1
|
Liang J, Ren Y, Zheng Y, Lin X, Song W, Zhu J, Zhang X, Zhou H, Wu Q, He Y, Yin J. Functional Outcome Prediction of Acute Ischemic Stroke Based on the Oral and Gut Microbiota. Mol Neurobiol 2025; 62:5413-5431. [PMID: 39546118 PMCID: PMC11953115 DOI: 10.1007/s12035-024-04618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Although several studies have identified a distinct gut microbiota in individuals with acute ischemic stroke (AIS), there is a limited amount of research that has simultaneously investigated alterations in the oral and intestinal microbiota in AIS patients and their correlation with clinical prognosis. This was a prospective and observational single-center cohort study in which we included 160 AIS patients who were admitted within 24 h after a stroke event. We collected oral and rectal swab samples for analysis using 16S rRNA high-throughput sequencing. Our study revealed that patients with unfavorable outcomes after AIS showed early disruptions in their oral and intestinal microbiota. Rectal swabs showed increased levels of facultatively anaerobic bacteria in patients with a poor prognosis, while the oral cavity exhibited higher levels of anaerobic and opportunistic pathogenic bacteria. By employing machine learning analysis, we found that the microbiota composition at both rectal and oral sites could predict early and long-term outcomes. Moreover, patients with a poor prognosis displayed increased oral bacterial colonization in the rectal microbiota and altered interactions between the oral and gut microbiota. This study reveals distinct rectal and oral bacteria that could predict unfavorable outcomes for AIS patients. Monitoring the microbiota of various body sites during the early stages after admission may hold prognostic value and inform personalized treatment strategies. The presence of oral bacteria colonizing the intestines during the acute phase of stroke could serve as an early indication of poor outcomes for AIS patients.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yueran Ren
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, Guangdong, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, Guangdong, China.
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Fang Z, Chang S, Niu P, Wang C, Zhang J. Multidimensional-based exploration of gut microbial and metabolite differences in patients with recurrent stroke. Neuroscience 2025; 572:35-48. [PMID: 39914520 DOI: 10.1016/j.neuroscience.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 03/11/2025]
Abstract
This study aims to explore the differences in gut microbes and their metabolites between patients with original and recurrent stroke, providing insights and justification for the diagnosis and prevention of ischemic stroke progression from the perspective of the gut microbiota-metabolite-brain axis. In this study, fecal samples were collected from patients with Original stroke (Os) and patients with Recurrent stroke (Rs) to assess differences in gut microbiota and to screen for different metabolites that reveal the physiological changes related to the recurrent of ischemic stroke. The results found that there was no significant change in Alpha diversity between the two groups. Beta diversity analysis revealed slight changes in community composition between two groups (Bray-Curtis), although their overall microbial abundance may not have changed (UniFrac). Compared with Os patients, Prevotella, Lachnospiraceae_UCG-010, Holdemanella, and Coprococcus were significantly depleted in the Rs group. Correlation analysis showed that the risk of stroke recurrence was negatively correlated with Lachnospiraceae_UCG-010. In Rs group, metabolites such as carbohydrates and terpene lactones were up-regulated, while those of sesquiterpenoids, triterpenoids, and fatty acids and their couplings were down-regulated. These metabolites are significantly enriched in the pathways of arachidonic acid metabolism, betaine biosynthesis, and linoleic acid metabolism. Compared with the Os, Rs was mainly characterized by minor destruction of anaerobic bacteria and significant depletion of SCFAs-producing bacteria. In addition, the related compounds involved in arachidonic acid metabolism and linoleic acid metabolism pathway may be associated with the progression of ischemic stroke.
Collapse
Affiliation(s)
- Zongwei Fang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Sijie Chang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Li J, Chen S, Yang S, Zhang W, Huang X, Zhou L, Liu Y, Li M, Guo Y, Yin J, Xu K. Hypercoagulable state and gut microbiota dysbiosis as predictors of poor functional outcomes in acute ischemic stroke patients. mSystems 2025:e0149224. [PMID: 40202300 DOI: 10.1128/msystems.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Stroke is the second leading cause of death worldwide. Acute ischemic stroke (AIS) patients often exhibit hypercoagulable state and gut microbiota dysbiosis. However, the association between coagulation abnormalities and gut microbiota dysbiosis in AIS patients and their predictive value for poor functional outcomes in AIS has not been investigated. Our study enrolled 95 AIS patients and 81 healthy controls, using 16S rRNA sequencing to analyze gut microbiota composition. Baseline fibrinogen level was found to be an independent risk factor for poor functional outcomes at 90-day follow-up (odds ratio = 2.16, 95% confidence interval: 1.02-4.59, P = 0.044). AIS patients showed significant gut microbiota dysbiosis, with significantly increased Parabacteroides and Alistipes, and decreased Prevotella and Roseburia, associated with coagulation indices. Furthermore, compared with AIS patients with normal coagulation function, those in a hypercoagulable state exhibited a significant increase in Alistipes and a decrease in Prevotella. We identified gut microbial biomarkers consisting of 15 bacteria that predicted poor functional outcome in AIS patients at 90-day follow-up. Coagulation indices improved the predictive performance of these biomarkers. In training and validation cohorts, area under the curve (AUC) values were 0.930 and 0.890 for microbial biomarkers alone, 0.691 and 0.751 for coagulation indices alone, and 0.943 and 0.944 for coagulation indices combined with gut microbial biomarkers. Our study showed that AIS patients with hypercoagulable state had gut microbiota dysbiosis, with Alistipes and Prevotella significantly associated with coagulation indices. A classification model based on coagulation indices and gut microbial biomarkers accurately predicted poor functional outcome in AIS patients at 90-day follow-up. IMPORTANCE Acute ischemic stroke (AIS) patients often exhibit hypercoagulable state and gut microbiota dysbiosis. However, the relationship between hypercoagulable state and gut microbiota dysbiosis in AIS patients and their predictive value for poor functional outcomes has not been fully explored. Our study of 95 AIS patients showed that baseline fibrinogen level was an independent risk factor for poor functional outcome at 90-day follow-up in AIS patients. Hypercoagulable state in AIS patients correlates with gut microbiota dysbiosis. AIS patients with hypercoagulable state had increased Alistipes abundance and decreased Prevotella abundance. A classification model based on coagulation indices and gut microbial biomarkers accurately predicted poor functional outcome in AIS patients at 90-day follow-up.
Collapse
Affiliation(s)
- Jie Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengnan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siqi Yang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqi Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lang Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanchao Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxi Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghui Guo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiyu Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Prame Kumar K, McKay LD, Nguyen H, Kaur J, Wilson JL, Suthya AR, McKeown SJ, Abud HE, Wong CHY. Sympathetic-Mediated Intestinal Cell Death Contributes to Gut Barrier Impairment After Stroke. Transl Stroke Res 2025; 16:280-298. [PMID: 38030854 PMCID: PMC11976816 DOI: 10.1007/s12975-023-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
Tissue injury induced by stroke is traditionally thought to be localised to the brain. However, there is an accumulating body of evidence to demonstrate that stroke promotes pathophysiological consequences in peripheral tissues including the gastrointestinal system. In this study, we investigated the mechanisms underlying gut permeability after stroke. We utilised the clinically relevant experimental model of stroke called permanent intraluminal middle cerebral artery occlusion (pMCAO) to examine the effect of cerebral ischaemia on the gut. We detected stroke-induced gut permeability at 5 h after pMCAO. At this timepoint, we observed significantly elevated intestinal epithelial cell death in post-stroke mice compared to their sham-operated counterparts. At 24 h after stroke onset when the gut barrier integrity is restored, our findings indicated that post-stroke intestinal epithelium had higher expression of genes associated with fructose metabolism, and hyperplasia of intestinal crypts and goblet cells, conceivably as a host compensatory mechanism to adapt to the impaired gut barrier. Furthermore, we discovered that stroke-induced gut permeability was mediated by the activation of the sympathetic nervous system as pharmacological denervation decreased the stroke-induced intestinal epithelial cell death, goblet cell and crypt hyperplasia, and gut permeability to baseline levels. Our study identifies a previously unknown mechanism in the brain-gut axis by which stroke triggers intestinal cell death and gut permeability.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Liam D McKay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Huynh Nguyen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Jasveena Kaur
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jenny L Wilson
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Althea R Suthya
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Sonja J McKeown
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
5
|
Zhang R, Han L, Pu L, Jiang G, Guan Q, Fan W, Liu H. Investigating causal associations of gut microbiota and blood metabolites on stroke and its subtypes: A Mendelian randomization study. J Stroke Cerebrovasc Dis 2025; 34:108233. [PMID: 39798630 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND The causal relationships between gut microbiota, blood metabolites, and stroke and its subtypes remain unclear. This study aims to uncover the causal associations using Mendelian randomization. METHODS We initially identify Single-Nucleotide Polymorphisms (SNPs) correlated with gut microbiota and blood metabolites as instrumental variables (IVs) from the summary statistics in Genome-Wide Association Study (GWAS) to evaluate their potential causal associations with stroke and its subtypes. We proceed with a two-step Mendelian randomization analysis aiming to determine whether blood metabolites mediate the relationships between gut microbiota and stroke or its subtypes. RESULTS We identified the genetic predictions of 12, 11, and 10 particular gut microbiota were associated with stroke, ischemic stroke, and intracerebral hemorrhage respectively. Inverse variance weighted (IVW) analysis disclosed Alistipes (OR [95%CI]: 1.11[1.00,1.23]), Streptococcus (OR [95%CI]: 1.17[1.05,1.30]), and Porphyromonadaceae (OR [95%CI]: 2.41[1.09,5.31]) as the primary causal effects on stroke, ischemic stroke, and ICH, respectively. We determined that 8, 11, and 1 blood metabolites were causally related to stroke, ischemic stroke, and ICH, respectively. Among these metabolites, Citrate (OR [95%CI]: 2.39[1.32,4.34]) and Beta-hydroxyisovalerate (OR [95%CI]: 2.54[1.62,3.97]) had the foremost causal effect on stroke and ischemic stroke, respectively, whereas Glutaroyl carnitine evidenced a causal effect on ICH. Furthermore, our study revealed that Tetradecanedioate marginally mediated the causal effects of Paraprevotella on stroke and ischemic stroke. CONCLUSIONS This study established a causal link between gut microbiota, plasma metabolites, and stroke. It revealed a marginal pathway, shedding new light on the intricate interactions among gut microbes, blood metabolites, stroke, and their underlying mechanisms.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Public Health, Southeast University, Nanjing, Jiangsu, China; Department of Clinical Epidemiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Liyuan Han
- Department of Clinical Epidemiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Liyuan Pu
- Department of Clinical Epidemiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Guozhi Jiang
- School of Public Health, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China; School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiongfeng Guan
- Department of Neurology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Weinv Fan
- Department of Neurology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Huina Liu
- Department of Clinical Epidemiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Zeng X, Ma C, Fu W, Xu Y, Wang R, Liu D, Zhang L, Hu N, Li D, Li W. Changes in Type 1 Diabetes-Associated Gut Microbiota Aggravate Brain Ischemia Injury by Affecting Microglial Polarization Via the Butyrate-MyD88 Pathway in Mice. Mol Neurobiol 2025; 62:3764-3780. [PMID: 39322832 DOI: 10.1007/s12035-024-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
People with type 1 diabetes (T1D) have a significantly elevated risk of stroke, but the mechanism through which T1D worsens ischemic stroke remains unclear. This study was aimed at investigating the roles of T1D-associated changes in the gut microbiota in aggravating ischemic stroke and the underlying mechanism. Fecal 16SrRNA sequencing indicated that T1D mice and mice with transplantation of T1D mouse gut microbiota had lower relative abundance of butyric acid producers, f_Erysipelotrichaceae and g_Allobaculum, and lower content of butyric acid in feces. After middle cerebral artery occlusion (MCAO), these mice had poorer neurological outcomes and more severe inflammation, but higher expression of myeloid differentiation factor 88 (MyD88) in the ischemic penumbra; moreover, the microglia were inclined to polarize toward the pro-inflammatory type. Administration of butyrate to T1D mice in the drinking water alleviated the neurological damage after MCAO. Butyrate influenced the response and polarization of BV2 and decreased the production of inflammatory cytokines via MyD88 after oxygen-glucose deprivation/reoxygenation. Knocking down MyD88 in the brain alleviated neurological outcomes and decreased the concentrations of inflammatory cytokines in the brain after stroke in mice with transplantation of T1D mouse gut microbiota. Poor neurological outcomes and aggravated inflammatory responses of T1D mice after ischemic stroke may be partly due to differences in microglial polarization mediated by the gut microbiota-butyrate-MyD88 pathway. These findings provide new ideas and potential intervention targets for alleviating neurological damage after ischemic stroke in T1D.
