1
|
Surzenko N, Bastidas J, Reid RW, Curaba J, Zhang W, Bostan H, Wilson M, Dominique A, Roberson J, Ignacio G, Komarnytsky S, Sanders A, Lambirth K, Brouwer CR, El-Khodor BF. Functional recovery following traumatic brain injury in rats is enhanced by oral supplementation with bovine thymus extract. FASEB J 2024; 38:e23460. [PMID: 38315443 DOI: 10.1096/fj.202301859r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.
Collapse
Affiliation(s)
- Natalia Surzenko
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | | | - Robert W Reid
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Julien Curaba
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Wei Zhang
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Hamed Bostan
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Mickey Wilson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Ashley Dominique
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Julia Roberson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Glicerio Ignacio
- David H. Murdock Research Institute, Kannapolis, North Carolina, USA
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Alexa Sanders
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Kevin Lambirth
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Cory R Brouwer
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Bassem F El-Khodor
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| |
Collapse
|
2
|
Harper MW, Lee J, Sherman KA, Uihlein MJ, Lee KKK. Wheelchair Athlete Concussion Baseline Data: A Pilot Retrospective Analysis. Am J Phys Med Rehabil 2021; 100:895-899. [PMID: 33105155 DOI: 10.1097/phm.0000000000001630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study was to investigate whether a disabled athlete's underlying disability and concussion history impact the score on baseline testing from a disability modified Graded Symptoms Checklist, Standardized Assessment of Concussion, and Wheelchair Error Scoring System. STUDY DESIGN This is a retrospective chart review of the 81 veteran wheelchair sports athletes who had baseline concussion evaluations. Demographic data including qualifying disability for the National Veterans Wheelchair Games, scores from the modified Graded Symptoms Checklist, Standardized Assessment of Concussion, and Wheelchair Error Scoring System were analyzed. RESULTS Forty-three percent of wheelchair athletes reported a history of a concussion. Individuals with a history of a concussion displayed more symptoms on the modified Graded Symptoms Checklist (38.8 vs. 24.71, P = 0.0378) as did those who had a qualifying disability in the brain disorder category (54.87 vs. amputees 24.07 and spinal cord disorders 24.9, P = 0.0015). There was no difference in Standardized Assessment of Concussion examination or Wheelchair Error Scoring System scores based on concussion history or qualifying disability. CONCLUSIONS Baseline symptom scores from a modified Graded Symptoms Checklist were higher in participants with a history of concussion, independent of their underlying disability, and higher if the athlete's disability was a brain disorder including multiple sclerosis and cerebral vascular accident. Scores on the Standardized Assessment of Concussion examination and Wheelchair Error Scoring System were not affected by the athlete's disability or concussion history. Baseline testing is integral for disabled athletes, especially those with underlying brain disorders and history of concussion.
Collapse
Affiliation(s)
- Michael W Harper
- From the Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Hub for Collaborative Medicine, Milwaukee, Wisconsin (MWH, KKKL); Case Western Reserve University, Milwaukee, Wisconsin (JL); Clement J. Zablocki Veterans Affairs Medical Center (ZVAMC), Milwaukee, Wisconsin (KAS); Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin (MJU); Department of Emergency Medicine, ZVAMC, Milwaukee, Wisconsin (MJU); and Spinal Cord Injury Division, ZVAMC, Milwaukee, Wisconsin (KKKL)
| | | | | | | | | |
Collapse
|
3
|
Alosco ML, Mariani ML, Adler CH, Balcer LJ, Bernick C, Au R, Banks SJ, Barr WB, Bouix S, Cantu RC, Coleman MJ, Dodick DW, Farrer LA, Geda YE, Katz DI, Koerte IK, Kowall NW, Lin AP, Marcus DS, Marek KL, McClean MD, McKee AC, Mez J, Palmisano JN, Peskind ER, Tripodis Y, Turner RW, Wethe JV, Cummings JL, Reiman EM, Shenton ME, Stern RA. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: rationale, design, and methodology for the DIAGNOSE CTE Research Project. Alzheimers Res Ther 2021; 13:136. [PMID: 34384490 PMCID: PMC8357968 DOI: 10.1186/s13195-021-00872-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been neuropathologically diagnosed in brain donors exposed to repetitive head impacts, including boxers and American football, soccer, ice hockey, and rugby players. CTE cannot yet be diagnosed during life. In December 2015, the National Institute of Neurological Disorders and Stroke awarded a seven-year grant (U01NS093334) to fund the "Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project." The objectives of this multicenter project are to: develop in vivo fluid and neuroimaging biomarkers for CTE; characterize its clinical presentation; refine and validate clinical research diagnostic criteria (i.e., traumatic encephalopathy syndrome [TES]); examine repetitive head impact exposure, genetic, and other risk factors; and provide shared resources of anonymized data and biological samples to the research community. In this paper, we provide a detailed overview of the rationale, design, and methods for the DIAGNOSE CTE Research Project. METHODS The targeted sample and sample size was 240 male participants, ages 45-74, including 120 former professional football players, 60 former collegiate football players, and 60 asymptomatic participants without a history of head trauma or participation in organized contact sports. Participants were evaluated at one of four U.S. sites and underwent the following baseline procedures: neurological and neuropsychological examinations; tau and amyloid positron emission tomography; magnetic resonance imaging and spectroscopy; lumbar puncture; blood and saliva collection; and standardized self-report measures of neuropsychiatric, cognitive, and daily functioning. Study partners completed similar informant-report measures. Follow-up evaluations were intended to be in-person and at 3 years post-baseline. Multidisciplinary diagnostic consensus conferences are held, and the reliability and validity of TES diagnostic criteria are examined. RESULTS Participant enrollment and all baseline evaluations were completed in February 2020. Three-year follow-up evaluations began in October 2019. However, in-person evaluation ceased with the COVID-19 pandemic, and resumed as remote, 4-year follow-up evaluations (including telephone-, online-, and videoconference-based cognitive, neuropsychiatric, and neurologic examinations, as well as in-home blood draw) in February 2021. CONCLUSIONS Findings from the DIAGNOSE CTE Research Project should facilitate detection and diagnosis of CTE during life, and thereby accelerate research on risk factors, mechanisms, epidemiology, treatment, and prevention of CTE. TRIAL REGISTRATION NCT02798185.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Megan L Mariani
- Boston University CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Framingham Heart Study, and Slone Epidemiology Center, Boston, MA, USA
- Departments of Anatomy & Neurobiology and Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sarah J Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA, USA
| | - William B Barr
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, BU Schools of Medicine and Public Health, Boston, MA, USA
| | - Yonas E Geda
- Alzheimer's Disease and Memory Disorders Program, Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Encompass Health Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research Center, Departments of Neurology and Neurosurgery, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Framingham Heart Study, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Robert W Turner
- Department of Clinical Research & Leadership, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jennifer V Wethe
- Department of Psychiatry and Psychology, Mayo Clinic School of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Tayebi M, Holdsworth SJ, Champagne AA, Cook DJ, Nielsen P, Lee TR, Wang A, Fernandez J, Shim V. The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: a systematic review. Brain Inj 2021; 35:621-644. [PMID: 33843389 DOI: 10.1080/02699052.2021.1895313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Insitute, Gisborne, New Zealand
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Poul Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Republic of Korea
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Marklund N, Vedung F, Lubberink M, Tegner Y, Johansson J, Blennow K, Zetterberg H, Fahlström M, Haller S, Stenson S, Larsson EM, Wall A, Antoni G. Tau aggregation and increased neuroinflammation in athletes after sports-related concussions and in traumatic brain injury patients - A PET/MR study. NEUROIMAGE-CLINICAL 2021; 30:102665. [PMID: 33894460 PMCID: PMC8091173 DOI: 10.1016/j.nicl.2021.102665] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) leads to axonal injury and an inflammatory response. Repeated sports-related concussions (rSRC) are linked to neurodegeneration. We studied tau aggregation and neuroinflammation in rSRC and TBI using PET/MRI. In young rSRC and TBI patients, tau aggregation and neuroinflammation was increased. PET useful when studying the long-term consequences of rSRC and TBI.
