1
|
Minor KC, Liu J, Druzin ML, El-Sayed YY, Hintz SR, Bonifacio SL, Leonard SA, Lee HC, Profit J, Karakash SD. Magnesium sulfate and risk of hypoxic-ischemic encephalopathy in a high-risk cohort. Am J Obstet Gynecol 2024; 231:647.e1-647.e12. [PMID: 38580044 PMCID: PMC11508778 DOI: 10.1016/j.ajog.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy contributes to morbidity and mortality among neonates ≥36 weeks of gestation. Evidence of preventative antenatal treatment is limited. Magnesium sulfate has neuroprotective properties among preterm fetuses. Hypertensive disorders of pregnancy are a risk factor for hypoxic-ischemic encephalopathy, and magnesium sulfate is recommended for maternal seizure prophylaxis among patients with preeclampsia with severe features. OBJECTIVE (1) Determine trends in the incidence of hypertensive disorders of pregnancy, antenatal magnesium sulfate, and hypoxic-ischemic encephalopathy; (2) evaluate the association between hypertensive disorders of pregnancy and hypoxic-ischemic encephalopathy; and (3) evaluate if, among patients with hypertensive disorders of pregnancy, the odds of hypoxic-ischemic encephalopathy is mitigated by receipt of antenatal magnesium sulfate. STUDY DESIGN We analyzed a prospective cohort of live births ≥36 weeks of gestation between 2012 and 2018 within the California Perinatal Quality Care Collaborative registry, linked with the California Department of Health Care Access and Information files. We used Cochran-Armitage tests to assess trends in hypertensive disorders, encephalopathy diagnoses, and magnesium sulfate utilization and compared demographic factors between patients with or without hypertensive disorders of pregnancy or treatment with magnesium sulfate. Hierarchical logistic regression models were built to explore if hypertensive disorders of pregnancy were associated with any severity and moderate/severe hypoxic-ischemic encephalopathy. Separate hierarchical logistic regression models were built among those with hypertensive disorders of pregnancy to evaluate the association of magnesium sulfate with hypoxic-ischemic encephalopathy. RESULTS Among 44,314 unique infants, the diagnosis of hypoxic-ischemic encephalopathy, maternal hypertensive disorders of pregnancy, and the use of magnesium sulfate increased over time. Compared with patients with hypertensive disorders of pregnancy alone, patients with hypertensive disorders treated with magnesium sulfate represented a high-risk population. They were more likely to be publicly insured, born between 36 and 38 weeks of gestation, be small for gestational age, have lower Apgar scores, require a higher level of resuscitation at delivery, have prolonged rupture of membranes, experience preterm labor and fetal distress, and undergo operative delivery (all P<.002). Hypertensive disorders of pregnancy were associated with hypoxic-ischemic encephalopathy (adjusted odds ratio, 1.26 [95% confidence interval, 1.13-1.40]; P<.001) and specifically moderate/severe hypoxic-ischemic encephalopathy (adjusted odds ratio, 1.26 [95% confidence interval, 1.11-1.42]; P<.001). Among patients with hypertensive disorders of pregnancy, treatment with magnesium sulfate was associated with 29% reduction in the odds of neonatal hypoxic-ischemic encephalopathy (adjusted odds ratio, 0.71 [95% confidence interval, 0.52-0.97]; P=.03) and a 37% reduction in the odds of moderate/severe neonatal hypoxic-ischemic encephalopathy (adjusted odds ratio, 0.63 [95% confidence interval, 0.42-0.94]; P=.03). CONCLUSION Hypertensive disorders of pregnancy are associated with hypoxic-ischemic encephalopathy and, specifically, moderate/severe disease. Among people with hypertensive disorders, receipt of antenatal magnesium sulfate is associated with a significant reduction in the odds of hypoxic-ischemic encephalopathy and moderate/severe disease in a neonatal cohort admitted to neonatal intensive care unit at ≥36 weeks of gestation. The findings of this observational study cannot prove causality and are intended to generate hypotheses for future clinical trials on magnesium sulfate in term infants.