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Can Ma
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenchao Fu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yongmei Xu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Rui Wang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dan Liu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Lijuan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dongmei Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Ding YX, Chen LL, Li KW, Zou L, Liao LM, Han XY, OuYang J, Wu YP, Zhang WD, Chu HR. Assessing the impact of moxibustion on colonic mucosal integrity and gut microbiota in a rat model of cerebral ischemic stroke: insights from the "brain-gut axis" theory. Front Neurol 2025; 16:1450868. [PMID: 40083458 PMCID: PMC11903257 DOI: 10.3389/fneur.2025.1450868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/08/2025] [Indexed: 03/16/2025] Open
Abstract
Objective The aim of this study is to assess the impact of moxibustion on the colonic mucosal barrier and gut microbiota in a rat model of cerebral ischemic stroke (CIS). Method The CIS rat model was established using the modified Zea Longa suture method. Successfully modeled rats were randomly allocated into a model group and a moxibustion group, with a sham surgery group serving as the control. The moxibustion group received suspended moxibustion at Dazhui (GV 14), Baihui (GV 20), Fengfu (GV 16), and bilateral Tianshu (ST 25) and Shangjuxu (ST 37) acupoints. Neurological function was assessed using the Longa score, and brain infarct size was assessed through 2,3,5-triphenyl tetrazolium chloride staining. Gut microbiota composition was analyzed using 16S rDNA amplification sequencing. Intestinal mucosal permeability was evaluated using the FITC-Dextran tracer method. The serum ET-1 levels and the expression of Occludin and ZO-1 proteins in colonic tissues were also measured. Result The model group exhibited significantly higher Longa scores, larger brain infarct size, and higher serum FITC-Dextran levels and ET-1 levels when compared with the sham surgery group (p < 0.01). The model group demonstrated decreased expression of Occludin and ZO-1 in colonic tissues (p < 0.01) and changes in gut microbiota structure. When compared to the model group, the moxibustion group demonstrated significantly lower Longa scores, smaller brain infarct size, and lower serum FITC-Dextran levels and ET-1 levels (p < 0.05). Furthermore, the moxibustion group demonstrated decreased inflammatory cell infiltration in colonic tissues, increased expression of Occludin and ZO-1 proteins in colonic tissues (p < 0.05), enhanced gut microbiota structure, and a decreased Simpson index (p < 0.05). Conclusion Moxibustion can improve the neurological dysfunction in CIS model rats. The mechanism may be associated with the improvement in gut microbiota dysbiosis, reduction in colonic mucosal permeability, and restoration of intestinal mucosal barrier damage.
Collapse
Affiliation(s)
- Yi-Xia Ding
- Department of Encephalopathy (V), The Second Affiliated Hospital of Anhui University of Chinese Medicine (Anhui Acupuncture Hospital), Hefei, Anhui, China
- Institute of Clinical Acupuncture and Moxibustion, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Anhui Clinical Medical Research Center of Acupuncture and Moxibustion, Hefei, Anhui, China
| | - Liang-Liang Chen
- Institute of Clinical Acupuncture and Moxibustion, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Anhui Clinical Medical Research Center of Acupuncture and Moxibustion, Hefei, Anhui, China
- Department of Spleen and Stomach Diseases, The Second Affiliated Hospital of Anhui University of Chinese Medicine (Anhui Acupuncture Hospital), Hefei, Anhui, China
| | - Kui-Wu Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ling Zou
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lu-Min Liao
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao-Yu Han
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jie OuYang
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yue-Ping Wu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wen-Dong Zhang
- Department of Encephalopathy (V), The Second Affiliated Hospital of Anhui University of Chinese Medicine (Anhui Acupuncture Hospital), Hefei, Anhui, China
- Institute of Clinical Acupuncture and Moxibustion, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Anhui Clinical Medical Research Center of Acupuncture and Moxibustion, Hefei, Anhui, China
| | - Hao Ran Chu
- Institute of Clinical Acupuncture and Moxibustion, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Anhui Clinical Medical Research Center of Acupuncture and Moxibustion, Hefei, Anhui, China
- Outpatient Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine (Anhui Acupuncture Hospital), Hefei, Anhui, China
| |
Collapse
|
9
|
Thirupathi K, Ghozy S, Reda A, Ranatunga WK, Ruben MA, Armin Z, Mereuta OM, Prabhjot S, Dai D, Brinjikji W, Kallmes DF, Kadirvel R. Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Brain Sci 2025; 15:157. [PMID: 40002490 PMCID: PMC11853128 DOI: 10.3390/brainsci15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Variability in recanalization success during endovascular treatment for acute ischemic stroke (AIS) has led to increased interests in thrombus composition and associated cellular materials. While evidence suggests that bacteria may influence thrombus characteristics, limited data exist on microbiological profiles of thrombi in stroke patients. Objectives: Characterization of bacterial communities present in thrombi of AIS patients undergoing mechanical thrombectomy, providing insights into microbial contributions to stroke pathogenesis and treatment outcomes. Methods: Thrombi were collected from 20 AIS patients. After extracting metagenome, 16S rDNA sequencing was performed. Bioinformatic analysis included taxonomy and diversity assessments. The presence of bacterial DNA and viable bacteria in thrombi was validated using polymerase chain reaction (PCR) and bacterial culturing followed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis, respectively. Results: 16S rDNA was amplified in 19/20 thrombi (95%). Analysis identified a diverse microbial community, with Corynebacterium spp. as the most prevalent genus, followed by Staphylococcus spp., Bifidobacterium spp., Methylobacterium spp., and Anaerococcus spp. Alpha diversity analyses (Shannon index: 4.0-6.0 and Simpson index: 0.8-1.0) revealed moderate to high microbial diversity across samples; beta diversity demonstrated distinct clustering, indicating inter-patient variability in microbial profiles. PCR confirmed the presence of DNA specific to dominant bacterial taxa identified through sequencing. Culturing showed the presence of Staphylococcus epidermidis and Enterococcus faecalis in some clots as identified through MALDI analysis. Conclusions: This study shows bacterial communities present in AIS patients' thrombi, suggesting a potential link between microbial signatures and thrombus characteristics.
Collapse
Affiliation(s)
- Kasthuri Thirupathi
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Sherief Ghozy
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Abdullah Reda
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Wasantha K. Ranatunga
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Mars A. Ruben
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA (S.P.)
| | - Zarrintan Armin
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Oana M. Mereuta
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
| | - Sekhon Prabhjot
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA (S.P.)
| | - Daying Dai
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - David F. Kallmes
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| | - Ramanathan Kadirvel
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (K.T.); (A.R.); (W.K.R.); (O.M.M.)
