1
|
Qazi NG, Malik AS, Alvi AM, Ali F, Badshah I, Nadeem H, Malik SZ. Regulating the NMDA/NR2B signaling pathway mediates anticonvulsant, antineuroinflammation, and anti-oxidative stress effects of 1,3,benzothiazole derivative 1M in pentylenetetrazole-induced kindling in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4037-4051. [PMID: 39404842 DOI: 10.1007/s00210-024-03522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/07/2024] [Indexed: 04/10/2025]
Abstract
Periodic epileptic episodes are the hallmark of epilepsy, a prevalent neurological disorder. Research suggests a significant correlation between neuroinflammation and oxidative stress in a variety of neurological diseases, such as epilepsy. A substantial amount of evidence supports the role of N-methyl-D-aspartate receptors (NMDARs) in the progression of epilepsy. Although several lines of research have disclosed numerous biochemical effects of early seizures, its connection with disturbed NMDAR/NR2B subunit expression remains unclear. 2-Mercaptobenzothiazole (MBT) is a vital scaffold with several biological activities, and its various substitutes show promising anti-inflammatory potential. The current study aimed to investigate the newly synthesized 1,3-(benzothiazole-2-sulfanyl)-1-(morpholine-4-yl)ethan-1-one (1 M), a substituted MBT, for its neuroprotective potential in a mice model of pentylenetetrazole-induced epilepsy (PTZ), by modulating NMDA/NR2B pathway. The compound was tested for docking and simulation analysis, demonstrating a solid and stable bond with the NR2B subunit of NMDA. To ascertain the effects of 1 M, as well as to further illustrate its mechanism of neuroprotection via NMDA/NR2B in PTZ-induced kindling model, mice of either sex were given two doses of test compound, 1 M (10 mg/kg and 20 mg/kg). The behavioral assessments were evaluated using open-field, Y-maze, and elevated-plus maze tests, which indicated improved behavioral alterations caused by PTZ after 1 M treatment. The antioxidant profiling was done by estimating glutathione-S-transferase (GST), catalase (CAT), reduced glutathione (GSH), and LPO (lipid peroxidation) in hippocampal tissues, where the test compound 1 M significantly restored the depleted antioxidants, showcasing its antioxidant potential. Moreover, the cellular morphological damages induced by PTZ were detected by H&E staining, which was rescued after 1 M administration. Furthermore, the activation of the inflammatory pathway was confirmed by quantitative analysis of inflammatory mediators tumor necrotic factor (TNF-α), nuclear factor kappa B (NF-κB), and cylooxegenase2 (COX-2) by enzyme-linked immunosorbent assay (ELISA), where 1 M administration significantly ameliorated their expression. Furthermore, to demonstrate the involvement of the NR2B pathway, NR2B-antagonist ifenprodil was employed, and results were further confirmed through RT-PCR analysis. Our results, when considered collectively, indicate that 1 M may act by inhibiting the NR2B subunit of the NMDA receptor, subsequently mitigating downstream oxidative stress and inflammatory mediators through various pathways.
Collapse
Affiliation(s)
- Neelum Gul Qazi
- Department of Pharmacy, Iqra University, Islamabad, 46000, Pakistan.
| | - Ayesha Shafique Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 46000, Pakistan
| | - Arooj Mohsin Alvi
- Faculty of Pharmacy, Ibadat International University, Islamabad, 46000, Pakistan
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 46000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 46000, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 46000, Pakistan.
| |
Collapse
|
2
|
Tezol Ö, Yalçın SS, Girgin G, Yirün A, Sanajou S, Özyurt AB, Bayram B, Portakal O, Baydar T, Okuyaz Ç, Erkekoğlu P. Inflammatory Markers in the Blood of Spastic Cerebral Palsy Children: A Case-Control Study. CHILDREN (BASEL, SWITZERLAND) 2025; 12:343. [PMID: 40150625 PMCID: PMC11940874 DOI: 10.3390/children12030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES The aim was to simultaneously investigate inflammatory biomarkers, neopterin, the kynurenine/tryptophan (Kyn/Trp) pathway, vitamin D (VitD), vitamin D binding protein (VDBP), and erythrocyte folate, in cerebral palsy (CP). METHODS A case-control study was conducted at Mersin University Hospital. Three- to ten-year-old patients with spastic CP (n = 50) and age- and gender-matched healthy controls (n = 55) were included. Serum levels of neopterin, Trp, Kyn and 25OHD, plasma VDBP, and erythrocyte folate concentrations were measured. Indoleamine-2,3-dioxygenase 1 (IDO-1) enzyme activity was evaluated according to the Kyn/Trp ratio. Comparison and correlation analyses were performed. RESULTS The levels of neopterin, Trp, and Kyn were lower in children with CP than in healthy controls (p = 0.037, p < 0.001, and p = 0.003, respectively). IDO1 was not significantly different between the CP and control groups (p = 0.214). The levels of VitD and VDBP were higher in children with CP (p < 0.001 and p = 0.001, respectively). The level of erythrocyte folate was also higher in children with CP (p < 0.001). No significant correlation was found between age and inflammatory biomarkers in the CP group. Neopterin was correlated with the level of Gross Motor Function Classification System (GMFCS) level (r = 0.292, p = 0.044), while there was no significant correlation between the other biomarkers and the level of GMFCS in the CP group. CONCLUSIONS Inflammatory biomarkers of neopterin and Kyn are lower, inflammatory biomarkers of VDBP and erythrocyte folate are higher, and anti-inflammatory VitD is higher in children with spastic CP compared to healthy children. More knowledge is needed to demonstrate inflammatory and anti-inflammatory status in children with CP.
Collapse
Affiliation(s)
- Özlem Tezol
- Department of Pediatrics, Faculty of Medicine, Mersin University, 33110 Mersin, Türkiye
| | - Sıddika Songül Yalçın
- Department of Social Pediatrics, Faculty of Medicine, Hacettepe University, 06230 Ankara, Türkiye;
| | - Gözde Girgin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Türkiye; (G.G.); (S.S.); (T.B.); (P.E.)
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, 01250 Adana, Türkiye;
| | - Sonia Sanajou
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Türkiye; (G.G.); (S.S.); (T.B.); (P.E.)
| | - Aylin Balcı Özyurt
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bahçeşehir University, 34353 İstanbul, Türkiye;
| | - Belgin Bayram
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, 06230 Ankara, Türkiye; (B.B.); (O.P.)
| | - Oytun Portakal
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, 06230 Ankara, Türkiye; (B.B.); (O.P.)
| | - Terken Baydar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Türkiye; (G.G.); (S.S.); (T.B.); (P.E.)
| | - Çetin Okuyaz
- Department of Pediatric Neurology, Faculty of Medicine, Mersin University, 33110 Mersin, Türkiye;
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06230 Ankara, Türkiye; (G.G.); (S.S.); (T.B.); (P.E.)
| |
Collapse
|
3
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
4
|
Mueller C, Hong H, Sharma AA, Qin H, Benveniste EN, Szaflarski JP. Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy. Epilepsia Open 2024; 9:2454-2466. [PMID: 39470707 PMCID: PMC11633690 DOI: 10.1002/epi4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE Epileptogenesis is linked to neuroinflammation. We hypothesized that local heat production caused by neuroinflammation can be visualized non-invasively in vivo via brain magnetic resonance spectroscopic imaging (MRSI) and MRSI-thermometry (MRSI-t) and that there is a relationship in patients with temporal lobe epilepsy (TLE) between MRSI-t and brain metabolites choline and myo-inositol and between neuroimaging and cellular and serum biomarkers of inflammation. METHODS Thirty-six (36) participants, 18 with temporal lobe epilepsy (13 females) and 18 age-matched healthy controls (nine females), were enrolled prospectively and underwent MRSI/MRSI-t; TLE participants also provided blood samples. Temperature was measured using creatine as a reference metabolite. Analysis of Functional NeuroImages 3dttest++ tool was used to analyze voxel-level group differences in temperature, choline, and myo-inositol. Associations with immune cell subsets, cytokines, and chemokines related to inflammation were quantified using correlation coefficients with significant relationships as noted. RESULTS Patients with TLE showed elevated temperature, choline, and myo-inositol in the temporal lobes. Higher brain temperature was associated with higher levels of cytokines and chemokines, including GM-CSF, TNF, IL-1β, and IL - 12p70, and lower frequency of immune cells including CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, and classical monocytes. Higher choline was associated with higher levels of the cytokines including LT-α, IL-13, and IL-4, and higher myo-inositol was associated with a higher frequency of CD4+ T-cell and CD19+ B-cell subsets and higher levels of cytokines and chemokines including LT-α, IL-13, and CCL3. SIGNIFICANCE This study, for the first time, showed that in temporal lobes of patients with TLE temperature and metabolite changes correlate with cellular and serum biomarkers of inflammation. Our results provide support for further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool. PLAIN LANGUAGE SUMMARY Neuroinflammation is associated with excessive heat production which can be visualized with magnetic resonance spectroscopic imaging and thermometry (MRSI-t). We prospectively investigated the relationship between MRSI-t and cellular and serum measures of peripheral inflammation in patients with temporal lobe epilepsy (TLE); we compared the results of MRSI-t in patients with TLE to healthy controls. We showed a relationship between the temperature elevations in TLE and elevations of various measures of peripheral inflammation. Our results support further development of MRSI-t as a measure of neuroinflammation in epilepsy and potentially other neurological disorders and as an investigative and clinical tool.