Collapse
Affiliation(s)
- Kathleen C Minor
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA.
| | - Jessica Liu
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA; California Perinatal Quality Care Collaborative, Stanford, CA
| | - Maurice L Druzin
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Yasser Y El-Sayed
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Susan R Hintz
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA; California Perinatal Quality Care Collaborative, Stanford, CA
| | - Sonia L Bonifacio
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA
| | - Stephanie A Leonard
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Henry C Lee
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA; California Perinatal Quality Care Collaborative, Stanford, CA
| | - Jochen Profit
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA; California Perinatal Quality Care Collaborative, Stanford, CA
| | - Scarlett D Karakash
- Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| |
Collapse
|
2
|
Babbo CCR, Mellet J, van Rensburg J, Pillay S, Horn AR, Nakwa FL, Velaphi SC, Kali GTJ, Coetzee M, Masemola MYK, Ballot DE, Pepper MS. Neonatal encephalopathy due to suspected hypoxic ischemic encephalopathy: pathophysiology, current, and emerging treatments. World J Pediatr 2024; 20:1105-1114. [PMID: 39237728 PMCID: PMC11582131 DOI: 10.1007/s12519-024-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Neonatal encephalopathy (NE) due to suspected hypoxic-ischemic encephalopathy (HIE), referred to as NESHIE, is a clinical diagnosis in late preterm and term newborns. It occurs as a result of impaired cerebral blood flow and oxygen delivery during the peripartum period and is used until other causes of NE have been discounted and HIE is confirmed. Therapeutic hypothermia (TH) is the only evidence-based and clinically approved treatment modality for HIE. However, the limited efficacy and uncertain benefits of TH in some low- to middle-income countries (LMICs) and the associated need for intensive monitoring have prompted investigations into more accessible and effective stand-alone or additive treatment options. DATA SOURCES This review describes the rationale and current evidence for alternative treatments in the context of the pathophysiology of HIE based on literatures from Pubmed and other online sources of published data. RESULTS The underlining mechanisms of neurotoxic effect, current clinically approved treatment, various categories of emerging treatments and clinical trials for NE are summarized in this review. Melatonin, caffeine citrate, autologous cord blood stem cells, Epoetin alfa and Allopurinal are being tested as potential neuroprotective agents currently. CONCLUSION This review describes the rationale and current evidence for alternative treatments in the context of the pathophysiology of HIE. Neuroprotective agents are currently only being investigated in high- and middle-income settings. Results from these trials will need to be interpreted and validated in LMIC settings. The focus of future research should therefore be on the development of inexpensive, accessible monotherapies and should include LMICs, where the highest burden of NESHIE exists.
Collapse
Affiliation(s)
- Carina Corte-Real Babbo
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Juanita Mellet
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Jeanne van Rensburg
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Shakti Pillay
- Department of Paediatrics and Child Health, Division of Neonatology, Groote Schuur Hospital, University of Cape Town, Neonatal Unit, Cape Town, South Africa
| | - Alan Richard Horn
- Department of Paediatrics and Child Health, Division of Neonatology, Groote Schuur Hospital, University of Cape Town, Neonatal Unit, Cape Town, South Africa
| | - Firdose Lambey Nakwa
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Christopher Velaphi
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Melantha Coetzee
- Department of Paediatrics and Child Health, Division of Neonatology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mogomane Yvonne Khomotso Masemola
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Kalafong Hospital, University of Pretoria, Pretoria, South Africa
| | - Daynia Elizabeth Ballot
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael Sean Pepper
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa.