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.D.); (W.B.); (D.F.K.)
| |
Collapse
|
10
|
Ren Y, Chen G, Hong Y, Wang Q, Lan B, Huang Z. Novel Insight into the Modulatory Effect of Traditional Chinese Medicine on Cerebral Ischemia-Reperfusion Injury by Targeting Gut Microbiota: A Review. Drug Des Devel Ther 2025; 19:185-200. [PMID: 39810832 PMCID: PMC11731027 DOI: 10.2147/dddt.s500505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention. The gut microbiota not only affects intestinal barrier function but also regulates gastrointestinal immunity and host homeostasis. Traditional Chinese medicine (TCM), a multi-component and multi-targeted drug, has shown remarkable effects and few adverse reactions in the prevention and treatment of CIRI. Notably, the effect of TCM on CIRI by regulating gut microbiota and maintaining gastrointestinal homeostasis has gradually become a hot topic. This review summarizes the functional role of the gut microbiota in the development and progression of CIRI and the therapeutic effects of TCM on CIRI by improving gut microbiota dysbiosis, affecting gut microbiota metabolism, and maintaining host immunity. The active ingredients of TCM used for the treatment of CIRI in relevant studies were saponins, triterpenoids, phenolics, and alkaloids. In addition, the clinical effects of TCM used to treat CIRI were briefly discussed. This review established the clinical significance and development prospects of TCM-based CIRI treatments and provided the necessary theoretical support for the further development of TCM resources for the treatment of CIRI.
Collapse
Affiliation(s)
- Yisong Ren
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Gang Chen
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Ying Hong
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Qianying Wang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Bo Lan
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Zhaozhao Huang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| |
Collapse
|
11
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Kursancew ACDS, Prophiro JS, Generoso J, Petronilho F. Innate lymphoid cells in the brain: Focus on ischemic stroke. Microvasc Res 2025; 157:104755. [PMID: 39427988 DOI: 10.1016/j.mvr.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The innate immune system consists of a diverse set of immune cells, including innate lymphoid cells (ILCs), which are grouped into subsets based on their transcription factors and cytokine profiles. Among these are natural killer (NK) cells, group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Unlike T and B cells, ILCs do not express the diverse antigen receptors typically found on those cells. Although ILCs function in various systems, further research is needed to understand their role in the brain and their involvement in neurological diseases such as stroke. This review explores the general immunological aspects of ILCs, with a particular focus on their role in the central nervous system and the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
12
|
Kaur M, Aran KR, Paswan R. A potential role of gut microbiota in stroke: mechanisms, therapeutic strategies and future prospective. Psychopharmacology (Berl) 2024; 241:2409-2430. [PMID: 39463207 DOI: 10.1007/s00213-024-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE Neurological conditions like Stroke and Alzheimer's disease (AD) often include inflammatory responses in the nervous system. Stroke, linked to high disability and mortality rates, poses challenges related to organ-related complications. Recent focus on understanding the pathophysiology of ischemic stroke includes aspects like cellular excitotoxicity, oxidative stress, cell death mechanisms, and neuroinflammation. OBJECTIVE The objective of this paper is to summarize and explore the pathophysiology of ischemic stroke, elucidates the gut-brain axis mechanism, and discusses recent clinical trials, shedding light on novel treatments and future possibilities. RESULTS Changes in gut architecture and microbiota contribute to dementia by enhancing intestinal permeability, activating the immune system, elevating proinflammatory mediators, altering blood-brain barrier (BBB) permeability, and ultimately leading to neurodegenerative diseases (NDDs). The gut-brain axis's potential role in disease pathophysiology offers new avenues for cell-based regenerative medicine in treating neurological conditions. CONCLUSION In conclusion, the gut microbiome significantly impacts stroke prognosis by highlighting the role of the gut-brain axis in ischemic stroke mechanisms. This insight suggests potential therapeutic strategies for improving outcomes.
Collapse
Affiliation(s)
- Manpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Raju Paswan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
13
|
Wang Y, Bing H, Jiang C, Wang J, Wang X, Xia Z, Chu Q. Gut microbiota dysbiosis and neurological function recovery after intracerebral hemorrhage: an analysis of clinical samples. Microbiol Spectr 2024; 12:e0117824. [PMID: 39315788 PMCID: PMC11537008 DOI: 10.1128/spectrum.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. We designed two clinical cohort studies to explore the gut dysbiosis after ICH and their relationship with neurological function prognosis. First, fecal samples from patients with ICH at three time points: T1 (within 24 h of admission), T2 (3 days after surgery), and T3 (7 days after surgery), and healthy volunteers were subjected to 16S rRNA sequencing using Illumina high-throughput sequencing technology. When differential gut microbiota was identified, the correlation between clinical indicators and microbiotas was analyzed. Subsequently, the patients with ICH were categorized into GOOD and POOR groups based on their Glasgow Outcome Scale Extended (GOS-E) score, and the disparities in gut microbiota between the two groups were assessed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors. The composition and diversity of the gut microbiota in patients with ICH were different from those in the control group and changed dynamically with the extension of the course of cerebral hemorrhage. The abundances of Enterococcaceae, Clostridiales incertae sedis XI, and Peptoniphilaceae were significantly increased in patients with ICH, whereas Bacteroidaceae, Ruminococcaceae, Lachnospiraceae, and Veillonellaceae were significantly reduced. The relative abundance of Enterococcus gradually increased with the extension of the duration of ICH after surgery, and the abundance of Bacteroides gradually decreased. The abundance of Enterococcus before surgery was found to be negatively associated with patient neurological function prognosis. The original ICH score and Lachnospiraceae status were independent risk factors for predicting the prognosis of neurological function in patients with ICH (P < 0.05). Changes in the gut microbiota diversity in patients with ICH were related to prognosis. Lachnospiraceae may have a protective effect on prognosis.IMPORTANCEAcute central nervous system injuries like hemorrhagic stroke are major global health issues. While surgical hematoma removal can alleviate brain damage, severe cases still have a high 1-month mortality rate of up to 40%. Gut microbiota significantly impacts health, and treatments like fecal microbiota transplantation (FMT) and probiotics can improve brain damage by correcting gut microbiota imbalances caused by ischemic stroke. However, few clinical studies have explored this relationship in hemorrhagic stroke. This study investigated the impact of cerebral hemorrhage on the composition of gut microbiota, and we found that Lachnospiraceae were the independent risk factors for poor prognosis in intracerebral hemorrhage (ICH). The findings offer potential insights for the application of FMT in patients with ICH, and it may improve the prognosis of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hailong Bing
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Conghui Jiang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuan Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou central Hospital Affiliated To Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Rahimi A, Qaisar SA, Janeh T, Karimpour H, Darbandi M, Moludi J. Clinical trial of the effects of postbiotic supplementation on inflammation, oxidative stress, and clinical outcomes in patients with CVA. Sci Rep 2024; 14:24021. [PMID: 39402150 PMCID: PMC11473548 DOI: 10.1038/s41598-024-76153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024] Open
Abstract
Background Cerebrovascular accidents (CVAs), or strokes, are major global health concerns associated with oxidative stress, inflammation, and gastrointestinal complications. This study aimed to explore the impact of postbiotic supplementation in CVA patients, specifically in terms of oxidative stress, inflammation, and clinical outcomes, as an alternative to probiotics with potential advantages. Method A prospective, single-center, randomized, controlled trial was conducted with 120 CVA patients in Iran. These patients were admitted to the ICU to assess the severity of their strokes. Patients were randomly assigned to receive either postbiotic supplementation (n = 60) or a placebo (n = 60). Various biomarkers related to oxidative stress, inflammation, and clinical outcomes were assessed. Data on demographic characteristics, nosocomial infections, and laboratory measurements were collected. Gut microbiota analysis was also performed on fecal samples. Results After the 7-day intervention, postbiotic supplementation resulted in significant improvements in inflammatory markers, oxidative stress, and a reduced incidence of pneumonia compared with those in the control group, with the postbiotic group demonstrating notable decreases in the serum IL-1β levels (-1.79; 95% CI: = -2.9 to -0.64, p = 0.002 ), MDA levels (-30.5; 95% CI: -54.8 to -6.1, p = 0.015), Hs-CRP levels (-0.67; 95% CI:-1.1 to -0.26 mg/dl, p = 0.001) and TAC levels (62.5; 95%CI: 34.1 to 90.9, p < 0.001) compared with those in the placebo group. However, no significant differences in other clinical outcomes, including the NIHSS score, NUTRIC score, and APACHE II score, or the gut microbiota profile, were observed between the two groups. Conclusion Postbiotic supplementation improved the levels of inflammatory factors and oxidative stress markers and reduced the risk of pneumonia in CVA patients. Trial registration This trial is registered in the Iranian Registry of Clinical Trials (registration code IRCT20180712040438N7), Registration date 06122022.
Collapse
Affiliation(s)
- Akram Rahimi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shaimaa A Qaisar
- Chemistry Department, College of Education, University of Garmian, Sulimmania, Iraq
| | - Tofigh Janeh
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassanali Karimpour
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Darbandi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jalal Moludi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, 5166614711, 00989399516760, Iran.
| |
Collapse
|
15
|
Su X, Li T, Wang Y, Wei L, Jian B, Kang X, Hu M, Li C, Wang S, Lu D, Shen S, Huang H, Liu Y, Deng X, Zhang B, Cai W, Lu Z. Bone marrow-derived mesenchymal stem cell ameliorates post-stroke enterobacterial translocation through liver-gut axis. Stroke Vasc Neurol 2024:svn-2024-003494. [PMID: 39366758 DOI: 10.1136/svn-2024-003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Enterobacterial translocation is a leading contributor to fatal infection among patients with acute ischaemic stroke (AIS). Accumulative evidence suggests that mesenchymal stem cell (MSC) effectively ameliorates stroke outcomes. Whether MSC could inhibit post-stroke enterobacterial translocation remains elusive. METHODS Patients with AIS and healthy individuals were enrolled in the study. Mice subjected to transient middle cerebral artery occlusion were treated with bone marrow-derived MSC (BM-MSC) right after reperfusion. Enterobacterial translocation was evaluated with Stroke Dysbiosis Index and circulating endotoxin. Thickness of mucus was assessed with Alcian blue staining. Hepatic glucocorticoid (GC) metabolism was analysed with expression of HSD11B2, HSD11B1 and SRD5A1. RESULTS We report that the gut mucus layer was attenuated after the stroke leading to pronounced enterobacterial translocation. The attenuation of the gut mucus was attributed to diminished mucin production by goblet cells in response to the elevated systemic GC after cerebral ischaemia. Transferred-BM-MSC restored the mucus thickness, thus preserving gut microbiota homeostasis and preventing enterobacterial invasion. Mechanistically, the transferred-BM-MSC stationed in the liver and enhanced peroxisome proliferator-activated receptor γ signalling in hepatocytes. Consequently, expression of HSD11B2 and SRD5A1 was increased while HSD11B1 expression was downregulated which promoted GC catabolism and subsequently restored mucin production. CONCLUSIONS Our findings reveal that MSC transfer improves post-stroke gut barrier integrity and inhibits enterobacterial translocation by enhancing the hepatic GC metabolism thus representing a protective modulator of the liver-gut-brain axis in AIS.
