOI: 10.3389/fneur.2020.00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/18/2020] [Indexed: 11/22/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) biomarkers are used to diagnose Alzheimer disease (AD), especially in atypical clinical presentations. No consensus currently exists regarding cut-off values. This study aimed, firstly, to define optimal cut-off values for CSF biomarkers, and secondly, to investigate the most relevant diagnostic strategy for AD based on CSF biomarker combinations. Methods: A total of 380 patients were prospectively included: 140 with AD, 240 with various neurological diagnoses (non-AD). CSF biomarkers were measured using ELISA. Univariate and multivariate analyses were performed using random forest and logistic regression approaches. Results: Univariate receiver operating curve curves analysis of T-Tau, P-Tau181, Aβ42, Aβ40 concentrations, and Aβ42/Aβ40 ratio levels showed AD cut-off values of ≥355, ≥57, ≤706, ≥10,854, and ≤0.059 ng/L, respectively. Multivariate analysis using random forest and logistic regression found that the algorithm based on P-Tau181, Aβ42 concentrations and Aβ42/Aβ40 ratio yielded the best discrimination between AD and non-AD populations. The cross-validation technique of the final model showed a mean accuracy of 0.85 and a mean AUC of 0.89. Conclusion: This study confirms that the Aβ42/Aβ40 ratio was more useful than the Aβ40 concentration in discriminating AD from non-AD populations in daily practice. These results indicate that the Aβ42/Aβ40 ratio should be assessed in all cases, independently of Aβ42 concentrations.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,Laboratory of Biochemistry, Pharmacology and Toxicology, Reims University Hospital, Reims, France
| | - Zoubir Djerada
- Laboratory of Biochemistry, Pharmacology and Toxicology, Reims University Hospital, Reims, France.,Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, Reims, France
| | - Vignon Nonnonhou
- Champagne-Ardenne Resource and Research Memory Center (CMRR), Maison Blanche Hospital, Reims University Hospital, Reims, France.,Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France
| | - Sarah Badr
- Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France
| | - Laurie-Anne Bertholon
- Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France
| | - Anis Dammak
- Department of Psychiatry, Public Institution of Mental Health Marne, Châlons-en-Champagne Cedex, France
| | - Yacine Jaidi
- Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France
| | - Jean-Luc Novella
- Champagne-Ardenne Resource and Research Memory Center (CMRR), Maison Blanche Hospital, Reims University Hospital, Reims, France.,Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France.,Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| | - Nicolas Pallet
- Department of Biochemistry, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France.,Laboratory of Biochemistry, Pharmacology and Toxicology, Reims University Hospital, Reims, France
| | - Rachid Mahmoudi
- Champagne-Ardenne Resource and Research Memory Center (CMRR), Maison Blanche Hospital, Reims University Hospital, Reims, France.,Department of Internal Medicine and Geriatrics, Maison Blanche Hospital, Reims University Hospital, Reims, France.,Faculty of Medicine, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
30
|
Kaur G, Poljak A, Braidy N, Crawford JD, Lo J, Sachdev PS. Fluid Biomarkers and APOE Status of Early Onset Alzheimer's Disease Variants: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 75:827-843. [PMID: 32333592 DOI: 10.3233/jad-200052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Numerous studies have reported on cerebrospinal fluid (CSF) and blood biomarkers of Alzheimer's disease (AD); however, to date, none has compared biomarker patterns across the early-onset subtypes, i.e., early onset sporadic AD (EOsAD) and autosomal dominant AD (ADAD), qualitatively and quantitatively. OBJECTIVE To compare the fluid biomarker patterns in early-onset subtypes of AD; EOsAD and ADAD. METHODS Six scientific databases were searched for peer-reviewed research publications. The total number of individuals used in all the meta-analysis were 2,427, comprised of 1,337 patients and 1,090 controls. RESULTS In the subset of EOsAD cases without APP, PSEN1/PSEN2 mutations, CSF Aβ42 and tau levels were higher when compared to the EOsAD group as a whole. Prevalence of the APOEɛ4 allele was more elevated in EOsAD relative to controls, and not significantly elevated in ADAD cases. CONCLUSION Established CSF biomarkers confirmed quantitative differences between variants of EOAD. EOsAD is enriched with APOEɛ4, but the level is not higher than generally reported in late-onset AD. The results prompt further exploration of the etiopathogenesis of EOsAD, which accounts for ∼4-10% of all AD cases, but the reasons for the early onset remain poorly understood.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Lo
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
31
|
Ghadami SA, Chia S, Ruggeri FS, Meisl G, Bemporad F, Habchi J, Cascella R, Dobson CM, Vendruscolo M, Knowles TPJ, Chiti F. Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules 2020; 21:1112-1125. [PMID: 32011129 PMCID: PMC7997117 DOI: 10.1021/acs.biomac.9b01475] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Alzheimer’s
disease is associated with the deposition of
the amyloid-β peptide (Aβ) into extracellular senile plaques
in the brain. In vitro and in vivo observations have indicated that
transthyretin (TTR) acts as an Aβ scavenger in the brain, but
the mechanism has not been fully resolved. We have monitored the aggregation
process of Aβ40 by thioflavin T fluorescence, in
the presence or absence of different concentrations of preformed seed
aggregates of Aβ40, of wild-type tetrameric TTR (WT-TTR),
and of a variant engineered to be stable as a monomer (M-TTR). Both
WT-TTR and M-TTR were found to inhibit specific steps of the process
of Aβ40 fibril formation, which are primary and secondary
nucleations, without affecting the elongation of the resulting fibrils.
Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aβ40 oligomers formed in the aggregation reaction and inhibit
their conversion into the shortest fibrils able to elongate. Using
biophysical methods, TTR was found to change some aspects of its overall
structure following such interactions with Aβ40 oligomers,
as well as with oligomers of Aβ42, while maintaining
its overall topology. Hence, it is likely that the predominant mechanism
by which TTR exerts its protective role lies in the binding of TTR
to the Aβ oligomers and in inhibiting primary and secondary
nucleation processes, which limits both the toxicity of Aβ oligomers
and the ability of the fibrils to proliferate.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Sean Chia
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Simone Ruggeri
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Georg Meisl
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Johnny Habchi
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, U.K.,Department of Physics, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy
| |
Collapse
|
32
|
Familial Alzheimer's disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry 2020; 25:2919-2931. [PMID: 30980041 PMCID: PMC7577860 DOI: 10.1038/s41380-019-0410-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Familial Alzheimer's disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-β (Aβ) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aβ secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aβ42:40 ratio relative to controls, yet displayed varied signatures for Aβ43, Aβ38, and short Aβ fragments. We propose four qualitatively distinct mechanisms behind raised Aβ42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aβ mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD.
Collapse
|
33
|
Biscetti L, Salvadori N, Farotti L, Cataldi S, Eusebi P, Paciotti S, Parnetti L. The added value of Aβ42/Aβ40 in the CSF signature for routine diagnostics of Alzheimer's disease. Clin Chim Acta 2019; 494:71-73. [DOI: 10.1016/j.cca.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/09/2023]
|
34
|
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:34. [PMID: 31010420 PMCID: PMC6477717 DOI: 10.1186/s13195-019-0485-0] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebrospinal fluid (CSF) biochemical markers (biomarkers) Amyloidβ 42 (Aβ42), total Tau (T-tau) and Tau phosphorylated at threonine 181 (P-tau181) have proven diagnostic accuracy for mild cognitive impairment and dementia due to Alzheimer’s Disease (AD). In an effort to improve the accuracy of an AD diagnosis, it is important to be able to distinguish between AD and other types of dementia (non-AD). The concentration ratio of Aβ42 to Aβ40 (Aβ42/40 Ratio) has been suggested to be superior to the concentration of Aβ42 alone when identifying patients with AD. This article reviews the available evidence on the use of the CSF Aβ42/40 ratio in the diagnosis of AD. Based on the body of evidence presented herein, it is the conclusion of the current working group that the CSF Aβ42/40 ratio, rather than the absolute value of CSF Aβ42, should be used when analysing CSF AD biomarkers to improve the percentage of appropriately diagnosed patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sylvain Lehmann
- Center of Excellence for Neurodegenerative disorders (COEN) of Montpellier, Montpellier University, CHU Montpellier, INSERM, Montpellier, France
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland. .,Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
35
|
Spodzieja M, Rodziewicz-Motowidło S, Szymanska A. Hyphenated Mass Spectrometry Techniques in the Diagnosis of Amyloidosis. Curr Med Chem 2019; 26:104-120. [DOI: 10.2174/0929867324666171003113019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
Amyloidoses are a group of diseases caused by the extracellular deposition of proteins forming amyloid fibrils. The amyloidosis is classified according to the main protein or peptide that constitutes the amyloid fibrils. The most effective methods for the diagnosis of amyloidosis are based on mass spectrometry. Mass spectrometry enables confirmation of the identity of the protein precursor of amyloid fibrils in biological samples with very high sensitivity and specificity, which is crucial for proper amyloid typing. Due to the fact that biological samples are very complex, mass spectrometry is usually connected with techniques such as liquid chromatography or capillary electrophoresis, which enable the separation of proteins before MS analysis. Therefore mass spectrometry constitutes an important part of the so called “hyphenated techniques” combining, preferentially in-line, different analytical methods to provide comprehensive information about the studied problem. Hyphenated methods are very useful in the discovery of biomarkers