Collapse
Affiliation(s)
- Christina Mueller
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Huixian Hong
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Ayushe A. Sharma
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative BiologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyHeersink School of Medicine, University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
6
|
Hu Y, Zhou T, Li Q. Serum SIRT3 levels in epilepsy patients and its association with clinical outcomes and severity: A prospective observational study. Open Med (Wars) 2024; 19:20241011. [PMID: 39091611 PMCID: PMC11292790 DOI: 10.1515/med-2024-1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Objective In this prospective observational study, we aimed to investigate the serum levels of sirtuin (SIRT)3 in epilepsy patients and its association with the severity of the disease. Methods This prospective observational study included 203 patients with symptomatic epilepsy and 100 healthy controls who visited our hospital from November 2019 to November 2022. The severity of the disease in epilepsy patients was assessed using the National Hospital Seizure Severity Scale (NHS3). We used enzyme-linked immunosorbent assay to measure the serum levels of SIRT3, interleukin (IL)-6, IL-1β, tumor necrosis factor-alpha, and C-reactive protein in all patients. In addition, the cognitive function of all study participants was evaluated using the Mini-Mental State Examination and the Montreal Cognitive Assessment (MOCA). All data were analyzed using SPSS 25.0 software. Results The MOCA scores of the epilepsy patients were significantly lower compared to the healthy volunteers (P < 0.05). The serum SIRT3 levels were decreased significantly in patients with refractory epilepsy (183.16 ± 17.22 pg/mL) compared to non-refractory epilepsy patients (199.00 ± 18.68 pg/mL). In addition, serum SIRT3 levels were negatively correlated with the inflammatory factors IL-6 (Pearson's correlation -0.221, P = 0.002) and NHS score (Pearson's correlation -0.272, P < 0.001) of epilepsy patients, while positively correlated with MOCA scores (Pearson's correlation 0.166, P = 0.018). Furthermore, the receiver operating characteristic curve demonstrated that serum SIRT3 could be used to diagnose epilepsy, as well as refractory epilepsy. Finally, logistic regression analysis showed that SIRT3 (OR = 1.028, 95%CI: 1.003-1.054, P = 0.028), IL-6 (OR = 0.666, 95%CI: 0.554-0.800, P < 0.001), IL-1β (OR = 0.750, 95%CI: 0.630-0.894, P = 0.001), and NHS3 (OR = 0.555, 95%CI: 0.435-0.706, P < 0.001) were risk factors for refractory epilepsy. Conclusion In conclusion, our findings demonstrated that serum SIRT3 levels were significantly decreased in epilepsy patients and further decreased in patients with refractory epilepsy. This study might provide new therapeutic targets and comprehensive treatment strategies for epilepsy patients.
Collapse
Affiliation(s)
- Yun Hu
- Department of Emergency Medicine, People’s Hospital of Dongxihu District, Wuhan, Hubei, 430040, China
| | - Ting Zhou
- Department of Neurology, People’s Hospital of Dongxihu District, 48 Jinbei 1st Road, Jinghe Street, Dongxihu District, Wuhan, Hubei, 430040, China
| | - Qingye Li
- Department of Emergency Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Yang C, Luo Q, Shu H, Le Bouquin Jeannès R, Li J, Xiang W. Exploration of interictal to ictal transition in epileptic seizures using a neural mass model. Cogn Neurodyn 2024; 18:1215-1225. [PMID: 38826671 PMCID: PMC11143138 DOI: 10.1007/s11571-023-09976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 06/04/2024] Open
Abstract
An epileptic seizure can usually be divided into three stages: interictal, preictal, and ictal. However, the seizure underlying the transition from interictal to ictal activities in the brain involves complex interactions between inhibition and excitation in groups of neurons. To explore this mechanism at the level of a single population, this paper employed a neural mass model, named the complete physiology-based model (cPBM), to reconstruct electroencephalographic (EEG) signals and to infer the changes in excitatory/inhibitory connections related to excitation-inhibition (E-I) balance based on an open dataset recorded for ten epileptic patients. Since epileptic signals display spectral characteristics, spectral dynamic causal modelling (DCM) was applied to quantify these frequency characteristics by maximizing the free energy in the framework of power spectral density (PSD) and estimating the cPBM parameters. In addition, to address the local maximum problem that DCM may suffer from, a hybrid deterministic DCM (H-DCM) approach was proposed, with a deterministic annealing-based scheme applied in two directions. The H-DCM approach adjusts the temperature introduced in the objective function by gradually decreasing the temperature to obtain relatively good initialization and then gradually increasing the temperature to search for a better estimation after each maximization. The results showed that (i) reconstructed EEG signals belonging to the three stages together with their PSDs can be reproduced from the estimated parameters of the cPBM; (ii) compared to DCM, traditional D-DCM and anti D-DCM, the proposed H-DCM shows higher free energies and lower root mean square error (RMSE), and it provides the best performance for all stages (e.g., the RMSEs between the reconstructed PSD computed from the reconstructed EEG signal and the sample PSD obtained from the real EEG signal are 0.33 ± 0.08, 0.67 ± 0.37 and 0.78 ± 0.57 in the interictal, preictal and ictal stages, respectively); and (iii) the transition from interictal to ictal activity can be explained by an increase in the connections between pyramidal cells and excitatory interneurons and between pyramidal cells and fast inhibitory interneurons, as well as a decrease in the self-loop connection of the fast inhibitory interneurons in the cPBM. Moreover, the E-I balance, defined as the ratio between the excitatory connection from pyramidal cells to fast inhibitory interneurons and the inhibitory connection with the self-loop of fast inhibitory interneurons, is also significantly increased during the epileptic seizure transition. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09976-6.
Collapse
Affiliation(s)
- Chunfeng Yang
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Qingbo Luo
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Huazhong Shu
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Régine Le Bouquin Jeannès
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
- Univ Rennes, Inserm, LTSI, UMR 1099, Rennes, 35000 France
| | - Jianqing Li
- Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166 China
| | - Wentao Xiang
- Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
9
|
C Sekhar V, Gulia KK, Deepti A, Chakrapani PSB, Baby S, Viswanathan G. Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences. Mol Neurobiol 2024; 61:3296-3313. [PMID: 37987958 DOI: 10.1007/s12035-023-03741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Therapeutic options to contain seizures, a transitional stage of many neuropathologies, are limited due to the blood-brain barrier (BBB). Herbal nanoparticle formulations can be employed to enhance seizure prognosis. Bacoside A (BM3) and bacopaside I (BM4) were isolated from Bacopa monnieri and synthesized as nanoparticles (BM3NP and BM4NP, respectively) for an effective delivery system to alleviate seizures and associated conditions. After physicochemical characterization, cell viability was assessed on mouse neuronal stem cells (mNSC) and neuroblastoma cells (N2a). Thereafter, anti-seizure effects, mitochondrial membrane potential (MMP), apoptosis, immunostaining and epileptic marker mRNA expression were determined in vitro. The seizure-induced changes in the cortical electroencephalogram (EEG), electromyography (EMG), Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep were monitored in vivo in a kainic acid (KA)-induced rat seizure model. The sizes of BM3NPs and BM4NPs were 165.5 nm and 689.6 nm, respectively. They were biocompatible and also aided in neuroplasticity in mNSC. BM3NPs and BM4NPs depicted more than 50% cell viability in N2a cells, with IC50 values of 1609 and 2962 µg/mL, respectively. Similarly, these nanoparticles reduced the cytotoxicity of N2a cells upon KA treatment. Nanoparticles decreased the expression of epileptic markers like fractalkine, HMGB1, FOXO3a and pro-inflammatory cytokines (P < 0.05). They protected neurons from apoptosis and restored MMP. After administration of BM3NPs and BM4NPs, KA-treated rats attained a significant reduction in the epileptic spikes, sleep latency and an increase in NREM sleep duration. Results indicate the potential of BM3NPs and BM4NPs in neutralizing the KA-induced excitotoxic seizures in neurons.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
- University of Kerala, Thiruvananthapuram, 695034, Kerala, India
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
10
|
Li S, Zhang W, Zhu Y, Yao Q, Chen R, Kou L, Shi X. Nanomedicine revolutionizes epilepsy treatment: overcoming therapeutic hurdles with nanoscale solutions. Expert Opin Drug Deliv 2024; 21:735-750. [PMID: 38787859 DOI: 10.1080/17425247.2024.2360528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Epilepsy, a prevalent neurodegenerative disorder, profoundly impacts the physical and mental well-being of millions globally. Historically, antiseizure drugs (ASDs) have been the primary treatment modality. However, despite the introduction of novel ASDs in recent decades, a significant proportion of patients still experiences uncontrolled seizures. AREAS COVERED The rapid advancement of nanomedicine in recent years has enabled precise targeting of the brain, thereby enhancing therapeutic efficacy for brain diseases, including epilepsy. EXPERT OPINION Nanomedicine holds immense promise in epilepsy treatment, including but not limited to enhancing drug solubility and stability, improving drug across blood-brain barrier, overcoming resistance, and reducing side effects, potentially revolutionizing clinical management. This paper provides a comprehensive overview of current epilepsy treatment modalities and highlights recent advancements in nanomedicine-based drug delivery systems for epilepsy control. We discuss the diverse strategies used in developing novel nanotherapies, their mechanisms of action, and the potential advantages they offer compared to traditional treatment methods.