| |
Collapse
|
3
|
Galinsky R, Bennet L, Gunn AJ. Does MgSO4 protect the preterm brain? Dissecting its role in the pathophysiology of hypoxic ischemic encephalopathy. Neural Regen Res 2024; 19:1861-1862. [PMID: 38227499 DOI: 10.4103/1673-5374.390977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Shepherd E, Karim T, McIntyre S, Goldsmith S, Keir A, Badawi N, Hunt RW, Galinsky R. Neonatal magnesium sulphate for neuroprotection: A systematic review and meta-analysis. Dev Med Child Neurol 2024; 66:1157-1172. [PMID: 38468452 PMCID: PMC11579813 DOI: 10.1111/dmcn.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
AIM To review the evidence of the effects of neonatal magnesium sulphate for neuroprotection in perinatal asphyxia and hypoxic-ischaemic encephalopathy (HIE). METHOD This was a systematic review of randomized controlled trials (RCTs) (with meta-analysis) and non-RCTs assessing magnesium sulphate for treating perinatal asphyxia and HIE at 35 weeks or more gestation (primary outcomes: neonatal death and death or long-term major neurodevelopmental disability). RESULTS Twenty-five RCTs (2099 infants) and four non-RCTs (871 infants) were included, 23 in low- and middle-income countries (LMICs). In RCTs, reductions in neonatal death with magnesium sulphate versus placebo or no treatment (risk ratio [RR] = 0.68; 95% confidence interval [CI] = 0.53-0.86; 13 RCTs), and magnesium sulphate with melatonin versus melatonin alone (RR = 0.74; 95% CI = 0.58-0.95; one RCT) were observed. No difference in neonatal death was seen for magnesium sulphate with therapeutic hypothermia versus therapeutic hypothermia alone (RR = 0.66, 95% CI = 0.34-1.26; three RCTs), or magnesium sulphate versus phenobarbital (RR = 3.00; 95% CI = 0.86-10.46; one RCT). No reduction in death or long-term neurodevelopmental disability (RR = 0.52; 95% CI = 0.14-1.89; one RCT) but reductions in several short-term adverse outcomes were observed with magnesium sulphate. Evidence was low- to very-low certainty because of risk of bias and imprecision. INTERPRETATION Given the uncertainty of the current evidence, further robust neonatal magnesium sulphate research is justified. This may include high-quality studies to determine stand-alone effects in LMICs and effects with and after therapeutic hypothermia in high-income countries.
Collapse
Affiliation(s)
- Emily Shepherd
- Women and Kids Theme, South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Tasneem Karim
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Amy Keir
- Women and Kids Theme, South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Grace Centre for Newborn Intensive CareThe Children's HospitalSydneyNew South WalesAustralia
| | - Rod W. Hunt
- Cerebral Palsy Alliance Research Institute, Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
- Monash NewbornMonash Children's HospitalMelbourneVictoriaAustralia
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Shepherd ES, Goldsmith S, Doyle LW, Middleton P, Marret S, Rouse DJ, Pryde P, Wolf HT, Crowther CA. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 2024; 5:CD004661. [PMID: 38726883 PMCID: PMC11082932 DOI: 10.1002/14651858.cd004661.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
BACKGROUND Magnesium sulphate is a common therapy in perinatal care. Its benefits when given to women at risk of preterm birth for fetal neuroprotection (prevention of cerebral palsy for children) were shown in a 2009 Cochrane review. Internationally, use of magnesium sulphate for preterm cerebral palsy prevention is now recommended practice. As new randomised controlled trials (RCTs) and longer-term follow-up of prior RCTs have since been conducted, this review updates the previously published version. OBJECTIVES To assess the effectiveness and safety of magnesium sulphate as a fetal neuroprotective agent when given to women considered to be at risk of preterm birth. SEARCH METHODS We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 17 March 2023, as well as reference lists of retrieved studies. SELECTION CRITERIA We included RCTs and cluster-RCTs of women at risk of preterm birth that assessed prenatal magnesium sulphate for fetal neuroprotection compared with placebo or no treatment. All methods of administration (intravenous, intramuscular, and oral) were eligible. We did not include studies where magnesium sulphate was used with the primary aim of preterm labour tocolysis, or the prevention and/or treatment of eclampsia. DATA COLLECTION AND ANALYSIS Two review authors independently assessed RCTs for inclusion, extracted data, and assessed risk of bias and trustworthiness. Dichotomous data were presented as summary risk ratios (RR) with 95% confidence intervals (CI), and continuous data were presented as mean differences with 95% CI. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included six RCTs (5917 women and their 6759 fetuses alive at randomisation). All RCTs were conducted in high-income countries. The RCTs compared magnesium sulphate with placebo in women at risk of preterm birth at less than 34 weeks' gestation; however, treatment regimens and inclusion/exclusion criteria varied. Though the RCTs were at an overall low risk of bias, the certainty of evidence ranged from high to very low, due to concerns regarding study limitations, imprecision, and inconsistency. Primary outcomes for infants/children: Up to two years' corrected age, magnesium sulphate compared with placebo reduced cerebral palsy (RR 0.71, 95% CI 0.57 to 0.89; 6 RCTs, 6107 children; number needed to treat for additional beneficial outcome (NNTB) 60, 95% CI 41 to 158) and death or cerebral palsy (RR 0.87, 95% CI 0.77 to 0.98; 6 RCTs, 6481 children; NNTB 56, 95% CI 32 to 363) (both high-certainty evidence). Magnesium sulphate probably resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.96, 95% CI 0.82 to 1.13; 6 RCTs, 6759 children); major neurodevelopmental disability (RR 1.09, 95% CI 0.83 to 1.44; 1 RCT, 987 children); or death or major neurodevelopmental disability (RR 0.95, 95% CI 0.85 to 1.07; 3 RCTs, 4279 children) (all moderate-certainty evidence). At early school age, magnesium sulphate may have resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.82, 95% CI 0.66 to 1.02; 2 RCTs, 1758 children); cerebral palsy (RR 0.99, 95% CI 0.69 to 1.41; 2 RCTs, 1038 children); death or cerebral palsy (RR 0.90, 95% CI 0.67 to 1.20; 1 RCT, 503 children); and death or major neurodevelopmental disability (RR 0.81, 95% CI 0.59 to 1.12; 1 RCT, 503 children) (all low-certainty evidence). Magnesium sulphate may also have resulted in little to no difference in major neurodevelopmental disability, but the evidence is very uncertain (average RR 0.92, 95% CI 0.53 to 1.62; 2 RCTs, 940 children; very low-certainty evidence). Secondary outcomes for infants/children: Magnesium sulphate probably reduced severe intraventricular haemorrhage (grade 3 or 4) (RR 0.76, 95% CI 0.60 to 0.98; 5 RCTs, 5885 infants; NNTB 92, 95% CI 55 to 1102; moderate-certainty evidence) and may have resulted in little to no difference in chronic lung disease/bronchopulmonary dysplasia (average RR 0.92, 95% CI 0.77 to 1.10; 5 RCTs, 6689 infants; low-certainty evidence). Primary outcomes for women: Magnesium sulphate may have resulted in little or no difference in severe maternal outcomes potentially related to treatment (death, cardiac arrest, respiratory arrest) (RR 0.32, 95% CI 0.01 to 7.92; 4 RCTs, 5300 women; low-certainty evidence). However, magnesium sulphate probably increased maternal adverse effects severe enough to stop treatment (average RR 3.21, 95% CI 1.88 to 5.48; 3 RCTs, 4736 women; moderate-certainty evidence). Secondary outcomes for women: Magnesium sulphate probably resulted in little to no difference in caesarean section (RR 0.96, 95% CI 0.91 to 1.02; 5 RCTs, 5861 women) and postpartum haemorrhage (RR 0.94, 95% CI 0.80 to 1.09; 2 RCTs, 2495 women) (both moderate-certainty evidence). Breastfeeding at hospital discharge and women's views of treatment were not reported. AUTHORS' CONCLUSIONS The currently available evidence indicates that magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus, compared with placebo, reduces cerebral palsy, and death or cerebral palsy, in children up to two years' corrected age, and probably reduces severe intraventricular haemorrhage for infants. Magnesium sulphate may result in little to no difference in outcomes in children at school age. While magnesium sulphate may result in little to no difference in severe maternal outcomes (death, cardiac arrest, respiratory arrest), it probably increases maternal adverse effects severe enough to stop treatment. Further research is needed on the longer-term benefits and harms for children, into adolescence and adulthood. Additional studies to determine variation in effects by characteristics of women treated and magnesium sulphate regimens used, along with the generalisability of findings to low- and middle-income countries, should be considered.