Collapse
Affiliation(s)
- Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Banghao Jian
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Mathias K, Machado RS, Stork S, Martins CD, Dos Santos D, Lippert FW, Prophiro JS, Petronilho F. Short-chain fatty acid on blood-brain barrier and glial function in ischemic stroke. Life Sci 2024; 354:122979. [PMID: 39147315 DOI: 10.1016/j.lfs.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabrício Weinheimer Lippert
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
17
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
18
|
Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:321-328. [PMID: 39364121 PMCID: PMC11444859 DOI: 10.12938/bmfh.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Jinying Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Xiaoran Wang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Zhengwang Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| |
Collapse
|
19
|
Dulam V, Katta S, Nakka VP. Stroke and Distal Organ Damage: Exploring Brain-Kidney Crosstalk. Neurochem Res 2024; 49:1617-1627. [PMID: 38376748 DOI: 10.1007/s11064-024-04126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Stroke and kidney dysfunction represent significant public health challenges, yet the precise mechanisms connecting these conditions and their severe consequences remain unclear. Individuals experiencing chronic kidney disease (CKD) and acute kidney injury (AKI) are at heightened susceptibility to experiencing repeated strokes. Similarly, a reduced glomerular filtration rate is associated with an elevated risk of suffering a stroke. Prior strokes independently contribute to mortality, end-stage kidney disease, and cardiovascular complications, underscoring the pathological connection between the brain and the kidneys. In cases of AKI, various mechanisms, such as cytokine signaling, leukocyte infiltration, and oxidative stress, establish communication between the brain and the kidneys. The bidirectional relationship between stroke and kidney pathologies involves key factors such as uremic toxins, proteinuria, inflammatory responses, decreased glomerular filtration, impairment of the blood-brain barrier (BBB), oxidative stress, and metabolites produced by the gut microbiota. This review examines potential mechanisms of brain-kidney crosstalk underlying stroke and kidney diseases. It holds significance for comprehending multi-organ dysfunction associated with stroke and for formulating therapeutic strategies to address stroke-induced kidney dysfunction and the bidirectional pathological connection between the kidney and stroke.
Collapse
Affiliation(s)
- Vandana Dulam
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Sireesha Katta
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Andhra Pradesh, 522510, India.
| |
Collapse
|
20
|
Kumaria A, Kirkman MA, Scott RA, Dow GR, Leggate AJ, Macarthur DC, Ingale HA, Smith SJ, Basu S. A Reappraisal of the Pathophysiology of Cushing Ulcer: A Narrative Review. J Neurosurg Anesthesiol 2024; 36:211-217. [PMID: 37188653 DOI: 10.1097/ana.0000000000000918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In 1932, Harvey Cushing described peptic ulceration secondary to raised intracranial pressure and attributed this to vagal overactivity, causing excess gastric acid secretion. Cushing ulcer remains a cause of morbidity in patients, albeit one that is preventable. This narrative review evaluates the evidence pertaining to the pathophysiology of neurogenic peptic ulceration. Review of the literature suggests that the pathophysiology of Cushing ulcer may extend beyond vagal mechanisms for several reasons: (1) clinical and experimental studies have shown only a modest increase in gastric acid secretion in head-injured patients; (2) increased vagal tone is found in only a minority of cases of intracranial hypertension, most of which are related to catastrophic, nonsurvivable brain injury; (3) direct stimulation of the vagus nerve does not cause peptic ulceration, and; (4) Cushing ulcer can occur after acute ischemic stroke, but only a minority of strokes are associated with raised intracranial pressure and/or increased vagal tone. The 2005 Nobel Prize in Medicine honored the discovery that bacteria play key roles in the pathogenesis of peptic ulcer disease. Brain injury results in widespread changes in the gut microbiome in addition to gastrointestinal inflammation, including systemic upregulation of proinflammatory cytokines. Alternations in the gut microbiome in patients with severe traumatic brain injury include colonization with commensal flora associated with peptic ulceration. The brain-gut-microbiome axis integrates the central nervous system, the enteric nervous system, and the immune system. Following the review of the literature, we propose a novel hypothesis that neurogenic peptic ulcer may be associated with alterations in the gut microbiome, resulting in gastrointestinal inflammation leading to ulceration.
Collapse
Affiliation(s)
| | | | - Robert A Scott
- NIHR Biomedical Research Centre, Nottingham University Hospitals NHS Trust
- Nottingham Digestive Diseases Centre
| | - Graham R Dow
- Department of Neurosurgery, Queen's Medical Centre
| | | | | | | | - Stuart J Smith
- Department of Neurosurgery, Queen's Medical Centre
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Surajit Basu
- Department of Neurosurgery, Queen's Medical Centre
| |
Collapse
|
21
|
Chen J, Gao X, Liang J, Wu Q, Shen L, Zheng Y, Ma Y, Peng Y, He Y, Yin J. Association between gut microbiota dysbiosis and poor functional outcomes in acute ischemic stroke patients with COVID-19 infection. mSystems 2024; 9:e0018524. [PMID: 38700338 PMCID: PMC11237522 DOI: 10.1128/msystems.00185-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Acute ischemic stroke (AIS) patients with active COVID-19 infection often have more severe symptoms and worse recovery. COVID-19 infection can cause gut microbiota dysbiosis, which is also a risk factor for poor outcomes in AIS patients. However, the association between gut microbiota and functional outcomes among AIS patients with COVID-19 infection has not been fully clarified yet. In this study, we performed 16S rRNA gene sequencing to characterize the gut microbial community among AIS patients with acute COVID-19 infection, AIS patients with post-acute COVID-19 infection, and AIS patients without COVID-19 infection. We found that AIS patients with acute COVID-19 experienced poorer recovery and significant gut dysbiosis, characterized by higher levels of Enterobacteriaceae and lower levels of Ruminococcaceae and Lachnospiraceae. Furthermore, a shorter time window (less than 28 days) between COVID-19 infection and stroke was identified as a risk factor for poor functional outcomes in AIS patients with COVID-19, and the enrichment of Enterobacteriaceae was indicated as a mediator in the relationship between infection time window and poor stroke outcomes. Our findings highlight the importance of early intervention after COVID-19 infection, especially by regulating the gut microbiota, which plays a role in the prognosis of AIS patients with COVID-19 infection.IMPORTANCEThe gut microbiota plays an important role in the association between respiratory system and cerebrovascular system through the gut-lung axis and gut-brain axis. However, the specific connection between gut bacteria and the functional outcomes of acute ischemic stroke (AIS) patients with COVID-19 is not fully understood yet. In our study, we observed a significant decrease in bacterial diversity and shifts in the abundance of key bacterial families in AIS patients with acute COVID-19 infection. Furthermore, we identified that the time window was a critical influence factor for stroke outcomes, and the enrichment of Enterobacteriaceae acted as a mediator in the relationship between the infection time window and poor stroke outcomes. Our research provides a new perspective on the complex interplay among AIS, COVID-19 infection, and gut microbiota dysbiosis. Moreover, recognizing Enterobacteriaceae as a potential mediator of poor stroke prognosis offers a novel avenue for future exploration and therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuxuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Liang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linlin Shen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifeng Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Ma
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuping Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, Guangdong, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Shuai H, Wang Z, Xiao Y, Ge Y, Mao H, Gao J. Genetically supported causality between gut microbiota, immune cells, and ischemic stroke: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1402718. [PMID: 38894965 PMCID: PMC11185428 DOI: 10.3389/fmicb.2024.1402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background Previous studies have highlighted a robust correlation between gut microbiota/immune cells and ischemic stroke (IS). However, the precise nature of their causal relationship remains uncertain. To address this gap, our study aims to meticulously investigate the causal association between gut microbiota/immune cells and the likelihood of developing IS, employing a two-sample Mendelian randomization (MR) analysis. Methods Our comprehensive analysis utilized summary statistics from genome-wide association studies (GWAS) on gut microbiota, immune cells, and IS. The primary MR method employed was the inverse variance-weighted (IVW) approach. To address potential pleiotropy and identify outlier genetic variants, we incorporated the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique, along with MR-Egger regression. Heterogeneity was assessed using Cochran's Q-test. Additionally, leave-one-out analysis was conducted to pinpoint any individual genetic variant influencing the observed causal associations. Finally, a reverse MR analysis was performed to explore the potential of reverse causation. Results Our investigation revealed four gut microbial taxa and 16 immune cells with a significant causal relationship with IS (p < 0.05). Notably, two bacterial features and five immunophenotypes were strongly associated with a lower IS risk: genus.Barnesiella.id.944 (OR: 0.907, 95% CI: 0.836-0.983, p = 0.018), genus.LachnospiraceaeNK4A136group.id.11319 (OR: 0.918, 95% CI: 0.853-0.983, p = 0.988), Activated & resting Treg % CD4++ (OR: 0.977, 95% CI: 0.956-0.998, p = 0.028). Additionally, significant associations between IS risk and two bacterial features along with eleven immunophenotypes were observed: genus.Paraprevotella.id.962 (OR: 1.106, 95% CI: 1.043-1.172, p < 0.001), genus.Streptococcus.id.1853 (OR: 1.119, 95% CI: 1.034-1.210, p = 0.005), CD127 on granulocyte (OR: 1.039, 95% CI: 1.009-1.070, p = 0.011). Our analyses did not reveal heterogeneity based on the Cochrane's Q-test (p > 0.05) nor indicate instances of horizontal pleiotropy according to MR-Egger and MR-PRESSO analyses (p > 0.05). Furthermore, the robustness of our MR results was confirmed through leave-one-out analysis. Conclusion Our study provides further evidence supporting the potential association between gut microbiota and immune cells in relation to IS, shedding light on the underlying mechanisms that may contribute to this condition. These findings lay a solid foundation for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Han Shuai
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Zi Wang
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yinggang Xiao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yali Ge
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Mao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Ju Gao
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
24
|
Park D, Kim HS, Kim JH. Effect of Pre-Antibiotic Use Before First Stroke Incidence on Recurrence and Mortality: A Longitudinal Study Using the Korean National Health Insurance Service Database. Int J Gen Med 2024; 17:1625-1633. [PMID: 38706744 PMCID: PMC11068048 DOI: 10.2147/ijgm.s456925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Clinical studies on dysbiosis and stroke outcomes has been insufficient to establish clear evidence. This study aimed to investigate the effects of pre-antibiotic use before a stroke event on secondary outcomes using a longitudinal population-level database. Patients and Methods This retrospective cohort study included adults aged 55 years or older diagnosed with acute ischemic stroke (AIS) and acute hemorrhagic stroke (AHS) between 2004 and 2007. Patients were followed-up until the end of 2019, and the target outcomes were secondary AIS, AHS, and all-cause mortality. Multivariable Cox regression analyses were applied, and we adjusted covariates such as age, sex, socioeconomic status, hypertension, diabetes, and dyslipidemia. Pre-antibiotic use was identified from 7 days to 1 year before the acute stroke event. Results We included 159,181 patients with AIS (AIS group) and 49,077 patients with AHS (AHS group). Pre-antibiotic use significantly increased the risk of secondary AIS in the AIS group (adjusted hazard ratio [aHR], 1.03; 95% confidence interval [CI], 1.01-1.05; p = 0.009) and secondary AHS in the AHS group (aHR, 1.08; 95% CI, 1.03-1.12; p <0.001). Furthermore, pre-antibiotic use in the AIS group was associated with a lower risk of mortality (aHR, 0.95; 95% CI, 0.94-0.96; p <0.001). Conclusion Our population-based longitudinal study revealed that pre-antibiotic use was associated with a higher risk of secondary stroke and a lower risk of mortality in the AIS and AHS groups. Further studies are needed to understand the relationship between dysbiosis and stroke outcomes.