Collapse
Affiliation(s)
- Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Wenhao Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Yuhao Zhu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China
| | - Xulai Shi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Li Z, Gao Z, Chang C, Gao Z. Anticonvulsive Effect of Glucosyl Xanthone Mangiferin on Pentylenetetrazol (PTZ)-Induced Seizure-Provoked Mice. Appl Biochem Biotechnol 2024; 196:2161-2175. [PMID: 37486538 DOI: 10.1007/s12010-023-04651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression are major side effects induced by currently available antiepileptic drugs; apart from this, they also diminish intelligence and language skills which cause hepatic failure, anemia, etc. Hence, in this study, we assessed antiepileptic effect of a phytochemical mangiferin. Epilepsy, a prevalent non communicable neurological disorder, affects infants and older population throughout the world. Epilepsy-induced comorbidities are more severe and if not treated cautiously lead to disability and even worse cases, mortality. The onset and duration of convulsion were observed. Seizure severity score was assessed by provoking kindling with 35 mg/kg PTZ. Prooxidants and antioxidants were measured to assess the antioxidant effect of mangiferin. Inflammatory markers were measured to determine the anti-inflammatory effect of mangiferin. The levels of neurotransmitters and ATPases were quantified to evaluate the neuroprotective effect of mangiferin. Mangiferin significantly decreased the onset and duration convulsion. It also decreased the seizure severity score, locomotor activity, and immobilization effectively. The excitatory neurotransmitter was reduced, and inhibitory neurotransmitter was increased in mice treated with mangiferin. Overall, our results confirm that mangiferin efficiently protects mice from PTZ-induced seizures. It can be subjected to further research to be prescribed as a potent antiepileptic drug.
Collapse
Affiliation(s)
- Zhaoxia Li
- Department of Pediatric, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhiliang Gao
- Department of Pediatric, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, 256600, China
| | - Cong Chang
- Department of Rehabilitation Medicine, Binzhou Municipal Hospital, Binzhou, 256600, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
12
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Noncoding RNA 2024; 10:18. [PMID: 38525737 PMCID: PMC10961783 DOI: 10.3390/ncrna10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Sara Carpi
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Wang W, Ren Y, Xu F, Zhang X, Wang F, Wang T, Zhong H, Wang X, Yao Y. Identification of hub genes significantly linked to temporal lobe epilepsy and apoptosis via bioinformatics analysis. Front Mol Neurosci 2024; 17:1300348. [PMID: 38384278 PMCID: PMC10879302 DOI: 10.3389/fnmol.2024.1300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Background Epilepsy stands as an intricate disorder of the central nervous system, subject to the influence of diverse risk factors and a significant genetic predisposition. Within the pathogenesis of temporal lobe epilepsy (TLE), the apoptosis of neurons and glial cells in the brain assumes pivotal importance. The identification of differentially expressed apoptosis-related genes (DEARGs) emerges as a critical imperative, providing essential guidance for informed treatment decisions. Methods We obtained datasets related to epilepsy, specifically GSE168375 and GSE186334. Utilizing differential expression analysis, we identified a set of 249 genes exhibiting significant variations. Subsequently, through an intersection with apoptosis-related genes, we pinpointed 16 genes designated as differentially expressed apoptosis-related genes (DEARGs). These DEARGs underwent a comprehensive array of analyses, including enrichment analyses, biomarker selection, disease classification modeling, immune infiltration analysis, prediction of miRNA and transcription factors, and molecular docking analysis. Results In the epilepsy datasets examined, we successfully identified 16 differentially expressed apoptosis-related genes (DEARGs). Subsequent validation in the external dataset GSE140393 revealed the diagnostic potential of five biomarkers (CD38, FAIM2, IL1B, PAWR, S100A8) with remarkable accuracy, exhibiting an impressive area under curve (AUC) (The overall AUC of the model constructed by the five key genes was 0.916, and the validation set was 0.722). Furthermore, a statistically significant variance (p < 0.05) was observed in T cell CD4 naive and eosinophil cells across different diagnostic groups. Exploring interaction networks uncovered intricate connections, including gene-miRNA interactions (164 interactions involving 148 miRNAs), gene-transcription factor (TF) interactions (22 interactions with 20 TFs), and gene-drug small molecule interactions (15 interactions involving 15 drugs). Notably, IL1B and S100A8 demonstrated interactions with specific drugs. Conclusion In the realm of TLE, we have successfully pinpointed noteworthy differentially expressed apoptosis-related genes (DEARGs), including CD38, FAIM2, IL1B, PAWR, and S100A8. A comprehensive understanding of the implications associated with these identified genes not only opens avenues for advancing our comprehension of the underlying pathophysiology but also bears considerable potential in guiding the development of innovative diagnostic methodologies and therapeutic interventions for the effective management of epilepsy in the future.
Collapse
Affiliation(s)
- Weiliang Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Yinghao Ren
- Department of Dermatology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobin Zhang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Fengpeng Wang
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijuan Zhong
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yao
- Epilepsy Center, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| |
Collapse
|
15
|
Bakhsh A, Gillespie CS, Richardson GE, Mustafa MA, Millward CP, Mirza N, Jenkinson MD. Evaluation of systemic inflammation in seizure phenotypes following meningioma resection. J Clin Neurosci 2024; 120:82-86. [PMID: 38219304 DOI: 10.1016/j.jocn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
PURPOSE To investigate the association between perioperative peripheral blood inflammatory markers and seizures in patients who have undergone meningioma resection. MATERIALS AND METHODS A single neurosurgery tertiary centre blood bank database was screened to extract pre-operative and post-operative white cell count (WCC), neutrophils, lymphocytes, monocytes, platelets and neutrophil-lymphocyte ratio (NLR) and derived NLR (dNLR). All patients who underwent resection of meningioma from 2012 to 2020 were eligible. Patients were excluded if they had an inflammatory condition, peri-operative infection, medical illness or operative complication. RESULTS 30 patients suffered pre-operative seizures only, 16 experienced de novo post-operative seizures within 1 year and 42 patients did not experience seizures throughout their treatment timeline. Patients with post-operative de novo seizures had a significantly higher WCC when compared those who never had a seizure (7.1 vs. 4.8x109/L, p =.048, 95 % 1.96 to 5.60). However, this difference of WCC was poorly predictive of de novo seizures at one year (AUC 0.61). dNLR was significantly higher in patients with continued post-operative seizures than in patients in which seizures were terminated with tumour resection (1.2 vs. 0.1, p =.035, 95 % 1.47 to 2.29). dNLR was predictive of seizures at one year with an 87.5 % sensitivity and 82.1 % specificity. CONCLUSIONS There is a significantly higher post-operative systemic white cell count response in patients who suffered de novo seizures after meningioma resection. Peripheral blood markers have the potential to predict seizures in patients with meningioma.
Collapse
Affiliation(s)
- Ali Bakhsh
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.
| | - Conor S Gillespie
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - George E Richardson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mohammed A Mustafa
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Christopher P Millward
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Nasir Mirza
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael D Jenkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
16
|
Lin L, Geng D, She D, Kuai X, Du C, Fu P, Zhu Y, Wang J, Pang Z, Zhang J. Targeted nanotheranostics for the treatment of epilepsy through in vivo hijacking of locally activated macrophages. Acta Biomater 2024; 174:314-330. [PMID: 38036284 DOI: 10.1016/j.actbio.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion. In this work, CD163-positive macrophages in the epileptogenic region were first harnessed as Trojan horses after being hijacked by targeted albumin manganese dioxide nanoparticles, which effectively penetrated the brain endothelial barrier and delivered multifunctional nanomedicines to the epileptic foci. Hence, accumulative nanoparticles empowered the visualization of the epileptogenic lesion through microenvironment-responsive MR T1-weight imaging of manganese dioxide. Besides, these manganese-based nanomaterials played a pivotal role in shielding neurons from cell apoptosis mediated by oxidative stress and hypoxia. Taken together, the present study provides an up-to-date approach for integrated diagnosis and treatment of epilepsy and other hypoxia-associated inflammatory diseases. STATEMENT OF SIGNIFICANCE: The therapeutic effects of antiepileptic drugs (AEDs) are hindered by insufficient drug accumulation in the epileptic site. Herein, we report an efficient strategy to use locally activated macrophages as carriers to deliver multifunctional nanoparticles to the brain lesion. As MR-responsive T1 contrast agents, multifunctional BMC nanoparticles can be harnessed to accurately localize the epileptogenic region with high sensitivity and specificity. Meanwhile, catalytic nanoparticles BMC can synergistically scavenge ROS, generate O2 and regulate neuroinflammation for the protection of neurons in the brain.