Collapse
Affiliation(s)
- Emily S Shepherd
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Lex W Doyle
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Melbourne, Australia
| | - Philippa Middleton
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Stéphane Marret
- INSERM Unit 1245, Team 4, Rouen School of Medicine, Normandy University, Rouen, France
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Dwight J Rouse
- Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peter Pryde
- Department of Anesthesiology, The University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hanne T Wolf
- Department of Gynaecology and Obstetrics, Hvidovre University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
6
|
Astete M, Lacassie HJ. Uterotonics, magnesium sulphate and antibiotics during childbirth and peripartum: Important obstetric drugs for the anaesthesiologist. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:412-420. [PMID: 38428678 DOI: 10.1016/j.redare.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/28/2023] [Indexed: 03/03/2024]
Abstract
The main causes of maternal mortality are comorbidities, hypertensive pregnancy syndrome, obstetric haemorrhage, and maternal sepsis. For this reason, uterotonics, magnesium sulphate, and antibiotics are essential tools in the management of obstetric patients during labour and in the peripartum period. These drugs are widely used by anaesthesiologists in all departments, and play a crucial role in treatment and patient safety. For the purpose of this narrative review, we performed a detailed search of medical databases and selected studies describing the use of these drugs in patients during pregnancy, delivery and the pospartum period. Uterotonics, above all oxytocin, play an important role in the prevention and treatment of pospartum haemorrhage, and various studies have shown that in obstetric procedures, such as scheduled and emergency caesarean section, they are effective at lower doses than those hitherto accepted. We also discuss the use of carbetocin as an effective alternative that has a therapeutic advantage in certain clinical circumstances. Magnesium sulphate is the gold standard in the prevention and treatment of eclampsia, and also plays a neuroprotective role in preterm infants. We describe the precautions to be taken during magnesium administration. Finally, we discuss the importance of understanding microbiology and the pharmacology of antibiotics in the management of obstetric infection and endometritis, and draw attention to the latest trends in antibiotic regimens in labour and caesarean section.
Collapse
Affiliation(s)
- M Astete
- Equipo de Anestesia, Hospital Clínico Dr. Lautaro Navarro Avaria, Punta Arenas, Chile
| | - H J Lacassie
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
McLeod RM, Rosenkrantz TS, Fitch RH. Antenatal Magnesium Sulfate Benefits Female Preterm Infants but Results in Poor Male Outcomes. Pharmaceuticals (Basel) 2024; 17:218. [PMID: 38399433 PMCID: PMC10892166 DOI: 10.3390/ph17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium sulfate (MagSul) is used clinically to prevent eclamptic seizures during pregnancy and as a tocolytic for preterm labor. More recently, it has been implicated as offering neural protection in utero for at-risk infants. However, evidence is mixed. Some studies found that MagSul reduced the incidence of cerebral palsy (CP) but did not improve other measures of neurologic function. Others did not find any improvement in outcomes. Inconsistencies in the literature may reflect the fact that sex effects are largely ignored, despite evidence that MagSul shows sex effects in animal models of neonatal brain injury. The current study used retrospective infant data to assess differences in developmental outcomes as a function of sex and MagSul treatment. We found that on 18-month neurodevelopmental cognitive and language measures, preterm males treated with MagSul (n = 209) had significantly worse scores than their untreated counterparts (n = 135; p < 0.05). Female preterm infants treated with MagSul (n = 220), on the other hand, showed a cognitive benefit relative to untreated females (n = 123; p < 0.05). No significant effects of MagSul were seen among females on language (p > 0.05). These results have tremendous implications for risk-benefit considerations in the ongoing use of MagSul and may explain why benefits have been hard to identify in clinical trials when sex is not considered.