in different types of amyloidosis. In systemic forms of amyloidosis, the analysis of aggregated proteins is usually performed based on the tissues obtained during a biopsy of an affected organ or a subcutaneous adipose tissue. In some cases, when the diagnostic biopsy is not possible due to the fact that amyloid fibrils are formed in organs like the brain (Alzheimer’s disease), the study of biomarkers presented in body fluids can be carried out. Currently, large-scale studies are performed to find and validate more effective biomarkers, which can be used in diagnostic procedures. We would like to present the methods connected with mass spectrometry which are used in the diagnosis of amyloidosis based on the analysis of proteins occurring in tissues, blood and cerebrospinal fluid.
Collapse
Affiliation(s)
- Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Aneta Szymanska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
36
|
Bousiges O, Blanc F. Diagnostic value of cerebro-spinal fluid biomarkers in dementia with lewy bodies. Clin Chim Acta 2019; 490:222-228. [DOI: 10.1016/j.cca.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
|
37
|
El Shatshat A, Pham AT, Rao PP. Interactions of polyunsaturated fatty acids with amyloid peptides Aβ40 and Aβ42. Arch Biochem Biophys 2019; 663:34-43. [DOI: 10.1016/j.abb.2018.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
38
|
Baiardi S, Abu-Rumeileh S, Rossi M, Zenesini C, Bartoletti-Stella A, Polischi B, Capellari S, Parchi P. Antemortem CSF A β42/A β40 ratio predicts Alzheimer's disease pathology better than A β42 in rapidly progressive dementias. Ann Clin Transl Neurol 2018; 6:263-273. [PMID: 30847359 PMCID: PMC6389744 DOI: 10.1002/acn3.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2 = 0.506, β = -0.713, P < 0.001) than with ln(Aβ42) (R 2 = 0.206, β = -0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 ± 0.028 vs. 0.643 ± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 ± 0.032 vs. 0.518 ± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Marcello Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | | | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna 40138 Italy
| |
Collapse
|
39
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
40
|
Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, Jack CR, Teunissen CE, Hampel H, Lleó A, Jessen F, Glodzik L, de Leon MJ, Fagan AM, Molinuevo JL, Jansen WJ, Winblad B, Shaw LM, Andreasson U, Otto M, Mollenhauer B, Wiltfang J, Turner MR, Zerr I, Handels R, Thompson AG, Johansson G, Ermann N, Trojanowski JQ, Karaca I, Wagner H, Oeckl P, van Waalwijk van Doorn L, Bjerke M, Kapogiannis D, Kuiperij HB, Farotti L, Li Y, Gordon BA, Epelbaum S, Vos SJB, Klijn CJM, Van Nostrand WE, Minguillon C, Schmitz M, Gallo C, Mato AL, Thibaut F, Lista S, Alcolea D, Zetterberg H, Blennow K, Kornhuber J, Riederer P, Gallo C, Kapogiannis D, Mato AL, Thibaut F. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 2018; 19:244-328. [PMID: 29076399 PMCID: PMC5916324 DOI: 10.1080/15622975.2017.1375556] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Sid E. O’Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte E. Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Mony J. de Leon
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - José Luis Molinuevo
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Ron Handels
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | | | - Gunilla Johansson
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Linda van Waalwijk van Doorn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD, USA
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Lucia Farotti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Brian A. Gordon
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | | | - Carolina Minguillon
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Matthias Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Carla Gallo
- Departamento de Ciencias Celulares y Moleculares/Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea Lopez Mato
- Chair of Psychoneuroimmunoendocrinology, Maimonides University, Buenos Aires, Argentina
| | - Florence Thibaut
- Department of Psychiatry, University Hospital Cochin-Site Tarnier 89 rue d’Assas, INSERM 894, Faculty of Medicine Paris Descartes, Paris, France
| | - Simone Lista