Collapse
Affiliation(s)
- Dougho Park
- Medical Research Institute, Pohang Stroke and Spine Hospital, Pohang, Republic of Korea
- Department of Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
25
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
27
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
28
|
Luo Y, Chang G, Yu G, Lin Y, Zhang Q, Wang Z, Han J. Unveiling the negative association of Faecalibacterium prausnitzii with ischemic stroke severity, impaired prognosis and pro-inflammatory markers. Heliyon 2024; 10:e26651. [PMID: 38434312 PMCID: PMC10904243 DOI: 10.1016/j.heliyon.2024.e26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background The correlation between acute ischemic stroke (AIS) and gut microbiota has opened a promising avenue for improving stroke prognosis through the utilization of specific gut bacterial species. This study aimed to identify gut bacterial species in AIS patients and their correlation with stroke severity, 3-month prognosis, and inflammatory markers. Methods: We enrolled 59 AIS patients (from June 2021 to July 2022) and 31 age-matched controls with similar cerebrovascular risk profiles but no stroke history. Fecal samples were analyzed using 16 S rDNA V3-V4 sequencing to assess α and β diversity and identify significant microbiota differences. AIS cases were categorized based on the National Institute of Health Stroke Scale (NIHSS) scores and 3-month modified Rankin Scale (mRS) scores. Subgroup analyses were performed, and correlation analysis was used to examine associations between flora abundance, inflammatory markers and stroke outcome. Results Significant differences in β-diversity were observed between case and control groups (P < 0.01). Bacteroides dominated AIS samples, while Clostridia, Lachnospirales, Lachnospiraceae, Ruminococcaceae, Faecalibacterium, and Faecalibacterium prausnitzii were prominent in controls. Faecalibacterium and Faecalibacterium prausnitzii were significantly reduced in non-minor stroke and 3-month poor prognosis groups compared to controls, while this difference was less pronounced in patients with minor stroke and 3-month good prognosis. Both Faecalibacterium and Faecalibacterium prausnitzii were negatively correlated with the NIHSS score on admission (r = -0.48, -0.48, P < 0.01) and 3-month mRS score (r = -0.48, -0.44, P < 0.01). Additionally, they showed negative correlations with pro-inflammatory factors and positive correlations with anti-inflammatory factors (both P < 0.01). Conclusions Faecalibacterium prausnitzii is negatively associated with stroke severity, impaired prognosis, and pro-inflammatory markers, highlighting its potential application in AIS treatments.
Collapse
Affiliation(s)
- Yayin Luo
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Geng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangxiang Yu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Lin
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyi Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | | |
Collapse
|
29
|
Han Y, Xu H, Tao S, Zhu Y, Wei ZZ, Zhao Y, Zhang Y. Bifico Ameliorates Neurological Deficits After Ischemic Stroke in Mice: Transcriptome Profiling. In Vivo 2024; 38:699-709. [PMID: 38418134 PMCID: PMC10905441 DOI: 10.21873/invivo.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Evidence suggests that gut microbiota can affect various neurological diseases, including stroke. Stroke patients have an increase in harmful gut bacteria and a decrease in beneficial bacteria. This increases intestinal permeability, increases the risk of infection, and even affects many inflammatory factors. While probiotics may affect stroke prognosis by improving the gut environment. This study aimed to investigate the effect of probiotic Bifico on the neural function in mice after focal cerebral ischemia and explore its mechanisms of action. MATERIALS AND METHODS A focal cerebral ischemia model was established in mice. Four weeks before modeling, animals were divided into three groups: Stroke plus Vehicle group, Stroke plus Pre-Bifico group and Bifico group. The infarct volume and neurobehaviors were evaluated. Whole-gene expression profiling was performed at different days after treatment (D1, D7, D14, D28) by RNA-seq. Differentially expressed genes (DEGs) were the processed for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). Some inflammation and immune related genes were screened and their expression was analyzed. RESULTS Compared to the Stroke plus Vehicle group and Bifico group, the infarct volume and neurological score were significantly reduced in the Pre-Bifico group. There were 2 DEGs at D1, 193 DEGs at D7, 70 DEGs at D28 between Stroke plus Pre-Bifico group and Stroke plus Vehicle group. For GO analysis, there were 139 significant terms at D7 and 195 at D28. For KEGG, there were 2 significant pathways at D7 and 9 at D28. Among 87 genes related to inflammation and immunity, 6 DEGs were identified. The expression of CCL9 was significantly elevated at most time points after stroke compared to the Stroke plus Vehicle group, while that of CCL6, CXCL10, CD48, CD72 and CLEC7A was highly expressed only in the recovery stage of stroke. CONCLUSION Oral pre-treatment with Bifico for 28 days can reduce cerebral infarction and promote recovery of neurological function in stroke mice, which may be ascribed to the regulation of immunity and inflammation in the brain.
Collapse
Affiliation(s)
- Yanfei Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Huizhen Xu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Shaoxin Tao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Yanbing Zhu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Zheng Z Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Yingying Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
30
|
Cuartero MI, García-Culebras A, Nieto-Vaquero C, Fraga E, Torres-López C, Pradillo J, Lizasoain I, Moro MÁ. The role of gut microbiota in cerebrovascular disease and related dementia. Br J Pharmacol 2024; 181:816-839. [PMID: 37328270 DOI: 10.1111/bph.16167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years, increasing evidence suggests that commensal microbiota may play an important role not only in health but also in disease including cerebrovascular disease. Gut microbes impact physiology, at least in part, by metabolizing dietary factors and host-derived substrates and then generating active compounds including toxins. The purpose of this current review is to highlight the complex interplay between microbiota, their metabolites. and essential functions for human health, ranging from regulation of the metabolism and the immune system to modulation of brain development and function. We discuss the role of gut dysbiosis in cerebrovascular disease, specifically in acute and chronic stroke phases, and the possible implication of intestinal microbiota in post-stroke cognitive impairment and dementia, and we identify potential therapeutic opportunities of targeting microbiota in this context. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Carmen Nieto-Vaquero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Enrique Fraga
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Cristina Torres-López
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jesús Pradillo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ignacio Lizasoain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
31
|
Yan S, Ji Q, Ding J, Liu Z, Wei W, Li H, Li L, Ma C, Liao D, He Z, Ai S. Protective effects of butyrate on cerebral ischaemic injury in animal models: a systematic review and meta-analysis. Front Neurosci 2024; 18:1304906. [PMID: 38486971 PMCID: PMC10937403 DOI: 10.3389/fnins.2024.1304906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Cerebral ischaemic stroke is a common disease that poses a serious threat to human health. Butyrate is an important metabolite of intestinal microorganisms. Recent studies have shown that butyrate has a significant protective effect in animal models of cerebral ischaemic injury. Objective The aim of this study was to evaluate the protective effect of butyrate on cerebral ischaemic stroke by meta-analysis, aiming to provide a scientific basis for the clinical application of butyrate in patients with cerebral ischaemia. Materials and methods A systematic search was conducted for all relevant studies published before 23 January 2024, in PubMed, Web of Science, Cochrane Library, and Embase. Methodological quality was assessed using Syrcle's risk of bias tool for animal studies. Data were analysed using Rev Man 5.3 software. Results A total of nine studies were included, and compared with controls, butyrate significantly increased BDNF levels in the brain (SMD = 2.33, 95%CI = [1.20, 3.47], p < 0.005) and P-Akt expression (SMD = 3.53, 95% CI = [0.97, 6.10], p < 0.05). Butyrate also decreased IL-β levels in the brain (SMD = -2.02, 95% CI = [-3.22, -0.81], p < 0.005), TNF-α levels (SMD = -0.86, 95% CI = [-1.60, -0.12], p < 0.05), and peripheral vascular IL-1β levels (SMD = -2.10, 95%CI = [-3.59, -0.61], p < 0.05). In addition, butyrate reduced cerebral infarct volume (MD = -11.29, 95%CI = [-17.03, -5.54], p < 0.05), mNSS score (MD = -2.86, 95%CI = [-4.12, -1.60], p < 0.005), foot fault score (MD = -7.59, 95%CI = [-9.83, -5, 35], p < 0.005), and Morris water maze time (SMD = -2.49, 95%CI = [-4.42, -0.55], p < 0.05). Conclusion The results of this study indicate that butyrate has a protective effect on cerebral ischaemic stroke in animal models, and the mechanism is related to reducing inflammation and inhibiting apoptosis. It provides an evidence-based basis for the future clinical development of butyrate in the treatment of ischaemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023482844.