Collapse
Affiliation(s)
- Lin Lin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Dejun She
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Xinping Kuai
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Chengjuan Du
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Pengfei Fu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China
| | - Jianhong Wang
- National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China; Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China; National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China.
| |
Collapse
|
17
|
Kalinin VV, Zemlyanaya AA, Subbotin KY. [The relationship between immunological and psychopathological characteristics in patients with focal epilepsy depending on the profile of interhemispheric asymmetry]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:37-44. [PMID: 38465809 DOI: 10.17116/jnevro202412402137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To identify the possible influence of cellular immunity parameters and neurobiological variables (frequency of seizures of various semiotics and their severity) on comorbid psychopathological symptoms depending on the profile of interhemispheric asymmetry in patients with focal forms of epilepsy. MATERIAL AND METHODS The study included 92 patients with epilepsy (38 men, 54 women, mean age 38.7+8.45 years). Focal temporal lobe epilepsy was diagnosed in 36 patients, focal frontal lobe epilepsy in 16 patients, and temporal-frontal lobe epilepsy in 40 patients. For each type of seizure, severity was assessed according to the National Seizure Severity Scale (NHS3). The mental status of patients was assessed using the SCL-90 self-report questionnaire. The Annette scale was used to assess the profile of interhemispheric asymmetry. The number of different clusters of lymphocytes was studied, including the number of T-lymphocytes (CD3+), T-helpers (CD3+CD4+), T-cytotoxic (CD3+CD8+), T-NK (natural killers CD3+CD16+CD56+), B-lymphocytes (CD3-CD19+), as well as immunoregulatory index (CD4/CD8 ratio). In order to identify any possible relationships between neurobiological and immune variables, on the one hand, and the SCL-90 constructs, on the other hand, a separate correlation analysis of Spearman ranks within the left-handed group and the right-handed group was carried out. RESULTS We revealed the differences between groups of patients with epilepsy with right and left profiles of hemispheric asymmetry regarding the relationship between the frequency of seizures, their severity and accompanying psychopathological variables, on the one hand, and between immunity indices and psychopathological constructs, on the other hand. It has been established that neurobiological and immune variables in left-handers can determine the psychopathological structure of the comorbid mental disorder. CONCLUSION Prediction of concomitant psychopathological syndromes in patients with epilepsy on the basis of clinical data and data on immunity is quite possible, but only in left-handed patients.
Collapse
Affiliation(s)
- V V Kalinin
- Moscow Research Institute of Psychiatry - Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A A Zemlyanaya
- Moscow Research Institute of Psychiatry - Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - K Y Subbotin
- Moscow Research Institute of Psychiatry - Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
18
|
Sint Jago SC, Bahabry R, Schreiber AM, Homola J, Ngyuen T, Meijia F, Allendorfer JB, Lubin FD. Aerobic exercise alters DNA hydroxymethylation levels in an experimental rodent model of temporal lobe epilepsy. Epilepsy Behav Rep 2023; 25:100642. [PMID: 38323091 PMCID: PMC10844942 DOI: 10.1016/j.ebr.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024] Open
Abstract
The therapeutic potential of aerobic exercise in mitigating seizures and cognitive issues in temporal lobe epilepsy (TLE) is recognized, yet the underlying mechanisms are not well understood. Using a rodent TLE model induced by Kainic acid (KA), we investigated the impact of a single bout of exercise (i.e., acute) or 4 weeks of aerobic exercise (i.e., chronic). Blood was processed for epilepsy-associated serum markers, and DNA methylation (DNAme), and hippocampal area CA3 was assessed for gene expression levels for DNAme-associated enzymes. While acute aerobic exercise did not alter serum Brain-Derived Neurotrophic Factor (BDNF) or Interleukin-6 (IL-6), chronic exercise resulted in an exercise-specific decrease in serum BDNF and an increase in serum IL-6 levels in epileptic rats. Additionally, whole blood DNAme levels, specifically 5-hydroxymethylcytosine (5-hmC), decreased in epileptic animals following chronic exercise. Hippocampal CA3 5-hmC levels and ten-eleven translocation protein (TET1) expression mirrored these changes. Furthermore, immunohistochemistry analysis revealed that most 5-hmC changes in response to chronic exercise were neuron-specific within area CA3 of the hippocampus. Together, these findings suggest that DNAme mechanisms in the rodent model of TLE are responsive to chronic aerobic exercise, with emphasis on neuronal 5-hmC DNAme in the epileptic hippocampus.
Collapse
Affiliation(s)
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | | | - Julia Homola
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Tram Ngyuen
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Fernando Meijia
- Department of Neurobiology, University of Alabama at Birmingham, United States
| | - Jane B. Allendorfer
- Department of Neurobiology, University of Alabama at Birmingham, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, United States
| |
Collapse
|
19
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Guo Z, Zhong W, Zou Z. miR-98-5p Prevents Hippocampal Neurons from Oxidative Stress and Apoptosis by Targeting STAT3 in Epilepsy in vitro. Neuropsychiatr Dis Treat 2023; 19:2319-2329. [PMID: 37928166 PMCID: PMC10624118 DOI: 10.2147/ndt.s415597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose Epilepsy is a serious mental disease, for which oxidative stress and hippocampal neuron death after seizure is crucial. Numerous miRNAs are involved in epilepsy. However, the function of miR-98-5p in oxidative stress and hippocampal neuron death after seizure is unclear, which is the purpose of current study. Methods Magnesium ion (Mg2+)-free solution was used to establish the in vitro epilepsy model in hippocampal neurons. Oxidative stress was exhibited by measuring malondialdehyde (MDA) level and superoxide Dismutase (SOD) activity using enzyme-linked immune sorbent assay (ELISA) kits. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were applied for the examination of neuron viability and apoptosis, respectively. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the mRNA and protein levels of miR-98-5p and signal transducer and activator of transcription (STAT3), respectively. The relationship between miR-98-5p and STAT3 was predicted by TargetScan 7.2, and identified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results miR-98-5p was decreased in the in vitro epileptic model of hippocampal neurons induced by Mg2+-free solution, whose overexpression rescued oxidative stress and neuron apoptosis in epileptic model. Moreover, overexpression of STAT3, one downstream target of miR-98-5p, partially eliminated the effects of miR-98-5p mimic. Conclusion We shed lights on a pivotal mechanism of miR-98-5p in regulating neuron oxidative stress and apoptosis after seizures, providing potential biomarkers for the diagnosis of epilepsy and therapeutic targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhizhuan Guo
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wenwen Zhong
- Department of Rehabilitation Medicine, Huangshi Maternal and Child Health Hospital, Edong Medical Group, Huang Shi, Hubei, 435000, People’s Republic of China
| | - Zhengshou Zou
- Department of Neurology, Huangshi Central Hospital, Edong Medical Group, Huangshi, Hubei, 435000, People’s Republic of China
| |
Collapse
|
21
|
Tang Y, Ji S, Li H, Dong B, Li Y, Zhu C, Chen L. Association of patent foramen ovale with epilepsy: A hospital-based case-control study. Epilepsia Open 2023; 8:1075-1083. [PMID: 37422851 PMCID: PMC10472407 DOI: 10.1002/epi4.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the proportion of patent foramen ovale (PFO) in people with epilepsy (PWE) compared to controls without epilepsy and to assess whether PWEs with and without PFO exhibit distinctive clinical features. METHODS This is a case-control study conducted in a hospital. Contrast transthoracic echocardiography with a venous microbubble bolus and provocative maneuvers (Valsalva and coughing) were used to identify PFO and its right-to-left shunt (RLS) among 741 PWEs and 800 controls without epilepsy. The risk of having PFO in PWEs was explored using multiple matching methods and logistic regression with adjusted congenital factors that may affect the occurrence of PFO. RESULTS The proportion of PFO in PWEs and controls was 39.00% and 24.25%, respectively. After 1:1 propensity score matching, the risk of suffering PFO in PWEs was 1.71 times (OR, 1.71; 95% CI, 1.24-2.36) higher than that in controls. PWEs also had a higher risk of having a high RLS grade (βepilepsy = 0.390, P < 0.001). Among clinical characteristics of PWEs, migraine, and drug-resistant epilepsy showed significantly different distributions between those without RLS and those with RLS grade I to III. PWEs with PFO had higher risk of suffering from migraine and drug-resistant epilepsy (OR in migraine, 2.54, 95% CI, 1.65-3.95; OR in drug-resistant epilepsy, 1.47, 95% CI, 1.06-2.03). SIGNIFICANCE The proportion of PFO was found to be higher in PWE than in controls without epilepsy, especially in patients with drug-resistant epilepsy, suggesting potential relationship between the two disorders. Large multicentric study will be needed to confirm this finding.