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Lehmann S, Delaby C, Boursier G, Catteau C, Ginestet N, Tiers L, Maceski A, Navucet S, Paquet C, Dumurgier J, Vanmechelen E, Vanderstichele H, Gabelle A. Relevance of Aβ42/40 Ratio for Detection of Alzheimer Disease Pathology in Clinical Routine: The PLM R Scale. Front Aging Neurosci 2018; 10:138. [PMID: 29892221 PMCID: PMC5985301 DOI: 10.3389/fnagi.2018.00138] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) biomarkers (Aβ peptides and tau proteins) improved the diagnosis of Alzheimer's disease (AD) in research and clinical settings. We previously described the PLM-scale (Paris-Lille-Montpellier study), which combines Aβ42, tau, and phosphorylated ptau(181) biomarkers in an easy to use and clinically relevant way. The purpose of this work is to evaluate an optimized PLMR-scale (PLM ratio scale) that now includes the Aβ42/Aβ40 ratio to detect AD versus non-AD (NAD) participants in clinical routine of memory centers. Methods: Both scales were compared using 904 participants with cognitive impairment recruited from two independent cohorts (Mtp-1 and Mtp-2). The CSF Aβ42/Aβ40 ratio was measured systematically in Mtp-1, and only on biologically discordant cases in Mtp-2. Two different ELISA kit providers were also employed. The distribution of AD and NAD patients and the discrepancies of biomarker profiles were computed. Receiver Operating Characteristic curves were used to represent clinical sensitivity and specificity for AD detection. The classification of patients with the net reclassification index (NRI) was also evaluated. Results: Nine hundred and four participants (342 AD and 562 NAD) were studied; 400 in Mtp-1 and 504 in Mtp-2. For AD patients, the mean CSF Aβ42 and CSF Aβ42/40 ratio was 553 ± 216 pg/mL and 0.069 ± 0.022 pg/mL in Mtp-1 and 702 ± 335 pg/mL and 0.045 ± 0.020 pg/mL in Mtp-2. The distribution of AD and NAD differed between the PLM and the PLMR scales (p < 0.0001). The percentage AD well-classified (class 3) increased with PLMR from 38 to 83% in Mpt-1 and from 33 to 53% in Mpt-2. A sharp reduction of the discordant profiles going from 34 to 16.3% and from 37.5 to 19.8%, for Mtp-1 and Mtp-2 respectively, was also observed. The AUC of the PLMR scale was 0.94 in Mtp-1 and 0.87 in Mtp-2. In both cohorts, the PLMR outperformed CSF Aβ42 or Aβ42/40 ratio. The diagnostic performance was improved with the PLMR with an NRI equal to 44.3% in Mtp-1 and 28.8% in Mtp-2. Conclusion: The integration of the Aβ42/Aβ40 ratio in the PLMR scale resulted in an easy-to-use tool which reduced the discrepancies in biologically doubtful cases and increased the confidence in the diagnosis in memory center.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Constance Delaby
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Guilaine Boursier
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Cindy Catteau
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nelly Ginestet
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurent Tiers
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Aleksandra Maceski
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sophie Navucet
- Département de Neurologie, Centre Mémoire de Ressources et de Recherche de Montpellier, Montpellier University Hospital, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Claire Paquet
- Groupe Hospitalier Lariboisière Fernand-Widal, INSERM U942, Centre de Neurologie Cognitive, Université Paris Diderot, Paris, France
| | - Julien Dumurgier
- Groupe Hospitalier Lariboisière Fernand-Widal, INSERM U942, Centre de Neurologie Cognitive, Université Paris Diderot, Paris, France
| | | | | | - Audrey Gabelle
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France.,Département de Neurologie, Centre Mémoire de Ressources et de Recherche de Montpellier, Montpellier University Hospital, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
42
|
Toombs J, Foiani MS, Wellington H, Paterson RW, Arber C, Heslegrave A, Lunn MP, Schott JM, Wray S, Zetterberg H. Amyloid β peptides are differentially vulnerable to preanalytical surface exposure, an effect incompletely mitigated by the use of ratios. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:311-321. [PMID: 29780875 PMCID: PMC5956932 DOI: 10.1016/j.dadm.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction We tested the hypothesis that the amyloid β (Aβ) peptide ratios are more stable than Aβ42 alone when biofluids are exposed to two preanalytical conditions known to modify measurable Aβ concentration. Methods Human cerebrospinal fluid (CSF) and culture media (CM) from human cortical neurons were exposed to a series of volumes and polypropylene surfaces. Aβ42, Aβ40, and Aβ38 peptide concentrations were measured using a multiplexed electrochemiluminescence immunoassay. Data were analyzed using mixed models in R. Results Decrease of measurable Aβ peptide concentrations was exaggerated in longer peptides, affecting the Aβ42:Aβ40 and Aβ42:Aβ38 ratios. However, the effect size of surface treatment was reduced in Aβ peptide ratios versus Aβ42 alone. For Aβ42:Aβ40, the effect was reduced by approximately 50% (volume) and 75% (transfer) as compared to Aβ42 alone. Discussion Use of Aβ ratios, in conjunction with concentrations, may mitigate confounding factors and assist the clinical diagnostic process for Alzheimer's disease.