Collapse
Affiliation(s)
- Shichang Yan
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qipei Ji
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jilin Ding
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhixiang Liu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaqiang Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luojie Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Defu Liao
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyan He
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangchun Ai
- Department of Rehabilitation, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
32
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
33
|
Kumar KP, Wilson JL, Nguyen H, McKay LD, Wen SW, Sepehrizadeh T, de Veer M, Rajasekhar P, Carbone SE, Hickey MJ, Poole DP, Wong CHY. Stroke Alters the Function of Enteric Neurons to Impair Smooth Muscle Relaxation and Dysregulates Gut Transit. J Am Heart Assoc 2024; 13:e033279. [PMID: 38258657 PMCID: PMC11056134 DOI: 10.1161/jaha.123.033279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Jenny L. Wilson
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Huynh Nguyen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Liam D. McKay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | | | - Michael de Veer
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Pradeep Rajasekhar
- Centre for Dynamic ImagingWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Simona E. Carbone
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| | - Daniel P. Poole
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical CentreMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
34
|
Kim MJ, Jung DR, Lee JM, Kim I, Son H, Kim ES, Shin JH. Microbial dysbiosis index for assessing colitis status in mouse models: A systematic review and meta-analysis. iScience 2024; 27:108657. [PMID: 38205250 PMCID: PMC10777064 DOI: 10.1016/j.isci.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Although countless gut microbiome studies on colitis using mouse models have been carried out, experiments with small sample sizes have encountered reproducibility limitations because of batch effects and statistical errors. In this study, dextran-sodium-sulfate-induced microbial dysbiosis index (DiMDI) was introduced as a reliable dysbiosis index that can be used to assess the state of microbial dysbiosis in DSS-induced mouse models. Meta-analysis of 189 datasets from 11 independent studies was performed to construct the DiMDI. Microbial dysbiosis biomarkers, Muribaculaceae, Alistipes, Turicibacter, and Bacteroides, were selected through four different feature selection methods and used to construct the DiMDI. This index demonstrated a high accuracy of 82.3% and showed strong robustness (88.9%) in the independent cohort. Therefore, DiMDI may be used as a standard for assessing microbial imbalance in DSS-induced mouse models and may contribute to the development of reliable colitis microbiome studies in mouse experiments.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ikwhan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
35
|
Zhang W, Tang R, Yin Y, Chen J, Yao L, Liu B. Microbiome signatures in ischemic stroke: A systematic review. Heliyon 2024; 10:e23743. [PMID: 38192800 PMCID: PMC10772200 DOI: 10.1016/j.heliyon.2023.e23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Microbial structural changes and dysfunction play an important role in the development of cerebral ischemia. We searched PubMed, Embase, Web of Science, and Cochrane Library and conducted a systematic review to assess the relationship between the human microbiome and ischemic stroke. A total of 24 studies were included, and the intestinal bacterial communities detected in both stroke and healthy people were dominated by 4 main phyla, including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Significant diversity (alpha and beta) in patients with ischemic versus nonischemic stroke was observed in nine out of 18 studies, and 3 studies showed that the severity of ischemic stroke affected microbial diversity. The imbalance of bacteria that produce short-chain fatty acids (SCFAs) changes the bacterial metabolic pathway, and disorders in the level of bacterial metabolites (trimethylamine N-oxide TMAO) lead to significant changes in intestinal flora function, which may aggravate the severity of stroke and affect its prognosis. Further studies are needed to explore the relationship between the microbiome and ischemic stroke.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The School of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Rongbing Tang
- The School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Jialong Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Hu J, Duan H, Zou J, Ding W, Wei Z, Peng Q, Li Z, Duan R, Sun J, Zhu J. METTL3-dependent N6-methyladenosine modification is involved in berberine-mediated neuroprotection in ischemic stroke by enhancing the stability of NEAT1 in astrocytes. Aging (Albany NY) 2024; 16:299-321. [PMID: 38180752 PMCID: PMC10817396 DOI: 10.18632/aging.205369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
Ischemic stroke (IS) is one of the principal causes of disability and death worldwide. Berberine (BBR), derived from the traditional Chinese herbal medicine Huang Lian, has been reported to inhibit the progression of stroke, but the specific mechanism whereby BBR modulates the progression of ischemic stroke remains unclear. N6-methyladenosine (m6A) modification is the most typical epigenetic modification of mRNA post-transcriptional modifications, among which METTL3 is the most common methylation transferase. During the study, the middle cerebral artery occlusion/reperfusion (MCAO/R) was established in mice, and the mice primary astrocytes and neurons induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncNEAT1, miR-377-3p was detected via RT-qPCR. The levels of Nampt and METTL3 were measured by Western blot. CCK8 and LDH assay was performed to detect cell viability. Here, we found that berberine alleviates MCAO/R-induced ischemic injury and up-regulates the expression of Nampt in astrocytes, miR-377-3p inhibits the expression of Nampt in astrocytes after OGD/R, thus promoting neuronal injury. NEAT1 binds to miR-377-3p in OGD/R astrocytes and plays a neuronal protective role as a ceRNA. METTL3 can enhance NEAT1 stability in OGD/R astrocytes by modulating m6A modification of NEAT1. Taken together, our results demonstrate that berberine exerts neuroprotective effects via the m6A methyltransferase METTL3, which regulates the NEAT1/miR-377-3p/Nampt axis in mouse astrocytes to ameliorate cerebral ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huijie Duan
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Junqing Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wangli Ding
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ziqiao Wei
- Department of Second Clinical Medical School, Nanjing Medical University, Nanjing 210000, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China
| | - Zhongyuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
37
|
Manzoor M, Leskelä J, Pietiäinen M, Martinez-Majander N, Ylikotila P, Könönen E, Niiranen T, Lahti L, Sinisalo J, Putaala J, Pussinen PJ, Paju S. Multikingdom oral microbiome interactions in early-onset cryptogenic ischemic stroke. ISME COMMUNICATIONS 2024; 4:ycae088. [PMID: 38988699 PMCID: PMC11235082 DOI: 10.1093/ismeco/ycae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/15/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Although knowledge of the role of the oral microbiome in ischemic stroke is steadily increasing, little is known about the multikingdom microbiota interactions and their consequences. We enrolled participants from a prospective multicentre case-control study and investigated multikingdom microbiome differences using saliva metagenomic datasets (n = 308) from young patients diagnosed with cryptogenic ischemic stroke (CIS) and age- and sex-matched stroke-free controls. Differentially abundant taxa were identified using Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC2). Functional potential was inferred using HUMANn3. Our findings revealed significant differences in the composition and functional capacity of the oral microbiota associated with CIS. We identified 51 microbial species, including 47 bacterial, 3 viral, and one fungal species associated with CIS in the adjusted model. Co-abundance network analysis highlighted a more intricate microbial network in CIS patients, indicating potential interactions and co-occurrence patterns among microbial species across kingdoms. The results of our metagenomic analysis reflect the complexity of the oral microbiome, with high diversity and multikingdom interactions, which may play a role in health and disease.
Collapse
Affiliation(s)
- Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| | - Jaakko Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| | - Milla Pietiäinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
- Industrial Biotechnology and Food Protein Production, VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Nicolas Martinez-Majander
- Department of Neurology, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Pauli Ylikotila
- Neurocenter, Turku University Hospital, University of Turku, 20521 Turku, Finland
| | - Eija Könönen
- Institute of Dentistry, University of Turku, 20500 Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
- Department of Internal Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, 20500 Turku, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Central Hospital, and Helsinki University, 00260 Helsinki, Finland
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
- School of Medicine, Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
38
|
Marsiglia R, Marangelo C, Vernocchi P, Scanu M, Pane S, Russo A, Guanziroli E, Del Chierico F, Valeriani M, Molteni F, Putignani L. Gut Microbiota Ecological and Functional Modulation in Post-Stroke Recovery Patients: An Italian Study. Microorganisms 2023; 12:37. [PMID: 38257864 PMCID: PMC10819831 DOI: 10.3390/microorganisms12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Ischemic stroke (IS) can be caused by perturbations of the gut-brain axis. An imbalance in the gut microbiota (GM), or dysbiosis, may be linked to several IS risk factors and can influence the brain through the production of different metabolites, such as short-chain fatty acids (SCFAs), indole and derivatives. This study examines ecological changes in the GM and its metabolic activities after stroke. Fecal samples of 10 IS patients were compared to 21 healthy controls (CTRLs). GM ecological profiles were generated via 16S rRNA taxonomy as functional profiles using metabolomics analysis performed with a gas chromatograph coupled to a mass spectrometer (GC-MS). Additionally fecal zonulin, a marker of gut permeability, was measured using an enzyme-linked immuno assay (ELISA). Data were analyzed using univariate and multivariate statistical analyses and correlated with clinical features and biochemical variables using correlation and nonparametric tests. Metabolomic analyses, carried out on a subject subgroup, revealed a high concentration of fecal metabolites, such as SCFAs, in the GM of IS patients, which was corroborated by the enrichment of SCFA-producing bacterial genera such as Bacteroides, Christensellaceae, Alistipes and Akkermansia. Conversely, indole and 3-methyl indole (skatole) decreased compared to a subset of six CTRLs. This study illustrates how IS might affect the gut microbial milieu and may suggest potential microbial and metabolic biomarkers of IS. Expanded populations of Akkermansia and enrichment of acetic acid could be considered potential disease phenotype signatures.