Collapse
Affiliation(s)
- Yusha Tang
- Department of NeurologySichuan University West China HospitalChengduChina
| | - Shuming Ji
- Department of Project Design and StatisticsSichuan University West China HospitalChengduChina
| | - Hua Li
- Department of NeurologySichuan University West China HospitalChengduChina
| | - Bosi Dong
- Department of NeurologySichuan University West China HospitalChengduChina
| | - Yajiao Li
- Department of Cardiology, West China HospitalSichuan UniversityChengduChina
| | - Chenxing Zhu
- Department of Clinical Research ManagementSichuan University West China HospitalChengduChina
| | - Lei Chen
- Department of NeurologySichuan University West China HospitalChengduChina
| |
Collapse
|
22
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Goh Y, Tay SH, Yeo LLL, Rathakrishnan R. Bridging the Gap: Tailoring an Approach to Treatment in Febrile Infection-Related Epilepsy Syndrome. Neurology 2023; 100:1151-1155. [PMID: 36797068 PMCID: PMC10264048 DOI: 10.1212/wnl.0000000000207068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023] Open
Abstract
Cytokine profiling before immunotherapy is increasingly prevalent in febrile infection-related epilepsy syndrome (FIRES). In this case, an 18-year-old man presented with first-onset seizure after a nonspecific febrile illness. He developed super-refractory status epilepticus requiring multiple antiseizure medications and general anesthetic infusions. He was treated with pulsed methylprednisolone and plasma exchange and started on ketogenic diet. Contrast-enhanced MRI brain revealed postictal changes. EEG findings showed multifocal ictal runs and generalized periodic epileptiform discharges. CSF analysis, autoantibody testing, and malignancy screening were unremarkable. Genetic testing revealed variants of uncertain significance in the CNKSR2 and OPN1LW genes. Initial serum and CSF cytokine analyses performed on days 6 and 21 revealed that interleukin (IL)-6, IL-1RA, monocyte chemoattractant protein-1, macrophage inflammatory protein 1β, and interferon γ were elevated predominantly in the CNS, a profile consistent with cytokine release syndrome. Tofacitinib was initially trialed on day 30 of admission. There was no clinical improvement, and IL-6 continued to rise. Tocilizumab was given on day 51 with significant clinical and electrographic response. Anakinra was subsequently trialed from days 99 to 103 because clinical ictal activity re-emerged on weaning anesthetics but stopped because of poor response. Serial cytokine profiles showed improvement after 7 doses of tocilizumab. There was corresponding improved seizure control. This case illustrates how personalized immunomonitoring may be helpful in cases of FIRES, where proinflammatory cytokines are postulated to act in epileptogenesis. There is an emerging role for cytokine profiling and close collaboration with immunologists for the treatment of FIRES. The use of tocilizumab may be considered in patients with FIRES with upregulated IL-6.
Collapse
Affiliation(s)
- Yihui Goh
- From the Divisions of Neurology (Y.G., L.L.L.Y., R.R.) and Rheumatology (S.H.T.), Department of Medicine, National University Hospital and Department of Medicine (Y.G., S.H.T., L.L.L.Y., R.R.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Sen Hee Tay
- From the Divisions of Neurology (Y.G., L.L.L.Y., R.R.) and Rheumatology (S.H.T.), Department of Medicine, National University Hospital and Department of Medicine (Y.G., S.H.T., L.L.L.Y., R.R.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Leonard Leong Litt Yeo
- From the Divisions of Neurology (Y.G., L.L.L.Y., R.R.) and Rheumatology (S.H.T.), Department of Medicine, National University Hospital and Department of Medicine (Y.G., S.H.T., L.L.L.Y., R.R.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Rahul Rathakrishnan
- From the Divisions of Neurology (Y.G., L.L.L.Y., R.R.) and Rheumatology (S.H.T.), Department of Medicine, National University Hospital and Department of Medicine (Y.G., S.H.T., L.L.L.Y., R.R.), Yong Loo Lin School of Medicine, National University of Singapore.
| |
Collapse
|
24
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
25
|
El-Nahas AE, Elbedaiwy HM, Masoud IM, Aly RG, Helmy MW, El-Kamel AH. Berberine-loaded zein/hyaluronic acid composite nanoparticles for efficient brain uptake to alleviate neuro-degeneration in the pilocarpine model of epilepsy. Eur J Pharm Biopharm 2023:S0939-6411(23)00088-7. [PMID: 37068561 DOI: 10.1016/j.ejpb.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Berberine hydrochloride is a plant alkaloid with versatile medicinal applications, yet it has suffered from multiple limitations in its usage. Nonetheless, the acknowledged role of berberine in controlling seizures has fuelled the need to develop a nanosystem capable of delivering it safely and efficiently to the brain. Consequently, zein and hyaluronic acid were chosen for this purpose, and about twenty formulations with different preliminary factors were screened. Afterward, three promising formulations were loaded with berberine and characterized to select an optimum formulation for further in vivo inspection. The B2 formula of particle size of 297.2 nm ± 1.86 and % entrapment efficiency of 83.75% ± 1.39 has succeeded in the increment of the brain uptake of berberine. Moreover, compared to free berberine suspension, the severity of pilocarpine-induced status epilepticus in rats was depleted after the subcutaneous administration of B2. The hippocampal tissue of rats receiving B2 showed signs of reduced neuro-degeneration, remarkably lower expression levels of COX-2 and TNF-α, and enhanced antioxidant activity. Finally, the relative safety of the developed system was determined after searching for any sign of intoxication or behavioral changes. In conclusion, the developed berberine loaded composite nanoparticles successfully delivered berberine across the BBB securely to ameliorate the deteriorating impact of pilocarpine-induced epilepsy.
Collapse
Affiliation(s)
- Amira E El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Inas M Masoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
26
|
Kumar P. miRNA dysregulation in traumatic brain injury and epilepsy: a systematic review to identify putative biomarkers for post-traumatic epilepsy. Metab Brain Dis 2023; 38:749-765. [PMID: 36715879 DOI: 10.1007/s11011-023-01172-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) leads to post-traumatic epilepsy (PTE); hence, both TBI and PTE share various similar molecular mechanisms. MicroRNA (miRNA) is a small noncoding RNA that acts as a gene-silencing molecule. Notably, the dysregulation of miRNAs in various neurological diseases, including TBI and epilepsy, has been reported in several studies. However, studies on commonly dysregulated miRNAs and the regulation of shared pathways in both TBI and epilepsy that can identify potential biomarkers of PTE are still lacking. This systematic review covers the peer-review publications of TBI and database studies of epilepsy-dysregulated miRNAs of clinical studies. For TBI, 290 research articles were identified after screening, and 12 provided data for dysregulated miRNAs in humans. The compiled data suggest that 85 and 222 miRNAs are consecutively dysregulated in TBI and epilepsy. In both, 10 miRNAs were found to be commonly dysregulated, implying that they are potentially dysregulated miRNAs for PTE. Furthermore, the targets and involvement of each putative miRNA in different pathways were identified and evaluated. Additionally, clusters of predicted miRNAs were analyzed. Each miRNA's regulatory role was linked with apoptosis, inflammation, and cell cycle regulation pathways. Hence, these findings provide insight for future diagnostic biomarkers.
Collapse
Affiliation(s)
- Prince Kumar
- Department of Central Sophisticated Instrumentation Cell, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
27
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
28
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|
29
|
Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022; 11:2167. [PMID: 36358538 PMCID: PMC9686795 DOI: 10.3390/antiox11112167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, has increasing incidence, increasing mortality rates, and poses a huge burden on healthcare. None of the currently approved drugs for the treatment of AD influence disease progression. Many clinical trials aiming at inhibiting amyloid plaque formation, increasing amyloid beta clearance, or inhibiting neurofibrillary tangle pathology yielded inconclusive results or failed. Meanwhile, research has identified many interlinked vicious cascades implicating oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, and has pointed to novel therapeutic targets such as improving mitochondrial bioenergetics and quality control, diminishing oxidative stress, or modulating the neuroinflammatory pathways. Many novel molecules tested in vitro or in animal models have proven efficient, but their translation into clinic needs further research regarding appropriate doses, delivery routes, and possible side effects. Cell-based therapies and extracellular vesicle-mediated delivery of messenger RNAs and microRNAs seem also promising strategies allowing to target specific signaling pathways, but need further research regarding the most appropriate harvesting and culture methods as well as control of the possible tumorigenic side effects. The rapidly developing area of nanotechnology could improve drug delivery and also be used in early diagnosis.
Collapse
Affiliation(s)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Ţiț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicoleta Pașcalău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
30
|
Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility. CNS Neurosci Ther 2022; 28:1689-1705. [PMID: 35983626 PMCID: PMC9532927 DOI: 10.1111/cns.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/16/2023] Open
Abstract
Chronic hypobaric hypoxia in high‐altitude areas is closely related to the occurrence of many neurological diseases. Among these diseases, epilepsy is a common disease of the nervous system that is difficult to diagnose and treat, with a long treatment cycle. As of 2019, there were more than 70 million epilepsy patients worldwide, including 10 million in China. Studies have shown that chronic hypoxia promotes the occurrence and development of epilepsy, and elucidation of the relationship between chronic hypoxia and epilepsy is important for studying the pathogenesis of epilepsy and exploring the potential characteristics of epilepsy and new drug targets for epilepsy. In this article, we review the factors that may cause increased seizure susceptibility in chronic hypoxia and consider the potential relationship between chronic hypobaric hypoxia and seizure susceptibility in high‐altitude areas and prospects surrounding related research in the future.