Collapse
Affiliation(s)
- Jamie Toombs
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Martha S Foiani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Henrietta Wellington
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Department of Neurodegeneration, Dementia Research Centre, Institute of Neurology, London, UK
| | - Charles Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Michael P Lunn
- Department of Neuroimmunology, Institute of Neurology, University College London, London, UK
| | - Jonathan M Schott
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Neurodegeneration, Dementia Research Centre, Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, University College London, London, UK.,UK Dementia Research Institute, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
43
|
Baldeiras I, Santana I, Leitão MJ, Gens H, Pascoal R, Tábuas-Pereira M, Beato-Coelho J, Duro D, Almeida MR, Oliveira CR. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer's disease dementia in mild cognitive impairment. Alzheimers Res Ther 2018; 10:33. [PMID: 29558986 PMCID: PMC5861634 DOI: 10.1186/s13195-018-0362-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/25/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers have been used to increase the evidence of underlying Alzheimer's disease (AD) pathology in mild cognitive impairment (MCI). However, CSF biomarker-based classification often results in conflicting profiles with controversial prognostic value. Normalization of the CSF Aβ42 concentration to the level of total amyloid beta (Aβ), using the Aβ42/40 ratio, has been shown to improve the distinction between AD and non-AD dementia. Therefore, we evaluated whether the Aβ42/40 ratio would improve MCI categorization and more accurately predict progression to AD. METHODS Our baseline population consisted of 197 MCI patients, of which 144 had a follow-up ≥ 2 years, and comprised the longitudinal study group. To establish our own CSF Aβ42/40 ratio reference value, a group of 168 AD-dementia patients and 66 neurological controls was also included. CSF biomarker-based classification was operationalized according to the framework of the National Institute of Aging-Alzheimer Association criteria for MCI. RESULTS When using the core CSF biomarkers (Aβ42, total Tau and phosphorylated Tau), 30% of the patients fell into the high-AD-likelihood (HL) group (both amyloid and neurodegeneration markers positive), 30% into the low-AD-likelihood group (all biomarkers negative), 28% into the suspected non-Alzheimer pathophysiology (SNAP) group (only neurodegeneration markers positive) and 12% into the isolated amyloid pathology group (only amyloid-positive). Replacing Aβ42 by the Aβ42/40 ratio resulted in a significant increase in the percentage of patients with amyloidosis (42-59%) and in the proportion of interpretable biological profiles (61-75%), due to a reduction by half in the number of SNAP cases and an increase in the proportion of the HL subgroup. Survival analysis showed that risk of progression to AD was highest in the HL group, and increased when the Aβ42/40 ratio, instead of Aβ42, combined with total Tau and phosphorylated Tau was used for biomarker-based categorization. CONCLUSIONS Our results confirm the usefulness of the CSF Aβ42/40 ratio in the interpretation of CSF biomarker profiles in MCI patients, by increasing the proportion of conclusive profiles and enhancing their predictive value for underlying AD.