Collapse
Affiliation(s)
- Riccardo Marsiglia
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (C.M.); (P.V.); (M.S.); (F.D.C.)
| | - Chiara Marangelo
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (C.M.); (P.V.); (M.S.); (F.D.C.)
| | - Pamela Vernocchi
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (C.M.); (P.V.); (M.S.); (F.D.C.)
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (C.M.); (P.V.); (M.S.); (F.D.C.)
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (A.R.)
| | - Alessandra Russo
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (A.R.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, 23845 Costa Masnaga, Italy; (E.G.); (F.M.)
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.M.); (C.M.); (P.V.); (M.S.); (F.D.C.)
| | - Massimiliano Valeriani
- Developmental Neurology, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
- Center for Sensory Motor Interaction, Aalborg University, 9220 Aalborg, Denmark
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, 23845 Costa Masnaga, Italy; (E.G.); (F.M.)
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
39
|
Duan H, Hu J, Deng Y, Zou J, Ding W, Peng Q, Duan R, Sun J, Zhu J. Berberine Mediates the Production of Butyrate to Ameliorate Cerebral Ischemia via the Gut Microbiota in Mice. Nutrients 2023; 16:9. [PMID: 38201839 PMCID: PMC10781073 DOI: 10.3390/nu16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke (IS) is a vascular disease group concomitant with high morbidity and mortality. Berberine is a bioactive substance and it has been known to improve stroke, but its mechanism is yet to be proven. Mice were fed with BBR for 14 days. Then, the mice were made into MCAO/R models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were detected. We tested the changes in intestinal flora in model mice after BBR administration using 16SrRNA sequencing. Chromatography-mass spectrometry was used to detect butyrate chemically. Tissue immunofluorescence was used to detect the changes in the microglia and astroglia in the mice brains. Our findings suggest that berberine improves stroke outcomes by modulating the gut microbiota. Specifically, after MCAO/R mice were given berberine, the beneficial bacteria producing butyric acid increased significantly, and the mice also had significantly higher levels of butyric acid. The administration of butyric acid and an inhibitor of butyric acid synthesis, heptanoyl-CoA, showed that butyric acid improved the stroke outcomes in the model mice. In addition, butyric acid could inhibit the activation of the microglia and astrocytes in the brains of model mice, thereby inhibiting the generation of pro-inflammatory factors IL-6, IL-1β and TNF-α as well as improving stroke outcomes. Our results suggest that berberine may improve stroke outcomes by modulating the gut flora to increase the abundance of butyric acid. These findings elucidate the mechanisms by which berberine improves stroke outcomes and provide some basis for clinical treatment.
Collapse
Affiliation(s)
- Huijie Duan
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Yang Deng
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
| | - Junqing Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Wangli Ding
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China;
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| |
Collapse
|
40
|
Mehmood Qadri H, Dar SA, Bashir RA, Khan M, Ali S, Zahid AS, Ali A, Marriam, Waheed S, Saeed M. Gastrointestinal Dysbiosis in Neuro-Critically Ill Patients: A Systematic Review of Case-Control Studies. Cureus 2023; 15:e50923. [PMID: 38259358 PMCID: PMC10803107 DOI: 10.7759/cureus.50923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The human gastrointestinal tract (GIT) has a rich and pre-programmed microbiome. This microbiome is essential for physiological functions such as digestion, immunity, metabolism, and structural integrity, and of prime concern to us in conducting this study is the nervous system communication. This two-way communication between the GIT and central nervous system (CNS) is known as the gut-brain axis (GBA) and has implications for neurocritical disease. A change in any factor relating to this microbiome is known as gut dysbiosis; this can lead to aberrant communication through the GBA and in turn, can contribute to disease states. The primary objective of this study is to determine the cause-specific dysbiotic organisms in neuro-critically ill patients and their effects. We performed this study by searching published literature as per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies that defined gastrointestinal dysbiosis in neuro-critically ill patients were retrieved using Boolean search from 2000 to 2023 via PubMed and Google Scholar and narrowed the results down to five prospective case-control studies. We performed their quality assessment. The results concluded that in neurocritical illnesses such as encephalitis, brain tumors, intracerebral hemorrhage, and ischemic stroke, fluctuations in specific microbiota correlated with disease severity and prognosis. Moreover, the inhabiting population of dysbiotic organisms in neuro-critically ill patients were different in different diseases and there were no similarities in the composition of gut microbiota in these diseases. Taking stroke patients as an example; increased Enterobacteriaceae and lower Lachnospiraceae microbiome levels were found in patients with a higher stroke dysbiosis index (SDI). Those patients who developed stroke-associated pneumonia (SAP) displayed higher levels of Enterococcus species. In conclusion, dysbiosis has a major effect on neuro-critically ill patients' disease states and dysbiotic organisms can be used as a biomarker for disease. Further prospective studies on this topic are warranted for potential neurological and prognostic correlations.
Collapse
Affiliation(s)
| | | | - Raahim A Bashir
- Neurological Surgery, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Manal Khan
- Neurosurgery, Unit-I, Punjab Institute of Neurosciences, Lahore, PAK
| | - Salamat Ali
- Surgery, Nawaz Shareef Medical College, Gujrat, PAK
| | | | - Asim Ali
- General Surgery, Lahore General Hospital, Lahore, PAK
| | - Marriam
- Surgery, Independent Medical College, Faisalabad, PAK
| | - Saba Waheed
- Emergency Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | - Maha Saeed
- Internal Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| |
Collapse
|
41
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
42
|
Kara N, Iweka CA, Blacher E. Chrono-Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Adv Biol (Weinh) 2023; 7:e2300048. [PMID: 37409422 DOI: 10.1002/adbi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a significant public health concern for elderly individuals. However, the majority of pre-clinical studies utilize young and healthy rodents, which may result in failure of candidate therapies in clinical trials. In this brief review/perspective, the complex link between circadian rhythms, aging, innate immunity, and the gut microbiome to ischemic injury onset, progression, and recovery is discussed. Short-chain fatty acids and nicotinamide adenine dinucleotide+ (NAD+ ) production by the gut microbiome are highlighted as key mechanisms with profound rhythmic behavior, and it is suggested to boost them as prophylactic/therapeutic approaches. Integrating aging, its associated comorbidities, and circadian regulation of physiological processes into stroke research may increase the translational value of pre-clinical studies and help to schedule the optimal time window for existing practices to improve stroke outcome and recovery.
Collapse
Affiliation(s)
- Nirit Kara
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| | - Chinyere Agbaegbu Iweka
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Eran Blacher
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
43
|
Ghuge S, Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain probiotic rescinds quinpirole-induced obsessive-compulsive disorder phenotypes by reshaping of microbiota gut-brain axis in rats. Pharmacol Biochem Behav 2023; 232:173652. [PMID: 37804865 DOI: 10.1016/j.pbb.2023.173652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling mental condition that poses recurring bothersome intrusive thoughts, obsessions, and compulsions. Considering the positive impact of probiotics on neuropsychiatric disorders, herein, we investigated the effect of multistrain probiotic (Bifidobacterium lactis UBBLa-70, Bacillus coagulans Unique IS-2, Lactobacillus rhamnosus UBLR-58, Lactobacillus plantarum UBLP-40, Bifidobacterium infantis UBBI-01, Bifidobacterium breve UBBr-01, and glutamine) in the management of OCD-like phenotype in rats. Rats injected with quinpirole for 5 weeks showed an increased number of marble burying and self-grooming episodes. Quinpirole-injected animals also did less head dipping in the hole board test and avoided exploration of open spaces in the elevated-plus maze. These repetitive, compulsive, self-directed, and anxiety-like phenotypes were abolished after 8-week of multistrain probiotic treatment. The probiotic formulation also prevented the elevated mRNA expression of interleukin-6, tumor-necrosis factor-α, and C-reactive protein in the amygdala and dysregulated levels of 5-hydroxytryptamine, dopamine, and noradrenaline in the frontal cortex of quinpirole-injected rats. The level of brain-derived neurotrophic factor in the frontal cortex remained unaffected across the groups. The altered levels of goblet cells and crypt-to-villi ratio in quinpirole rats were prevented by multistrain probiotic treatment. The results of 16S-rRNA gene-sequencing of gut microbiota from feces contents revealed an elevation in the abundance of Allobaculum and Bifidobacterium species (specifically Bifidobacterium animalis), while the presence of Lactobacillus species (including Lactobacillus reuteri and Lactobacillus vaginalis) exhibited a decline in quinpirole-induced rats. These results imply that modifying the gut-brain axis may be a possible mechanism by which selective multistrain probiotic therapy prevents OCD-like behaviors.
Collapse
Affiliation(s)
- Shubham Ghuge
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
44
|
Cui W, Xu L, Huang L, Tian Y, Yang Y, Li Y, Yu Q. Changes of gut microbiota in patients at different phases of stroke. CNS Neurosci Ther 2023; 29:3416-3429. [PMID: 37309276 PMCID: PMC10580337 DOI: 10.1111/cns.14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Gut dysbiosis appears rapidly after acute stroke and may affect the prognosis, whereas changes in gut microbiota with gradual recovery from stroke are unknown and rarely studied. The purpose of this study is to explore the characteristics of gut microbiota changes over time after stroke. METHODS Stroke patients and healthy subjects were selected to compare the clinical data and gut microbiota of the patient group in two phases with that of healthy subjects and 16S rRNA gene sequencing was used to search the differences of gut microbiota in subjects. RESULTS Compared with the healthy subjects, the subacute patients mainly decreased the abundance of some gut microbial communities, while the decreased communities reduced and more communities increased the abundance in the convalescent patients. The abundance of Lactobacillaceae increased in both phases in patient group, while Butyricimona, Peptostreptococaceae and Romboutsia decreased in both phases. Correlation analysis found that the MMSE scores of patients in the two phases had the greatest correlation with the gut microbiota. CONCLUSION Gut dysbiosis still existed in patients in the subacute phase and convalescent phase, and gradually improved with the recovery of stroke. Gut microbiota may affect the prognosis of stroke by affecting BMI and/or related indicators, and there is a strong correlation between gut microbiota and cognitive function after stroke.