Traumatic brain injury (TBI) and repeated sports-related concussions (rSRCs) are associated with an increased risk for neurodegeneration. Autopsy findings of selected cohorts of long-term TBI survivors and rSRC athletes reveal increased tau aggregation and a persistent neuroinflammation. To assess in vivo tau aggregation and neuroinflammation in young adult TBI and rSRC cohorts, we evaluated 9 healthy controls (mean age 26 ± 5 years; 4 males, 5 females), 12 symptomatic athletes (26 ± 7 years; 6 males, 6 females) attaining ≥3 previous SRCs, and 6 moderate-to severe TBI patients (27 ± 7 years; 4 males, 2 females) in a combined positron emission tomography (PET)/magnetic resonance (MR) scanner ≥6 months post-injury. Dual PET tracers, [18F]THK5317 for tau aggregation and [11C]PK11195 for neuroinflammation/microglial activation, were investigated on the same day. The Repeated Battery Assessment of Neurological Status (RBANS) scores, used for cognitive evaluation, were lower in both the rSRC and TBI groups (p < 0.05). Neurofilament-light (NF-L) levels were increased in plasma and cerebrospinal fluid (CSF; p < 0.05), and serum tau levels lower, in TBI although not in rSRC. In rSRC athletes, PET imaging showed increased neuroinflammation in the hippocampus and tau aggregation in the corpus callosum. In TBI patients, tau aggregation was observed in thalami, temporal white matter and midbrain; widespread neuroinflammation was found e.g. in temporal white matter, hippocampus and corpus callosum. In mixed-sex cohorts of young adult athletes with persistent post-concussion symptoms and in TBI patients, increased tau aggregation and neuroinflammation are observed at ≥6 months post-injury using PET. Studies with extended clinical follow-up, biomarker examinations and renewed PET imaging are needed to evaluate whether these findings progress to a neurodegenerative disorder or if spontaneous resolution is possible.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden; Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden.
| | - Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Sweden
| | - Jakob Johansson
- Department of Surgical Sciences, Anesthesiology, Uppsala University, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Markus Fahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden; CIMC - Centre d'Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève, Switzerland
| | - Staffan Stenson
- Department of Neuroscience, Rehabilitation Medicine PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Alosco ML, Culhane J, Mez J. Neuroimaging Biomarkers of Chronic Traumatic Encephalopathy: Targets for the Academic Memory Disorders Clinic. Neurotherapeutics 2021; 18:772-791. [PMID: 33847906 PMCID: PMC8423967 DOI: 10.1007/s13311-021-01028-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, such as those from contact sports. The pathognomonic lesion for CTE is the perivascular accumulation of hyper-phosphorylated tau in neurons and other cell process at the depths of sulci. CTE cannot be diagnosed during life at this time, limiting research on risk factors, mechanisms, epidemiology, and treatment. There is an urgent need for in vivo biomarkers that can accurately detect CTE and differentiate it from other neurological disorders. Neuroimaging is an integral component of the clinical evaluation of neurodegenerative diseases and will likely aid in diagnosing CTE during life. In this qualitative review, we present the current evidence on neuroimaging biomarkers for CTE with a focus on molecular, structural, and functional modalities routinely used as part of a dementia evaluation. Supporting imaging-pathological correlation studies are also presented. We targeted neuroimaging studies of living participants at high risk for CTE (e.g., aging former elite American football players, fighters). We conclude that an optimal tau PET radiotracer with high affinity for the 3R/4R neurofibrillary tangles in CTE has not yet been identified. Amyloid PET scans have tended to be negative. Converging structural and functional imaging evidence together with neuropathological evidence show frontotemporal and medial temporal lobe neurodegeneration, and increased likelihood for a cavum septum pellucidum. The literature offers promising neuroimaging biomarker targets of CTE, but it is limited by cross-sectional studies of small samples where the presence of underlying CTE is unknown. Imaging-pathological correlation studies will be important for the development and validation of neuroimaging biomarkers of CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA.