Collapse
Affiliation(s)
- Inês Baldeiras
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria João Leitão
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Helena Gens
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Rui Pascoal
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Miguel Tábuas-Pereira
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Beato-Coelho
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Duro
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Catarina Resende Oliveira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Research & Development Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
44
|
Lewczuk P, Matzen A, Blennow K, Parnetti L, Molinuevo JL, Eusebi P, Kornhuber J, Morris JC, Fagan AM. Cerebrospinal Fluid Aβ42/40 Corresponds Better than Aβ42 to Amyloid PET in Alzheimer's Disease. J Alzheimers Dis 2018; 55:813-822. [PMID: 27792012 PMCID: PMC5147502 DOI: 10.3233/jad-160722] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Decreased concentrations of amyloid-β 1-42 (Aβ42) in cerebrospinal fluid (CSF) and increased retention of Aβ tracers in the brain on positron emission tomography (PET) are considered the earliest biomarkers of Alzheimer’s disease (AD). However, a proportion of cases show discrepancies between the results of the two biomarker modalities which may reflect inter-individual differences in Aβ metabolism. The CSF Aβ42/40 ratio seems to be a more accurate biomarker of clinical AD than CSF Aβ42 alone. Objective: We tested whether CSF Aβ42 alone or the Aβ42/40 ratio corresponds better with amyloid PET status and analyzed the distribution of cases with discordant CSF-PET results. Methods: CSF obtained from a mixed cohort (n = 200) of cognitively normal and abnormal research participants who had undergone amyloid PET within 12 months (n = 150 PET-negative, n = 50 PET-positive according to a previously published cut-off) was assayed for Aβ42 and Aβ40 using two recently developed immunoassays. Optimal CSF cut-offs for amyloid positivity were calculated, and concordance was tested by comparison of the areas under receiver operating characteristic (ROC) curves (AUC) and McNemar’s test for paired proportions. Results: CSF Aβ42/40 corresponded better than Aβ42 with PET results, with a larger proportion of concordant cases (89.4% versus 74.9%, respectively, p < 0.0001) and a larger AUC (0.936 versus 0.814, respectively, p < 0.0001) associated with the ratio. For both CSF biomarkers, the percentage of CSF-abnormal/PET-normal cases was larger than that of CSF-normal/PET-abnormal cases. Conclusion: The CSF Aβ42/40 ratio is superior to Aβ42 alone as a marker of amyloid-positivity by PET. We hypothesize that this increase in performance reflects the ratio compensating for general between-individual variations in CSF total Aβ.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Italy
| | - Jose Luis Molinuevo
- Alzheimer's disease and other cognitive disorders unit, Neurology Service, Hospital Clínic de Barcelona - Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Paolo Eusebi
- Section of Neurology, Center for Memory Disturbances, University of Perugia, Italy
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - John C Morris
- The Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- The Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
45
|
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2017; 162:17-36. [PMID: 29241812 DOI: 10.1016/j.pneurobio.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Collapse
Affiliation(s)
- Sergio B Socias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cesar L Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cecilia Vera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina; Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Rosana N Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina.
| |
Collapse
|
46
|
van Waalwijk van Doorn LJC, Kulic L, Koel-Simmelink MJA, Kuiperij HB, Versleijen AAM, Struyfs H, Twaalfhoven HAM, Fourier A, Engelborghs S, Perret-Liaudet A, Lehmann S, Verbeek MM, Vanmechelen EJM, Teunissen CE. Multicenter Analytical Validation of Aβ40 Immunoassays. Front Neurol 2017; 8:310. [PMID: 28725210 PMCID: PMC5497061 DOI: 10.3389/fneur.2017.00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/14/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Before implementation in clinical practice, biomarker assays need to be thoroughly analytically validated. There is currently a strong interest in implementation of the ratio of amyloid-β peptide 1-42 and 1-40 (Aβ42/Aβ40) in clinical routine. Therefore, in this study, we compared the analytical performance of six assays detecting Aβ40 in cerebrospinal fluid (CSF) in six laboratories according to a recently standard operating procedure (SOP) developed for implementation of ELISA assays for clinical routine. METHODS Aβ40 assays of six vendors were validated in up to three centers per assay according to recently proposed international consensus validation protocols. The performance parameters included sensitivity, precision, dilutional linearity, recovery, and parallelism. Inter-laboratory variation was determined using a set of 20 CSF samples. In addition, test results were used to critically evaluate the SOPs that were used to validate the assays. RESULTS Most performance parameters of the different Aβ40 assays were similar between labs and within the predefined acceptance criteria. The only exceptions were the out-of-range results of recovery for the majority of experiments and of parallelism by three laboratories. Additionally, experiments to define the dilutional linearity and hook-effect were not executed correctly in part of the centers. The inter-laboratory variation showed acceptable low levels for all assays. Absolute concentrations measured by the assays varied by a factor up to 4.7 for the extremes. CONCLUSION All validated Aβ40 assays appeared to be of good technical quality and performed generally well according to predefined criteria. A novel version of the validation SOP is developed based on these findings, to further facilitate implementation of novel immunoassays in clinical practice.