Collapse
Affiliation(s)
- YuanHang Xu
- Qinghai University Graduate School, Xining, China.,Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| | - QingLi Fan
- Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| |
Collapse
|
31
|
Tharmaraja T, Ho JS, Sia CH, Lim NA, Chong YF, Lim AY, Rathakrishnan RR, Yeo LL, Sharma VK, Tan BY. Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Ther Adv Chronic Dis 2022; 13:20406223221086996. [PMID: 35432846 PMCID: PMC9006360 DOI: 10.1177/20406223221086996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 01/24/2023] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic medications with a favourable cardiovascular, renal and overall safety profile. Given the limited treatment options available for neurological disorders, it is important to determine whether the pleiotropic effects of SGLT2i can be utilised in their prevention and management. Methods All articles published before 20 March 2021 were systematically searched in MEDLINE, EMBASE, Scopus, Web of Science, APA PsycINFO and ClinicalTrials.gov. Overall, 1395 titles were screened, ultimately resulting in 160 articles being included in the qualitative analysis. Screening and data extraction were conducted by two independent authors and studies were excluded if they were not an original research study. Findings Of the 160 studies, 134 addressed stroke, 19 cognitive impairment, 4 epilepsy and 4 movement disorders, encompassing a range from systematic reviews and randomised controlled trials to bioinformatic and animal studies. Most animal studies demonstrated significant improvements in behavioural and neurological deficits, which were reflected in beneficial changes in neurovascular units, synaptogenesis, neurotransmitter levels and target receptors' docking energies. The evidence from the minority clinical literature was conflicting and many studies did not reach statistical significance. Interpretation SGLT2i may exert neurological benefits through three mechanisms: reduction in cardiovascular risk factors, augmentation of ketogenesis and anti-inflammatory pathways. Most clinical studies were observational, meaning that a causal relationship could not be established, while randomised controlled trials were heterogeneous and powered to detect cardiovascular or renal outcomes. We suggest that a longitudinal study should be conducted and specifically powered to detect neurological outcomes.
Collapse
Affiliation(s)
- Thahesh Tharmaraja
- Intensive Care Unit, University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jamie S.Y. Ho
- Intensive Care Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicole-Ann Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yao Feng Chong
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Amanda Y.L. Lim
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Rahul R. Rathakrishnan
- Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Leonard L.L. Yeo
- Division of Neurology, Department of Medicine, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road Level 11, 119228 Singapore
| | - Vijay K. Sharma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Health System, Singapore
| | - Benjamin Y.Q. Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Medicine, National University Health System, Singapore
| |
Collapse
|
32
|
Searching for a Longevity Food, We Bump into Hericium erinaceus Primordium Rich in Ergothioneine: The “Longevity Vitamin” Improves Locomotor Performances during Aging. Nutrients 2022; 14:nu14061177. [PMID: 35334834 PMCID: PMC8950371 DOI: 10.3390/nu14061177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Phenotypic frailty is characterized by a progressive decline in physical functioning. During ageing, morphological and functional alterations involve the brain, and chief theories involve oxidative stress, free radical accumulation, and reduced antioxidant defenses as the most implicated mechanisms. From boosting the immune system to fighting senescence, medicinal mushrooms have been found to have a number of health and longevity benefits. Among them, Hericium erinaceus (He) has been demonstrated to display a variety of physiological effects, including anti-aging properties. Thus, He represents an attractive natural source for developing novel medicines and functional foods, based on the identification of its active ingredients and metabolites. Particularly, H. erinaceus primordium (He2) extract contains a high amount of Ergothioneine (ERGO), the longevity vitamin. Herein, we revealed the preventive effect of ERGO-rich He2 extract in a preclinical model, focusing on locomotor decline during ageing monitored through spontaneous behavioral test. This effect was accompanied by a significant decrease in some oxidative stress markers (NOS2, COX2) paralleled by an increase in P53, showed in cerebellar cortex cells and fibres by immunohistochemistry. In summary, we demonstrated the neuro-protective and preventive effects of He2 extract during aging, probably due to its peculiarly high ERGO content.
Collapse
|
33
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
34
|
Reaction of the Hippocampal Microglia to Hyperbaric Oxygen. Bull Exp Biol Med 2022; 173:655-659. [PMID: 36210418 PMCID: PMC9548419 DOI: 10.1007/s10517-022-05607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/21/2022]
Abstract
We studied the reaction of rat hippocampal microgliocytes to hyperbaric oxygen at a pressure of 5 ata (absolute atmosphere). Immunohistochemical analysis with selective macrophage marker CD68 (ED1) and microglial marker Iba-1 allowed separate analysis of these two cell populations. It was shown that macrophages do not significantly contribute to reactive changes in the total pool of Iba-1+ hippocampal cells induced by hyperbaric oxygen.
Collapse
|
35
|
Siahaan YMT, Ketaren RJ, Hartoyo V, Hariyanto TI. Epilepsy and the risk of severe coronavirus disease 2019 outcomes: A systematic review, meta-analysis, and meta-regression. Epilepsy Behav 2021; 125:108437. [PMID: 34839246 PMCID: PMC8590948 DOI: 10.1016/j.yebeh.2021.108437] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with epilepsy experience seizures, which have been reported to increase and worsen during the coronavirus disease (COVID-19) pandemic. However, the association between epilepsy and COVID-19 outcomes remains unclear. The aim of this study was to analyze whether patients with epilepsy have an increased risk of having poor COVID-19 outcomes. METHODS We comprehensively evaluated potential articles extracted from the medRxiv, Europe PMC, and PubMed databases until June 30, 2021, using selected keywords. All published studies on epilepsy and COVID-19 were selected. We used the Review Manager 5.4 and Comprehensive Meta-Analysis 3 software for statistical analysis. RESULTS Thirteen studies with 67,131 patients with COVID-19 were included in the analysis. Evaluation of the collated data revealed an association between epilepsy and increased severity of COVID-19 (OR, 1.69; 95%CI: 1.11-2.59; p = 0.010; I2 = 29%; random-effect modeling) and mortality from COVID-19 (OR, 1.71; 95%CI: 1.14-2.56; p = 0.010; I2 = 53%; random-effect modeling). The results also showed that the association between epilepsy and increased risk of developing severe COVID-19 is influenced by sex and neurodegenerative disease. CONCLUSIONS The findings of this study suggest that patients with epilepsy are at risk of having poor COVID-19 outcomes. Patients with epilepsy need special attention and should be prioritized for administration of the COVID-19 vaccine. Registration details: PROSPERO (CRD42021264979).
Collapse
Affiliation(s)
- Yusak Mangara Tua Siahaan
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Retno Jayantri Ketaren
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | - Vinson Hartoyo
- Department of Neurology, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang 15811, Indonesia
| | | |
Collapse
|
36
|
Pottoo FH, Salahuddin M, Khan FA, AL Dhamen MA, Alsaeed WJ, Gomaa MS, Vatte C, Alomary MN. Combinatorial Regimen of Carbamazepine and Imipramine Exhibits Synergism against Grandmal Epilepsy in Rats: Inhibition of Pro-Inflammatory Cytokines and PI3K/Akt/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:1204. [PMID: 34832986 PMCID: PMC8624327 DOI: 10.3390/ph14111204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a neurodegenerative disorder that causes recurring seizures. Thirty-five percent of patients remain refractory, with a higher prevalence of depression. We investigated the anticonvulsant efficacy of carbamazepine (CBZ; 20 and 50 mg/kg), imipramine (IMI; 10 and 20 mg/kg) alone, and as a low dose combination. This preclinical investigation included dosing of rats for 14 days followed by elicitation of electroshock on the last day of treatment. Along with behavioral monitoring, the rat hippocampus was processed for quantification of mTOR, IL-1β, IL-6 and TNF-α levels. The histopathological analysis of rat hippocampus was performed to ascertain neuroprotection. In vitro studies and in silico studies were also conducted. We found that the low dose combinatorial therapy of CBZ (20 mg/kg) + IMI (10 mg/kg) exhibits synergism (p < 0.001) in abrogation of maximal electroshock (MES) induced convulsions/tonic hind limb extension (THLE), by reducing levels of pro-inflammatory cytokines, and weakening of the PI3K/Akt/mTOR signal. The combination also exhibits cooperative binding at the Akt. As far as neuroprotection is concerned, the said combination increased cell viability by 166.37% compared to Pentylenetetrazol (PTZ) treated HEK-293 cells. Thus, the combination of CBZ (20 mg/kg) + IMI (10 mg/kg) is a fruitful combination therapy to elevate seizure threshold and provide neuroprotection.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem cell Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Walaa Jafar Alsaeed
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
37
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
38
|
Nowroozi A, Salehi MA, Mohammadi S. Brain-derived neurotrophic factor in patients with epilepsy: A systematic review and meta-analysis. Epilepsy Res 2021; 178:106794. [PMID: 34773766 DOI: 10.1016/j.eplepsyres.2021.106794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Epilepsy affects almost 1% of people and is characterized by sudden seizures. To date, no reliable biomarker has been found to diagnose or predict the outcomes of epilepsy. Brain-derived neurotrophic factor (BDNF) levels have recently been shown to differ between patients with certain neurologic disorders and normal population, and it is unknown whether this is the case for epilepsy. In this study, we mainly aim to answer this question. METHODS We searched three databases for studies comparing BDNF levels between patients with epilepsy and controls. Quality assessment of included studies was performed using the Newcastle-Ottawa scale and statistical analyses were carried out in STATA software version 16. RESULTS Final analyses included 10 studies involving 403 patients with epilepsy. BDNF levels were statistically similar between patients and controls (standardized mean difference (SMD) = - 0.30, 95% CI = - 1.32 to 0.71, p = 0.56). When categorized by epilepsy subtype, patients with partial epilepsy showed lower BDNF measures than controls (95% CI = - 1.42 to - 0.32, p < 0.01), while the difference was not significant in patients with generalized epilepsy (95% CI = - 2.81 to 1.65, p = 0.61). Subgroup analyses indicated that BDNF was lower in patients than controls when age or sex matching was not present. Patient samples acquired in the morning also showed significantly lower BDNF levels than controls, unlike afternoon samples. Meta-regression identified no predictor for the difference in BDNF levels. CONCLUSION Generally, patients with epilepsy had BDNF levels similar to general population, although patients with partial epilepsy showed lower BDNF levels. Taking into account the sub-group analyses, further studies with higher qualities are required to evaluate the role and utility of BDNF in epilepsy.