Collapse
Affiliation(s)
- Ruth M. McLeod
- Department of Psychology, College of the Holy Cross, Worcester, MA 01610, USA
| | - Ted S. Rosenkrantz
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA;
| | - R. Holly Fitch
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
9
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
10
|
Turner MJ, Dietz RM. Potential Adjuncts to Therapeutic Hypothermia to Mitigate Multiorgan Injury in Perinatal Hypoxia-Ischemia. Neoreviews 2023; 24:e771-e782. [PMID: 38036441 DOI: 10.1542/neo.24-12-e771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population. This review focuses on the adjunct therapies currently under investigation to mitigate the impact of hypoxic-ischemic injury on the brain, kidneys, liver, heart, and gastrointestinal system.
Collapse
Affiliation(s)
- Megan J Turner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
11
|
Labusek N, Ghari P, Mouloud Y, Köster C, Diesterbeck E, Hadamitzky M, Felderhoff-Müser U, Bendix I, Giebel B, Herz J. Hypothermia combined with extracellular vesicles from clonally expanded immortalized mesenchymal stromal cells improves neurodevelopmental impairment in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2023; 20:280. [PMID: 38012640 PMCID: PMC10680187 DOI: 10.1186/s12974-023-02961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Neonatal encephalopathy following hypoxia-ischemia (HI) is a leading cause of childhood death and morbidity. Hypothermia (HT), the only available but obligatory therapy is limited due to a short therapeutic window and limited efficacy. An adjuvant therapy overcoming limitations of HT is still missing. Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have shown promising therapeutic effects in various brain injury models. Challenges associated with MSCs' heterogeneity and senescence can be mitigated by the use of EVs from clonally expanded immortalized MSCs (ciMSCs). In the present study, we hypothesized that intranasal ciMSC-EV delivery overcomes limitations of HT. METHODS Nine-day-old C57BL/6 mice were exposed to HI by occlusion of the right common carotid artery followed by 1 h hypoxia (10% oxygen). HT was initiated immediately after insult for 4 h. Control animals were kept at physiological body core temperatures. ciMSC-EVs or vehicle were administered intranasally 1, 3 and 5 days post HI/HT. Neuronal cell loss, inflammatory and regenerative responses were assessed via immunohistochemistry, western blot and real-time PCR 7 days after insult. Long-term neurodevelopmental outcome was evaluated by analyses of cognitive function, activity and anxiety-related behavior 5 weeks after HI/HT. RESULTS In contrast to HT monotherapy, the additional intranasal therapy with ciMSC-EVs prevented HI-induced cognitive deficits, hyperactivity and alterations of anxiety-related behavior at adolescence. This was preceded by reduction of striatal neuronal loss, decreased endothelial, microglia and astrocyte activation; reduced expression of pro-inflammatory and increased expression of anti-inflammatory cytokines. Furthermore, the combination of HT with intranasal ciMSC-EV delivery promoted regenerative and neurodevelopmental processes, including endothelial proliferation, neurotrophic growth factor expression and oligodendrocyte maturation, which were not altered by HT monotherapy. CONCLUSION Intranasal delivery of ciMSC-EVs represents a novel adjunct therapy, overcoming limitations of acute HT thereby offering new possibilities for improving long-term outcomes in neonates with HI-induced brain injury.