Collapse
Affiliation(s)
- Linda J C van Waalwijk van Doorn
- Department of Neurology, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Luka Kulic
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Marleen J A Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Neurocampus, Amsterdam, Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Alexandra A M Versleijen
- Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Harry A M Twaalfhoven
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Neurocampus, Amsterdam, Netherlands
| | - Anthony Fourier
- Neurobiology Laboratory, Centre for Memory Resources and Research (CMRR), Groupement Hospitalier Est (GHE), Hôpitaux de Lyon, Université Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Memory Clinic and Department of Neurology, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Armand Perret-Liaudet
- Neurobiology Laboratory, Centre for Memory Resources and Research (CMRR), Groupement Hospitalier Est (GHE), Hôpitaux de Lyon, Université Lyon 1, CNRS UMR5292, INSERM U1028, Lyon, France
| | - Sylvain Lehmann
- CHU de Montpellier and Université de Montpellier, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Neurocampus, Amsterdam, Netherlands
| |
Collapse
|
47
|
Bridel C, Hoffmann T, Meyer A, Durieux S, Koel-Simmelink MA, Orth M, Scheltens P, Lues I, Teunissen CE. Glutaminyl cyclase activity correlates with levels of Aβ peptides and mediators of angiogenesis in cerebrospinal fluid of Alzheimer's disease patients. ALZHEIMERS RESEARCH & THERAPY 2017; 9:38. [PMID: 28587659 PMCID: PMC5461753 DOI: 10.1186/s13195-017-0266-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Background Pyroglutamylation of truncated Aβ peptides, which is catalysed by enzyme glutaminyl cyclase (QC), generates pE-Aβ species with enhanced aggregation propensities and resistance to most amino-peptidases and endo-peptidases. pE-Aβ species have been identified as major constituents of Aβ plaques and reduction of pE-Aβ species is associated with improvement of cognitive tasks in animal models of Alzheimer’s disease (AD). Pharmacological inhibition of QC has thus emerged as a promising therapeutic approach for AD. Here, we question whether cerebrospinal fluid (CSF) QC enzymatic activity differs between AD patients and controls and whether inflammatory or angiogenesis mediators, some of which are potential QC substrates, and/or Aβ peptides may serve as pharmacodynamic read-outs for QC inhibition. Methods QC activity, Aβ peptides and inflammatory or angiogenesis mediators were measured in CSF of a clinically well-characterized cohort of 20 mild AD patients, 20 moderate AD patients and 20 subjective memory complaints (SMC) controls. Correlation of these parameters with core diagnostic CSF AD biomarkers (Aβ42, tau and p-tau) and clinical features was evaluated. Results QC activity shows a tendency to decrease with AD progression (p = 0.129). The addition of QC activity to biomarkers tau and p-tau significantly increases diagnostic power (ROC-AUCTAU = 0.878, ROC-AUCTAU&QC = 0.939 and ROC-AUCpTAU = 0.820, ROC-AUCpTAU&QC = 0.948). In AD and controls, QC activity correlates with Aβ38 (r = 0.83, p < 0.0001) and Aβ40 (r = 0.84, p < 0.0001), angiogenesis mediators (Flt1, Tie2, VEGFD, VCAM-1 and ICAM-1, r > 0.5, p < 0.0001) and core diagnostic biomarkers (r > 0.35, p = <0.0057). QC activity does not correlate with MMSE or ApoE genotype. Conclusions Aβ38, Aβ40 and angiogenesis mediators (Flt1, Tie2, VEGFD, VCAM-1 and ICAM-1) are potential pharmacodynamic markers of QC inhibition, because their levels closely correlate with QC activity in AD patients. The addition of QC activity to core diagnostic CSF biomarkers may be of specific interest in clinical cases with discordant imaging and biochemical biomarker results. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0266-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Bridel
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands.