Collapse
Affiliation(s)
- Wei Cui
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Li Xu
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Lin Huang
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yang Tian
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yan Yang
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Yamei Li
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| | - Qian Yu
- Department of Rehabilitation MedicineSichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
45
|
Clottes P, Benech N, Dumot C, Jarraud S, Vidal H, Mechtouff L. Gut microbiota and stroke: New avenues to improve prevention and outcome. Eur J Neurol 2023; 30:3595-3604. [PMID: 36897813 DOI: 10.1111/ene.15770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Despite major recent therapeutic advances, stroke remains a leading cause of disability and death. Consequently, new therapeutic targets need to be found to improve stroke outcome. The deleterious role of gut microbiota alteration (often mentioned as "dysbiosis") on cardiovascular diseases, including stroke and its risk factors, has been increasingly recognized. Gut microbiota metabolites, such as trimethylamine-N-oxide, short chain fatty acids and tryptophan, play a key role. Evidence of a link between alteration of the gut microbiota and cardiovascular risk factors exists, with a possible causality link supported by several preclinical studies. Gut microbiota alteration also seems to be implicated at the acute phase of stroke, with observational studies showing more non-neurological complications, higher infarct size and worse clinical outcome in stroke patients with altered microbiota. Microbiota targeted strategies have been developed, including prebiotics/probiotics, fecal microbiota transplantation, short chain fatty acid and trimethylamine-N-oxide inhibitors. Research teams have been using different time windows and end-points for their studies, with various results. Considering the available evidence, it is believed that studies focusing on microbiota-targeted strategies in association with conventional stroke care should be conducted. Such strategies should be considered according to three therapeutic time windows: first, at the pre-stroke (primary prevention) or post-stroke (secondary prevention) phases, to enhance the control of cardiovascular risk factors; secondly, at the acute phase of stroke, to limit the infarct size and the systemic complications and enhance the overall clinical outcome; thirdly, at the subacute phase of stroke, to prevent stroke recurrence and promote neurological recovery.
Collapse
Affiliation(s)
- Paul Clottes
- Stroke Department, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Nicolas Benech
- Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France
- French Fecal Transplant Group, Lyon, France
| | - Chloé Dumot
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
- Department of Neurosurgery, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence Des Légionelles, Hospices Civils de Lyon, Institut Des Agents Infectieux, Lyon, France
| | - Hubert Vidal
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, Lyon, France
- CarMeN Laboratoire, INSERM, INRAER, Univ Lyon, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
46
|
Hong Y, Sun Z, Liu N, Yang K, Li Y, Xu Q, Guo Z, Duan Y. The relationship between trimethylamine-N-oxide and the risk of acute ischemic stroke: A dose‒response meta-analysis. PLoS One 2023; 18:e0293275. [PMID: 37883346 PMCID: PMC10602245 DOI: 10.1371/journal.pone.0293275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Although trimethylamine-N-oxide (TMAO) shows a notable correlation with cardiovascular disease, its association with acute ischemic stroke (AIS) remains uncertain and necessitates further investigation. OBJECTIVE A meta-analysis was conducted to assess the relationship between trimethylamine-N-oxide and acute ischemic stroke. METHODS We conducted a comprehensive search in PubMed, Embase, Cochrane, CNKI, VIP, Wanfang, and CBM, spanning from their inception to 23 September 2023. The search was consistently updated and supplemented by bibliographies of retrieved articles and previous reviews. A total of 20 eligible studies, including 17 case‒controls and 3 cohort studies, were selected, involving 9141 participants (5283 case group, 3858 control group). For the dose‒response analysis, three case-control studies were eligible. We extracted and pooled TMAO mean and standard deviation from observational studies for control and ischemic stroke groups. The effect sizes were combined using the random-effects model. Where possible, dose‒response analysis was performed. RESULT Overall, the pooled standardized mean difference (SMD) demonstrated significantly higher concentrations of serum/plasma TMAO in AIS compared to the control group (SMD = 1.27; 95% CI: 0.9, 1.61, P<0.001). Additionally, the dose‒response meta-analysis revealed a 12.1% relative increase in the risk of acute ischemic stroke per 1 μmol/L rise in TMAO concentration (RR = 1.12; 95% CI 1.07-1.17; P<0.05; I2 = 1.6%, P = 0.4484). CONCLUSION These findings indicate a potential increased risk of AIS associated with elevated TMAO levels.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| | - Zaidie Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| | - Nianqiu Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, People’s Republic of China
| | - Kai Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| | - Ya Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| | - Qiuyue Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| | - Zhangyou Guo
- Department of Minimally Invasive Interventional Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan, People’s Republic of China
| | - Yong Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, People’s Republic of China
| |
Collapse
|
47
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
48
|
Kelbert J, Varkey TC. The microbiome and neurosurgery. Brain Circ 2023; 9:264-265. [PMID: 38284108 PMCID: PMC10821683 DOI: 10.4103/bc.bc_59_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- James Kelbert
- Deparment of Neurology, College of Medicine-Phoenix, The University of Arizona, Arizona, USA
| | - Thomas C. Varkey
- Deparment of Neurology, College of Medicine-Phoenix, The University of Arizona, Arizona, USA
- Department of Business Management, Colangelo College of Business, Grand Canyon University, Phoenix, Arizona, USA
| |
Collapse
|
49
|
Zeng X, Li J, Shan W, Lai Z, Zuo Z. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood. MICROBIOME 2023; 11:204. [PMID: 37697393 PMCID: PMC10496352 DOI: 10.1186/s40168-023-01648-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Aging is a significant risk factor for ischemic stroke and worsens its outcome. However, the mechanisms for this worsened neurological outcome with aging are not clearly defined. RESULTS Old C57BL/6J male mice (18 to 20 months old) had a poorer neurological outcome and more severe inflammation after transient focal brain ischemia than 8-week-old C57BL/6J male mice (young mice). Young mice with transplantation of old mouse gut microbiota had a worse neurological outcome, poorer survival curve, and more severe inflammation than young mice receiving young mouse gut microbiota transplantation. Old mice and young mice transplanted with old mouse gut microbiota had an increased level of blood valeric acid. Valeric acid worsened neurological outcome and heightened inflammatory response including blood interleukin-17 levels after brain ischemia. The increase of interleukin-17 caused by valeric acid was inhibited by a free fatty acid receptor 2 antagonist. Neutralizing interleukin-17 in the blood by its antibody improved neurological outcome and attenuated inflammatory response in mice with brain ischemia and receiving valeric acid. Old mice transplanted with young mouse feces had less body weight loss and better survival curve after brain ischemia than old mice transplanted with old mouse feces or old mice without fecal transplantation. CONCLUSIONS These results suggest that the gut microbiota-valeric acid-interleukin-17 pathway contributes to the aging-related changes in the outcome after focal brain ischemia and response to stimulus. Valeric acid may activate free fatty acid receptor 2 to increase interleukin-17.
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
| | - Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Department of Anesthesiology, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, 350001 People’s Republic of China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, 1 Hospital Drive, PO Box 800710, Charlottesville, VA 22901 USA
- Departments of Neuroscience and Neurosurgery, University of Virginia, Charlottesville, VA 22901 USA
| |
Collapse
|
50
|
Wang Q, Dai H, Hou T, Hou Y, Wang T, Lin H, Zhao Z, Li M, Zheng R, Wang S, Lu J, Xu Y, Liu R, Ning G, Wang W, Bi Y, Zheng J, Xu M. Dissecting Causal Relationships Between Gut Microbiota, Blood Metabolites, and Stroke: A Mendelian Randomization Study. J Stroke 2023; 25:350-360. [PMID: 37813672 PMCID: PMC10574297 DOI: 10.5853/jos.2023.00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the causal relationships between the gut microbiota (GM), stroke, and potential metabolite mediators using Mendelian randomization (MR). METHODS We leveraged the summary statistics of GM (n=18,340 in the MiBioGen consortium), blood metabolites (n=115,078 in the UK Biobank), and stroke (cases n=60,176 and controls n=1,310,725 in the Global Biobank Meta-Analysis Initiative) from the largest genome-wide association studies to date. We performed bidirectional MR analyses to explore the causal relationships between the GM and stroke, and two mediation analyses, two-step MR and multivariable MR, to discover potential mediating metabolites. RESULTS Ten taxa were causally associated with stroke, and stroke led to changes in 27 taxa. In the two-step MR, Bifidobacteriales order, Bifidobacteriaceae family, Desulfovibrio genus, apolipoprotein A1 (ApoA1), phospholipids in high-density lipoprotein (HDL_PL), and the ratio of apolipoprotein B to ApoA1 (ApoB/ApoA1) were causally associated with stroke (all P<0.044). The causal associations between Bifidobacteriales order, Bifidobacteriaceae family and stroke were validated using the weighted median method in an independent cohort. The three GM taxa were all positively associated with ApoA1 and HDL_PL, whereas Desulfovibrio genus was negatively associated with ApoB/ApoA1 (all P<0.010). Additionally, the causal associations between the three GM taxa and ApoA1 remained significant after correcting for the false discovery rate (all q-values <0.027). Multivariable MR showed that the associations between Bifidobacteriales order, Bifidobacteriaceae family and stroke were mediated by ApoA1 and HDL_PL, each accounting for 6.5% (P=0.028) and 4.6% (P=0.033); the association between Desulfovibrio genus and stroke was mediated by ApoA1, HDL_PL, and ApoB/ApoA1, with mediated proportions of 7.6% (P=0.019), 4.2% (P=0.035), and 9.1% (P=0.013), respectively. CONCLUSION The current MR study provides evidence supporting the causal relationships between several specific GM taxa and stroke and potential mediating metabolites.
Collapse
Affiliation(s)
- Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|