Collapse
Affiliation(s)
- Nicole Labusek
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Parnian Ghari
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Diesterbeck
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Hadamitzky
- Institute for Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Pediatrics I, Neonatology and Experimental Perinatal Neurosciences, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Gowda BB, Rath C, Muthusamy S, Nagarajan L, Rao S. Outcomes of Neonates with Hypoxic-Ischemic Encephalopathy Treated with Magnesium Sulfate: A Systematic Review with Meta-analysis. J Pediatr 2023; 262:113610. [PMID: 37468038 DOI: 10.1016/j.jpeds.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE To assess magnesium sulfate (MgSO4) as a neuroprotective agent in hypoxic-ischemic encephalopathy. STUDY DESIGN For this systematic review, PubMed, EMBASE, the Cochrane Library, EMCARE, and MedNar were searched in November 2022 for randomized controlled trials (RCTs). Meta-analysis was conducted using Stata 16.0 and RevMan 5.3. RESULTS Twenty RCTs with a total sample size of 1485 were included, of which 16 were from settings where therapeutic hypothermia (TH) was not offered. Regarding MgSO4 in settings where TH was not offered, only 1 study evaluated composite outcome of death or disability at ≥18 months and reported such poor outcome in 8 of 14 control infants and 4 of 8 in the MgSO4 group. MgSO4 was not associated with mortality (RR, 0.86; 95% CI, 0.72-1.03; 13 RCTs) or hypotension (RR, 1.02; 95% CI, 0.88-1.18; 5 RCTs). Thirteen studies reported that MgSO4 improved in-hospital outcomes, such as reduced seizure burden and improved neurological status at discharge. MgSO4 reduced the risk of poor suck feeds (RR, 0.52; 95% CI, 0.40-0.68; 6RCTs) and abnormal electroencephalogram (RR, 0.64; 95% CI, 0.45-0.93; 5 RCTs). Certainty of evidence was moderate for mortality and low or very low for other outcomes. For studies with MgSO4 as an adjunct to TH, none reported on death or neurodevelopmental disability at ≥18 months. MgSO4 was not associated with mortality (RR, 0.65; 95% CI, 0.34-1.27; 3 RCTs) or hypotension (RR, 1.0; 95% CI, 0.71-1.40; 3 RCTs). CONCLUSIONS Evidence around long-term outcomes of MgSO4 when used with or without TH was scant. MgSO4 therapy may improve in-hospital neurological outcomes without affecting mortality in settings where TH is not offered. Well-designed RCTs for neuroprotection are needed, especially in low-resource settings. TRIAL REGISTRATION "Open Science Forum" (https://doi.org/10.17605/OSF.IO/FRM4D).
Collapse
Affiliation(s)
- Bhanu B Gowda
- Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Chandra Rath
- Neonatology, Joondalup Health Campus, Joondalup, Western Australia, Australia; Pediatrics, Rockingham General Hospital, Coolongup, Western Australia, Australia
| | - Saravanan Muthusamy
- Neonatology, Perth Children's Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Lakshmi Nagarajan
- Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Shripada Rao
- Neonatology, Joondalup Health Campus, Joondalup, Western Australia, Australia; Pediatrics, Rockingham General Hospital, Coolongup, Western Australia, Australia.
| |
Collapse
|
13
|
Galinsky R, Dhillon SK, Kelly SB, Wassink G, Davidson JO, Lear CA, van den Heuij LG, Bennet L, Gunn AJ. Magnesium sulphate reduces tertiary gliosis but does not improve EEG recovery or white or grey matter cell survival after asphyxia in preterm fetal sheep. J Physiol 2023; 601:1999-2016. [PMID: 36999348 PMCID: PMC10952359 DOI: 10.1113/jp284381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | | | - Sharmony B. Kelly
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | - Guido Wassink
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | | | | | | | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
14
|
Galinsky R, Kelly S, Green E, Hunt R, Nold-Petry C, Gunn A, Nold M. Interleukin-1: an important target for perinatal neuroprotection? Neural Regen Res 2023; 18:47-50. [PMID: 35799507 PMCID: PMC9241389 DOI: 10.4103/1673-5374.341044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy. Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth. Multiple pathways are involved in the pathogenesis of perinatal inflammation. However, studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1. In this review, we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury. We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage, and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist, anakinra, as a safe and effective therapeutic intervention. We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment, and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
Collapse
|
15
|
魏 思. Recent research on the effect of common treatments given in the perinatal period on neurodevelopment in offspring. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:332-338. [PMID: 35351267 PMCID: PMC8974644 DOI: 10.7499/j.issn.1008-8830.2111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The perinatal period is the key period for the development of brain and central nervous system, and different events in this period will have a profound influence on brain development. Glucocorticoids, antibiotics, magnesium sulfate, caffeine, pulmonary surfactant, and mild hypothermia treatment are commonly used drugs or treatment methods in the perinatal period and are closely associated with the prognosis of neonatal neurodevelopment. This article reviews the latest research on the effect of perinatal treatments on neonatal neurodevelopment, so as to provide a reference for clinical decision making.