| | - Julia Culhane
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, 72 E Concord St, Suite B7800, MA, 02118, Boston, USA
- Framingham Heart Study, Boston University School of Medicine, MA, Boston, USA
| |
Collapse
|
7
|
Dudley J, Yuan W, Diekfuss J, Barber Foss KD, DiCesare CA, Altaye M, Logan K, Leach JL, Myer GD. Altered Functional and Structural Connectomes in Female High School Soccer Athletes After a Season of Head Impact Exposure and the Effect of a Novel Collar. Brain Connect 2020; 10:292-301. [DOI: 10.1089/brain.2019.0729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jed Diekfuss
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kim D. Barber Foss
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher A. DiCesare
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kelsey Logan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James L. Leach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati Ohio, USA
| | - Gregory D. Myer
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
8
|
Phelps A, Mez J, Stern RA, Alosco ML. Risk Factors for Chronic Traumatic Encephalopathy: A Proposed Framework. Semin Neurol 2020; 40:439-449. [PMID: 32674182 DOI: 10.1055/s-0040-1713633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that has been neuropathologically diagnosed in contact and collision sport athletes, military veterans, and others with a history of exposure to repetitive head impacts (RHI). Identifying methods to diagnose and prevent CTE during life is a high priority. Timely diagnosis and implementation of treatment and preventative strategies for neurodegenerative diseases, including CTE, partially hinge upon early and accurate risk characterization. Here, we propose a framework of risk factors that influence the neuropathological development of CTE. We provide an up-to-date review of the literature examining cumulative exposure to RHI as the environmental trigger for CTE. Because not all individuals exposed to RHI develop CTE, the direct and/or indirect influence of nonhead trauma exposure characteristics (e.g., age, sex, race, genetics) on the pathological development of CTE is reviewed. We conclude with recommendations for future directions, as well as opinions for preventative strategies that could mitigate risk.
Collapse
Affiliation(s)
- Alyssa Phelps
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Jesse Mez
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
9
|
Champagne AA, Coverdale NS, Germuska M, Bhogal AA, Cook DJ. Changes in volumetric and metabolic parameters relate to differences in exposure to sub-concussive head impacts. J Cereb Blood Flow Metab 2020; 40:1453-1467. [PMID: 31307284 PMCID: PMC7308522 DOI: 10.1177/0271678x19862861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/11/2019] [Indexed: 01/15/2023]
Abstract
Structural and calibrated magnetic resonance imaging data were acquired on 44 collegiate football players prior to the season (PRE), following the first four weeks in-season (PTC) and one month after the last game (POST). Exposure data collected from g-Force accelerometers mounted to the helmet of each player were used to split participants into HIGH (N = 22) and LOW (N = 22) exposure groups, based on the frequency of impacts sustained by each athlete. Significant decreases in grey-matter volume specific to the HIGH group were documented at POST (P = 0.009), compared to baseline. Changes in resting cerebral blood flow (CBF0), corrected for partial volume effects, were observed within the HIGH group, throughout the season (P < 0.0001), suggesting that alterations in perfusion may follow exposure to sub-concussive collisions. Co-localized significant increases in cerebral metabolic rate of oxygen consumption (CMRO2|0) mid-season were also documented in the HIGH group, with respect to both PRE- and POST values. No physiological changes were observed in the LOW group. Therefore, cerebral metabolic demand may be elevated in players with greater exposure to head impacts. These results provide novel insight into the effects of sub-concussive collisions on brain structure and cerebrovascular physiology and emphasize the importance of multi-modal imaging for a complete characterization of cerebral health.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen’s
University, Kingston, ON, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen’s
University, Kingston, ON, Canada
| | - Mike Germuska
- Cardiff University Brain Research
Imaging Center, Cardiff University, Cardiff, UK
| | - Alex A Bhogal
- Department of Radiology, University
Medical Center Utrecht, Utrecht, The Netherlands