| | | | | | - Sisi Durieux
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Marleen A Koel-Simmelink
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | | | - Philip Scheltens
- Department of Neurology, Alzheimer Center, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands
| | - Inge Lues
- Probiodrug AG, Halle (Saale), Germany
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Gervaise-Henry C, Watfa G, Albuisson E, Kolodziej A, Dousset B, Olivier JL, Jonveaux TR, Malaplate-Armand C. Cerebrospinal Fluid Aβ42/Aβ40 as a Means to Limiting Tube- and Storage-Dependent Pre-Analytical Variability in Clinical Setting. J Alzheimers Dis 2017; 57:437-445. [DOI: 10.3233/jad-160865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christelle Gervaise-Henry
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Gasshan Watfa
- CMRR de Lorraine Hôpital de Brabois CHU Nancy, Vandoeuvre lès Nancy, Nancy, France
| | - Eliane Albuisson
- Unité ESPRI-BioBase, CHRU Nancy, Vandoeuvre lès Nancy, Nancy, France
| | - Allan Kolodziej
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Brigitte Dousset
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
| | - Jean-Luc Olivier
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
- UR AFPA–USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| | | | - Catherine Malaplate-Armand
- Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie-Endocrinologie-Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France
- UR AFPA–USC 340, Equipe BFLA, Université de Lorraine, Nancy, France
| |
Collapse
|
49
|
Willemse E, van Uffelen K, Brix B, Engelborghs S, Vanderstichele H, Teunissen C. How to handle adsorption of cerebrospinal fluid amyloid β (1-42) in laboratory practice? Identifying problematic handlings and resolving the issue by use of the Aβ42
/Aβ40
ratio. Alzheimers Dement 2017; 13:885-892. [DOI: 10.1016/j.jalz.2017.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 01/07/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Eline Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
- Department of Neurology, Alzheimer Center, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Kees van Uffelen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| | - Britta Brix
- Neurodegenerative Diseases Department, EUROIMMUN Medizinische Labordiagnostika AG; Lübeck Germany
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Reference Centre for Biological Markers of Dementia (BIODEM); University of Antwerp; Antwerpen Belgium
- Department of Neurology and Memory Clinic; Hospital Network Antwerp; Antwerpen Belgium
| | | | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
50
|
Bousiges O, Cretin B, Lavaux T, Philippi N, Jung B, Hezard S, Heitz C, Demuynck C, Gabel A, Martin-Hunyadi C, Blanc F. Diagnostic Value of Cerebrospinal Fluid Biomarkers (Phospho-Tau181, total-Tau, Aβ42, and Aβ40) in Prodromal Stage of Alzheimer's Disease and Dementia with Lewy Bodies. J Alzheimers Dis 2016; 51:1069-83. [PMID: 26923009 DOI: 10.3233/jad-150731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) symptoms are close to those of Alzheimer's disease (AD), and the differential diagnosis is difficult especially early in the disease. Unfortunately, AD biomarkers in cerebrospinal fluid (CSF), and more particularly Aβ1 - 42, appear to be altered in dementia with Lewy bodies (DLB). However, the level of these biomarkers has never been studied in the prodromal stage of the disease. OBJECTIVE To compare these biomarkers between DLB and AD, with a particular focus on the prodromal stage. METHODS A total of 166 CSF samples were collected at the memory clinic of Strasbourg. They were obtained from prodromal DLB (pro-DLB), DLB dementia, prodromal AD (pro-AD), and AD dementia patients, and elderly controls. Phospho-Tau181, total-Tau, Aβ42, and Aβ40 were measured in the CSF. RESULTS At the prodromal stage, contrary to AD patients, DLB patients' biomarker levels in the CSF were not altered. At the demented stage of DLB, Aβ42 levels were reduced as well as Aβ40 levels. Thus, the Aβ42/Aβ40 ratio remained unchanged between the prodromal and demented stages, contrary to what was observed in AD. Tau and Phospho-Tau181 levels were unaltered in DLB patients. CONCLUSIONS We have shown that at the prodromal stage the DLB patients had no pathological profile. Consequently, CSF AD biomarkers are extremely useful for differentiating AD from DLB patients particularly at this stage when the clinical diagnosis is difficult. Thus, these results open up new perspectives on the interpretation of AD biomarkers in DLB.
Collapse
Affiliation(s)
- Olivier Bousiges
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France.,University of Strasbourg and CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | - Benjamin Cretin
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Thomas Lavaux
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Nathalie Philippi
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Barbara Jung
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Sylvie Hezard
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Camille Heitz
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Catherine Demuynck
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Aurelia Gabel
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Catherine Martin-Hunyadi
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Frédéric Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| |
Collapse
|