Collapse
Affiliation(s)
- Ali Nowroozi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Sandouka S, Shekh-Ahmad T. Induction of the Nrf2 Pathway by Sulforaphane Is Neuroprotective in a Rat Temporal Lobe Epilepsy Model. Antioxidants (Basel) 2021; 10:antiox10111702. [PMID: 34829573 PMCID: PMC8615008 DOI: 10.3390/antiox10111702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.
Collapse
|
40
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
41
|
Perucca E. The pharmacological treatment of epilepsy: recent advances and future perspectives. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00055-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractThe pharmacological armamentarium against epilepsy has expanded considerably over the last three decades, and currently includes over 30 different antiseizure medications. Despite this large armamentarium, about one third of people with epilepsy fail to achieve sustained seizure freedom with currently available medications. This sobering fact, however, is mitigated by evidence that clinical outcomes for many people with epilepsy have improved over the years. In particular, physicians now have unprecedented opportunities to tailor treatment choices to the characteristics of the individual, in order to maximize efficacy and tolerability. The present article discusses advances in the drug treatment of epilepsy in the last 5 years, focusing in particular on comparative effectiveness trials of second-generation drugs, the introduction of new pharmaceutical formulations for emergency use, and the results achieved with the newest medications. The article also includes a discussion of potential future developments, including those derived from advances in information technology, the development of novel precision treatments, the introduction of disease modifying agents, and the discovery of biomarkers to facilitate conduction of clinical trials as well as routine clinical management.
Collapse
|
42
|
Conte G, Menéndez-Méndez A, Bauer S, El-Naggar H, Alves M, Nicke A, Delanty N, Rosenow F, Henshall DC, Engel T. Circulating P2X7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy. Cells 2021; 10:cells10092444. [PMID: 34572093 PMCID: PMC8467140 DOI: 10.3390/cells10092444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Circulating molecules have potential as biomarkers to support the diagnosis of epilepsy and to assist with differential diagnosis, for example, in conditions resembling epilepsy, such as in psychogenic non-epileptic seizures (PNES). The P2X7 receptor (P2X7R) is an important regulator of inflammation and mounting evidence supports its activation in the brain during epilepsy. Whether the P2X7R or P2X7R-dependent signaling molecules can be used as biomarkers of epilepsy has not been reported. P2X7R levels were analyzed by quantitative ELISA using plasma samples from controls and patients with temporal lobe epilepsy (TLE) or PNES. Moreover, blood cell P2X7R expression and P2X7R-dependent cytokine signature was measured following status epilepticus in P2X7R-EGFP reporter, wildtype, and P2X7R-knockout mice. P2X7R plasma levels were higher in TLE patients when compared with controls and patients with PNES. Plasma levels of the broad inflammatory marker protein C-Reactive protein (CRP) were similar between the three groups. Using P2X7R-EGFP reporter mice, we identified monocytes as the main blood cell type expressing P2X7R after experimentally evoked seizures. Finally, cytokine array analysis in P2X7R-deficient mice identified KC/GRO as a potential P2X7R-dependent plasma biomarker following status epilepticus and during epilepsy. Our data suggest that P2X7R signaling components may be a promising subclass of circulating biomarkers to support the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (G.C.); (A.M.-M.); (M.A.); (D.C.H.)
| | - Aida Menéndez-Méndez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (G.C.); (A.M.-M.); (M.A.); (D.C.H.)
| | - Sebastian Bauer
- Epilepsy Center Hessen, Department of Neurology, Philipps-University Marburg, Baldingerstr, 35043 Marburg, Germany; (S.B.); (F.R.)
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Hany El-Naggar
- Neurological Services, Beaumont Hospital, D09 V2N0 Dublin, Ireland; (H.E.-N.); (N.D.)
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (G.C.); (A.M.-M.); (M.A.); (D.C.H.)
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany;
| | - Norman Delanty
- Neurological Services, Beaumont Hospital, D09 V2N0 Dublin, Ireland; (H.E.-N.); (N.D.)
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Felix Rosenow
- Epilepsy Center Hessen, Department of Neurology, Philipps-University Marburg, Baldingerstr, 35043 Marburg, Germany; (S.B.); (F.R.)
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, University Hospital Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (G.C.); (A.M.-M.); (M.A.); (D.C.H.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (G.C.); (A.M.-M.); (M.A.); (D.C.H.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
43
|
Lemos VR, Aires R, Côco LZ, Domingues RB, Meyrelles SS, Vasquez EC, Pereira TMC, Campagnaro BP. Benefits of multi-day supplementation with probiotic kefir in Rasmussen encephalitis: the first case report. Nutr Neurosci 2021; 25:2390-2397. [PMID: 34459722 DOI: 10.1080/1028415x.2021.1970299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Rasmussen encephalitis (RE) is a rare inflammatory disease, characterized by unilateral hemispheric atrophy, focal intractable seizures, progressive hemiparesis, and neurological deficits. CASE REPORT The patient is a young man under pharmacotherapy for epilepsy, exhibiting classical abnormal movements, which are consider typical hallmarks of RE. During clinical care sessions, he presented many episodes of tonic-clonic seizures involving sudden loss of consciousness followed by a post-ictal phase with weakness and interaction difficulty. During the kefir supplementation, the patient presented only short-term absence seizures, quickly returning to activities. Additionally, he presented cognitive and language improvement, being more responsive to commands. The daily diary control of patient's mother and caregiver at school reported an impressive reduction in number and severity of seizures, becoming less aggressive and more involved in school activities. The serum biochemical markers showed that kefir administration caused a significant decrease of pro-inflammatory and a simultaneous increase of anti-inflammatory cytokine levels. In parallel, after treatment, this probiotic reduced reactive oxygen species levels, increased NO bioavailability, revealing antiapoptotic and antigenotoxic effects. Regarding the microbiological analysis, kefir increased Lactobacillus and Bifidobacterium species. CONCLUSION To our knowledge, this is the first case reporting remarkable beneficial effects of the probiotic kefir in RE. This case report strongly suggests kefir supplementation as a potential and safe-effective adjuvant therapeutic strategy in the control and treatment of RE.
Collapse
Affiliation(s)
- Valéria R Lemos
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Larissa Z Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | | | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Thiago M C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| |
Collapse
|
44
|
Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021; 12:4730. [PMID: 34354063 PMCID: PMC8342542 DOI: 10.1038/s41467-021-24775-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Collapse
Affiliation(s)
- Ann-Na Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeonjoo An
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Junghoon Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gyeong-Eon Chang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong-Yoon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jihun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ju Young Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Wang K, Liu Y, Shi Y, Yan M, Rengarajan T, Feng X. Amomum tsaoko fruit extract exerts anticonvulsant effects through suppression of oxidative stress and neuroinflammation in a pentylenetetrazol kindling model of epilepsy in mice. Saudi J Biol Sci 2021; 28:4247-4254. [PMID: 34354406 PMCID: PMC8325006 DOI: 10.1016/j.sjbs.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic epilepsy is a multifaceted common brain disorder with manifold underlying factors. Epilepsy affects around 70 million peoples worldwide. Amomum tsaoko is a perennial herbaceous plant that is extensively cultivated in many provinces of China reported to exert immense biological activities. OBJECTIVE This research work was aimed to reveal the therapeutic actions of ethanolic extract of A.tsaoko fruits (EE-ATF) against the pentylenetetrazol (PTZ)-provoked convulsive seizures in the mice. METHODOLOGY The convulsive seizures were provoked to the animals via administering 70 mg/kg of PTZ through intraperitoneally to trigger the convulsive seizures then treated with the EE-ATF at 50, 75, and 100 mg/kg orally 30 min prior to PTZ challenge. After the 30 min of PTZ challenge, animals closely monitored for signs of convulsion, generalized clonic and tonic convulsion durations, and mortality. A sub-convulsive dose 35 mg/kg of PTZ was used to provoke the kindling and seizure stages were examined using standard method. The levels of dopamine, GABA, glutamate, and Na + K + ATPase and Ca + ATPase activities in the brain tissues were studied using marker specific assay kits. The oxidative stress and antioxidant markers studied using standard methods. The mRNA expressions of COX-2, TNF-α, NF-κB, TLR-4, and IL-1β in the brain tissues were studied using RT-PCR analysis. The brain tissues were examined histologically. RESULTS EE-ATF treatment remarkably decreased the onset and duration of convulsion and suppressed the seizure severity and mortality in the PTZ animals. EE-ATF treatment appreciably ameliorated the PTZ triggered modifications in the GABA, glutamate, dopamine levels and Ca + 2ATPase and Na + K + ATPase activities in the brain tissues. EE-ATF suppressed the mRNA expressions of NF-κB, IL-1β, TLR-4, TNF-α, and COX-2. The status of antioxidants were elevated by the EE-ATF. Histological findings also demonstrated the curative actions of EE-ATF. CONCLUSION Our findings evidenced that the EE-ATF substantially ameliorated the PTZ-provoked convulsive seizures in the mice.