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen’s
University, Kingston, ON, Canada
- Department of Surgery, Queen’s
University, Kingston, ON, Canada
| |
Collapse
|
10
|
Alosco ML, Tripodis Y, Baucom ZH, Mez J, Stein TD, Martin B, Haller O, Conneely S, McClean M, Nosheny R, Mackin S, McKee AC, Weiner MW, Stern RA. Late contributions of repetitive head impacts and TBI to depression symptoms and cognition. Neurology 2020; 95:e793-e804. [PMID: 32591472 DOI: 10.1212/wnl.0000000000010040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To test the hypothesis that repetitive head impacts (RHIs), like those from contact sport play and traumatic brain injury (TBI) have long-term neuropsychiatric and cognitive consequences, we compared middle-age and older adult participants who reported a history of RHI and/or TBI with those without this history on measures of depression and cognition. METHODS This cross-sectional study included 13,323 individuals (mean age, 61.95; 72.5% female) from the Brain Health Registry who completed online assessments, including the Ohio State University TBI Identification Method, the Geriatric Depression Scale (GDS-15), and the CogState Brief Battery and Lumos Labs NeuroCognitive Performance Tests. Inverse propensity-weighted linear regressions accounting for age, sex, race/ethnicity, and education tested the effects of RHI and TBI compared to a non-RHI/TBI group. RESULTS A total of 725 participants reported RHI exposure (mostly contact sport play and abuse) and 7,277 reported TBI (n = 2,604 with loss of consciousness [LOC]). RHI (β, 1.24; 95% CI, 0.36-2.12), TBI without LOC (β, 0.43; 95% CI, 0.31-0.54), and TBI with LOC (β, 0.75; 95% CI, 0.59-0.91) corresponded to higher GDS-15 scores. While TBI with LOC had the most neuropsychological associations, TBI without LOC had a negative effect on CogState Identification (β, 0.004; 95% CI, 0.001-0.01) and CogState One Back Test (β, 0.004; 95% CI, 0.0002-0.01). RHI predicted worse CogState One Back Test scores (β, 0.02; 95% CI, -0.01 to 0.05). There were RHI × TBI interaction effects on several neuropsychological subtests, and participants who had a history of both RHI and TBI with LOC had the greatest depression symptoms and worse cognition. CONCLUSIONS RHI and TBI independently contributed to worse mid- to later-life neuropsychiatric and cognitive functioning.
Collapse
Affiliation(s)
- Michael L Alosco
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA.
| | - Yorghos Tripodis
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Zachary H Baucom
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Jesse Mez
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Thor D Stein
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Brett Martin
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Olivia Haller
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Shannon Conneely
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Michael McClean
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Rachel Nosheny
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Scott Mackin
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Ann C McKee
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Michael W Weiner
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| | - Robert A Stern
- From the Departments of Neurology (M.L.A., J.M., O.H., S.C., A.C.M., R.A.S.), Pathology & Laboratory Medicine (T.D.S., A.C.M.), Boston University Alzheimer's Disease Center and CTE Center (Y.T., B.M.), and Departments of Neurosurgery (R.A.S.) and Anatomy and Neurobiology (R.A.S.), Boston University School of Medicine; Department of Biostatistics (Y.T., Z.H.B.), Biostatistics and Epidemiology Data Analytics Center (B.M.), and Department of Environmental Health (M.M.), Boston University School of Public Health, MA; VA Boston Healthcare System (T.D.S., A.C.M.); Department of Veterans Affairs Medical Center (T.D.S., A.C.M.), Bedford, MA; Departments of Psychiatry (R.N., S.M., M.W.W.), Radiology (M.W.W.), Biomedical Imaging (M.W.W.), Medicine (M.W.W.), and Neurology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (R.N., S.M., M.W.W.), Center for Imaging and Neurodegenerative Diseases, San Francisco, CA
| |
Collapse
|
11
|
Kelley CM, Perez SE, Mufson EJ. Tau pathology in the medial temporal lobe of athletes with chronic traumatic encephalopathy: a chronic effects of neurotrauma consortium study. Acta Neuropathol Commun 2019; 7:207. [PMID: 31831066 PMCID: PMC6909582 DOI: 10.1186/s40478-019-0861-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative condition associated with repetitive traumatic brain injury (rTBI) seen in contact-sport athletes and military personnel. The medial temporal lobe (MTL; i.e., hippocampus, subiculum, and entorhinal and perirhinal cortices) memory circuit displays tau lesions during the pathological progression of CTE. We examined MTL tissue obtained from 40 male Caucasian and African American athletes who received a postmortem CTE neuropathological diagnosis defined as stage II, III, or IV. Sections were immunolabeled using an early (AT8) or a late (TauC3) marker for pathological tau and for amyloid beta (Aβ) species (6E10, Aβ1-42 and thioflavin S). Stereological analysis revealed that stage III had significantly less AT8-positive neurons and dystrophic neurites than stage IV in all MTL regions except hippocampal subfield CA3, whereas significantly more AT8-positive neurons, dystrophic neurites, and neurite clusters were found in the perirhinal cortex, entorhinal cortex, hippocampal CA1, and subiculum of CTE stage III compared with stage II. TauC3-positive pathology was significantly higher in the perirhinal and subicular cortex of stage IV compared to stage III and the perirhinal cortex of stage III compared to stage II. AT8-positive neurite clusters were observed in stages III and IV, but virtually absent in stage II. When observed, Aβ pathology appeared as amyloid precursor protein (APP)/Aβ (6E10)-positive diffuse plaques independent of region. Thioflavine S labeling, did not reveal evidence for fibril or neuritic pathology associated with plaques, confirming a diffuse, non-cored plaque phenotype in CTE. Total number of AT8-positive profiles correlated with age at death, age at symptom onset, and time from retirement to death. There was no association between AT8-positive tau pathology and age sport began, years played, or retirement age, and no difference between CTE stage and the highest level of sport played. In summary, our findings demonstrate different tau profiles in the MTL across CTE stages, proffering CA3 tau pathology and MTL dystrophic neurite clusters as possible markers for the transition between early (II) and late (III/IV) stages, while highlighting CTE as a progressive noncommunicative tauopathy.
Collapse
|
12
|
Lorigan J, Kearney H, Grimes B, Heffernan J, Beausang A, Cryan J, Farrell MA, Brett FM. Evaluation of the specificity of the central diagnostic criterion for chronic traumatic encephalopathy. Ir J Med Sci 2018; 188:993-998. [PMID: 30506345 DOI: 10.1007/s11845-018-1943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a postmortem diagnosis. Consensus postmortem, but not antemortem, diagnostic criteria have been established. A key factor in these criteria is evidence of phosphorylated-tau (p-tau) around sulcal vessels in the cortex. However, this sign has been observed anecdotally in a diverse range of neurodegenerative diseases (NDD). We therefore hypothesise that this criterion may lack specificity. METHODS To test this, we assessed patients with NDD, but no documented history of brain trauma, for sulcal p-tau. Tissue was retrieved from Dublin Brain Bank (known NDD n = 17; control with no diagnosed NDD n = 6; CTE n = 1), and slides were prepared from three sites with a predilection for trauma: superior frontal gyrus, temporal pole, and superior temporal gyrus. We stained the resulting anonymised slides with both hemotoxylin and eosin (H&E) and p-tau. Three neuropathologists, blinded to the clinical history and neuropathological diagnosis in each instance, evaluated each case for sulcal p-tau. We calculated the interrater agreement, using Fleiss's kappa, and the specificity of this neuropathological sign. RESULTS Sulcal p-tau was highly specific to diagnosed CTE cases (specificity 0.98), with moderate interrater agreement (κ = 0.45). CONCLUSION In conclusion, therefore, we observed sulcal p-tau to be a sign highly specific to CTE when compared with NDD cases in the absence of head trauma.
Collapse
Affiliation(s)
- Jennifer Lorigan
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| | - Hugh Kearney
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Bryan Grimes
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Josephine Heffernan
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Alan Beausang
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Jane Cryan
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Michael A Farrell
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Francesca M Brett
- Department of Neuropathology, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| |
Collapse
|