Collapse
Affiliation(s)
- Kaina Wang
- Department of Neurology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Yani Liu
- Department of Neurology, Xi'an Yanliang District People's Hospital, Xi'an 710089, China
| | - Yan Shi
- Department of Neurology, Xijing Hospital, Air Force Medical University,Xi’an, Shaanxi 710032, China
| | - Mingzhu Yan
- Department of Neurology, Xijing Hospital, Air Force Medical University,Xi’an, Shaanxi 710032, China
| | - Thamaraiselvan Rengarajan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| | - Xin Feng
- Department of Neurology, Xi'an Yanliang District People's Hospital, Xi'an 710089, China
| |
Collapse
|
46
|
Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, Radford K. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021; 176:106708. [PMID: 34271300 DOI: 10.1016/j.eplepsyres.2021.106708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Autoantibodies to central nervous system (CNS) antigens are increasingly identified in patients with epilepsy. Alterations in cytokines and chemokines have also been demonstrated in epilepsy, but this has not been explored in subjects with autoantibodies. If antibody positive and antibody negative subjects show a difference in immune activation, as measured by cytokine levels, this could improve diagnostic and therapeutic approaches, and provide insights into the underlying pathophysiology. We aimed to evaluate serum and CSF cytokines and chemokines in patients with and without autoantibody positivity to identify any differences between the two groups. METHODS We studied participants who had undergone serum and CSF testing for CNS autoantibodies, as part of their clinical evaluation. Cases were classified as antibody positive or antibody negative for comparison. Stored CSF and sera were analysed for cytokine and chemokine concentrations. RESULTS 25 participants underwent testing. 8 were antibody positive, 17 were antibody negative. Significant elevations in the mean concentration of IL-13 and RANTES in CSF were found in the antibody positive cases and significant elevation of CSF VEGF was found in the antibody negative cases. Significant elevations in the mean concentrations of serum TNFβ, INFγ, bNGF, IL-8, and IL-12 were seen in the antibody negative group, and there was poor correlation between the majority of serum and CSF concentrations. SIGNIFICANCE Measurement of cytokines and chemokines such as IL-13 and RANTES could be useful in diagnosis of autoimmune associated epilepsy. Such markers might also guide targeted immunotherapy to improve seizure control and provide insights into the underlying pathophysiology of epilepsy associated with CNS autoantibodies.
Collapse
Affiliation(s)
- Lisa Gillinder
- Mater Advanced Epilepsy Unit, Mater Centre of Neurosciences, Brisbane, Australia; Mater Research Institute, The University of Queensland, Brisbane, Australia.
| | - Pamela McCombe
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Tamara Powell
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Gunter Hartel
- QIMR Berghofer Department of Statistics, Brisbane, Australia
| | | | - Ingrid Leal Rojas
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
47
|
Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:ijms22136981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
|
48
|
Roda E, Priori EC, Ratto D, De Luca F, Di Iorio C, Angelone P, Locatelli CA, Desiderio A, Goppa L, Savino E, Bottone MG, Rossi P. Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging. Int J Mol Sci 2021; 22:6379. [PMID: 34203691 PMCID: PMC8232141 DOI: 10.3390/ijms22126379] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Frailty is a geriatric syndrome associated with both locomotor and cognitive decline, typically linked to chronic systemic inflammation, i.e., inflammaging. In the current study, we investigated the effect of a two-month oral supplementation with standardized extracts of H. erinaceus, containing a known amount of Erinacine A, Hericenone C, Hericenone D, and L-ergothioneine, on locomotor frailty and cerebellum of aged mice. Locomotor performances were monitored comparing healthy aging and frail mice. Cerebellar volume and cytoarchitecture, together with inflammatory and oxidative stress pathways, were assessed focusing on senescent frail animals. H. erinaceus partially recovered the aged-related decline of locomotor performances. Histopathological analyses paralleled by immunocytochemical evaluation of specific molecules strengthened the neuroprotective role of H. erinaceus able to ameliorate cerebellar alterations, i.e., milder volume reduction, slighter molecular layer thickness decrease and minor percentage of shrunken Purkinje neurons, also diminishing inflammation and oxidative stress in frail mice while increasing a key longevity regulator and a neuroprotective molecule. Thus, our present findings demonstrated the efficacy of a non-pharmacological approach, based on the dietary supplementation using H. erinaceus extract, which represent a promising adjuvant therapy to be associated with conventional geriatric treatments.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carmine Di Iorio
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Angelone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Anthea Desiderio
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (E.S.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (C.D.I.); (P.A.); (M.G.B.)
| |
Collapse
|
49
|
Sharifi-Rad J, Quispe C, Herrera-Bravo J, Martorell M, Sharopov F, Tumer TB, Kurt B, Lankatillake C, Docea AO, Moreira AC, Dias DA, Mahomoodally MF, Lobine D, Cruz-Martins N, Kumar M, Calina D. A Pharmacological Perspective on Plant-derived Bioactive Molecules for Epilepsy. Neurochem Res 2021; 46:2205-2225. [PMID: 34120291 DOI: 10.1007/s11064-021-03376-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is a related chronic neurological condition of a predisposition for recurrent epileptic seizures, with various manifestations and causes. Although there are antiepileptic drugs, complementary natural therapies are widely used. The purpose of this systematic review was to analyze the antiepileptic/anticonvulsant pharmacological properties of plant-food derived bioactive molecules. In this regard, a systematic review of the PubMed database was made based on the inclusion criteria. Natural compounds/herbs with scientifically proven antiepileptic properties were selected. Experimental pharmacological studies in vitro and in vivo have shown that flavonoids, alkaloids and terpenoids may have anticonvulsant mechanisms similar to the new generation antiepileptic drugs. The relationships of structure-anticonvulsant effect, pharmacological models, seizure-inducing factors and response, effective dose were also analyzed and discussed. The results of in vitro and in vivo pharmacological studies analyzed in this systematic review support the clinical importance of plant-food-derived bioactive molecules for the complementary treatment of epilepsy. Thus, are opened new perspectives to develop new natural anticonvulsant drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Concepcion, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepcion, Chile
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe, 734003, Tajikistan
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Chintha Lankatillake
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ana Catarina Moreira
- Pulmonology Department, Hospital Garcia de Orta, EPE Almada, 2801-951, Lisboa, Portugal
| | - Daniel A Dias
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| | | | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Echnology, Mumbai, 400019, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
50
|
Ghosh S, Sinha JK, Khan T, Devaraju KS, Singh P, Vaibhav K, Gaur P. Pharmacological and Therapeutic Approaches in the Treatment of Epilepsy. Biomedicines 2021; 9:470. [PMID: 33923061 PMCID: PMC8146518 DOI: 10.3390/biomedicines9050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epilepsy affects around 50 million people across the globe and is the third most common chronic brain disorder. It is a non-communicable disease of the brain that affects people of all ages. It is accompanied by depression, anxiety, and substantially increased morbidity and mortality. A large number of third-generation anti-epileptic drugs are available, but they have multiple side-effects causing a decline in the quality of life. The inheritance and etiology of epilepsy are complex with multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play intricate functions to maintain the normal physiology of various neurons. If there is any dysregulation of neurotransmission due to aberrant transmitter levels or their receptor biology, it can result in seizures. In this review, we have discussed the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Drug-resistant epilepsy (DRE) has remained one of the forefront areas of epilepsy research for a long time. Understanding the mechanisms underlying DRE is of utmost importance because of its high incidence rate among epilepsy patients and increased risks of psychosocial problems and premature death. Here we have enumerated various hypotheses of DRE. Further, we have discussed different non-conventional therapeutic strategies, including combination therapy and non-drug treatment. The recent studies supporting the modern approaches for the treatment of epilepsy have been deliberated with particular reference to the mTOR pathway, breakdown of the blood-brain barrier, and inflammatory pathways.
Collapse
Affiliation(s)
- Shampa Ghosh
- ICMR-National Institute of Nutrition (NIN), Tarnaka, Hyderabad 500007, India;
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | - Tarab Khan
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | | | - Prabhakar Singh
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India;
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pankaj Gaur
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|