Collapse
|
16
|
Khan MH, Ann QU, Khan MS, Ahmad N, Ahmed M. Efficacy of Magnesium Sulfate in Addition to Melatonin Therapy in Neonates With Hypoxic-Ischemic Encephalopathy. Cureus 2022; 14:e21163. [PMID: 35165613 PMCID: PMC8833294 DOI: 10.7759/cureus.21163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: One of the most important causes of neonatal deaths in developing nations is birth asphyxia. Though the probability of a complete recovery is very low, hypoxic-ischemic encephalopathy (HIE) associated with asphyxia can be managed with multiple treatment options. The study evaluated the efficacy of the addition of magnesium sulfate (MgSO4) to melatonin therapy in neonates with HIE. Methodology: A prospective, observational study was conducted in the department of neonatal intensive care, Pakistan Institute of Medical Sciences Hospital, Islamabad, Pakistan from October 2020 to March 2021. All neonates with an Appearance, Pulse, Grimace, Activity, and Respiration (APGAR) score of less than five at five minutes, umbilical blood pH of less than 7.0, and moderate neonatal encephalopathy as detected on the modified Sarnat score which is a clinical tool used for the assessment of the severity of HIE were included in the study. Neonates with congenital abnormalities, intrauterine growth retardation, neonatal sepsis, and infants born to mothers with diabetes mellitus type 2 were excluded from the study. The infants were randomly assigned to either of the groups, i.e., i) group 1 included neonates who were administered at least three doses of magnesium sulfate (MgSO4) infusion in addition to melatonin, or ii) group 2 included neonates who were administered melatonin only. Blood samples of all neonates were evaluated and compared between the two groups. Results: A total of 90 neonates with HIE were included in the study. There was a predominance of female neonates. The mean ages of babies in group 1 and group 2 were 37.2 ± 0.43 and 37.3 ± 0.59 weeks, respectively. The mean weight on the term was 2.88 ± 0.11 and 2.89 ± 0.10, respectively. The Apgar score at 5 mins in group 1 was 1.73 ± 0.81 while in group 2, 1.82 ± 0.94. It was found that there was a more significant improvement in pH after 3 days and after one week of treatment in group 1 as compared to group 2. The mean pH in babies after three days of intervention was 7.23 ± 0.03 in group 1 which was significantly better than group 2 (p<0.0001). After seven days, the mean normalized to 7.39 ± 0.04 in group 1 (p < 0.0001). It was found that in patients in group 1, the mortality was lower than in group 2 (p < 0.0001). Conclusion: HIE patients who were administered melatonin in combination with magnesium sulfate yielded better patient outcomes. Thus, it was concluded that the use of magnesium sulfate as dual therapy with melatonin improved patient outcomes for HIE. However, it is recommended that similar studies are conducted with a wider range of parameters, such as duration of hospital stay and assessment of the neurological outcomes of the patients.
Collapse
|
17
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
18
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
19
|
Kelly SB, Stojanovska V, Zahra VA, Moxham A, Miller SL, Moss TJM, Hooper SB, Nold MF, Nold-Petry CA, Dean JM, Bennet L, Polglase GR, Gunn AJ, Galinsky R. Interleukin-1 blockade attenuates white matter inflammation and oligodendrocyte loss after progressive systemic lipopolysaccharide exposure in near-term fetal sheep. J Neuroinflammation 2021; 18:189. [PMID: 34465372 PMCID: PMC8408978 DOI: 10.1186/s12974-021-02238-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased systemic and tissue levels of interleukin (IL)-1β are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). Methods Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. Results LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1β immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1β expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. Conclusion IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02238-4.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Alison Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: cellular mechanisms and clinical efficacy. Curr Neuropharmacol 2021; 20:611-629. [PMID: 34030616 DOI: 10.2174/1570159x19666210524154519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, anti-inflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.
Collapse
Affiliation(s)
- Xueling Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| |
Collapse
|
21
|
Yates N, Gunn AJ, Bennet L, Dhillon SK, Davidson JO. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int J Mol Sci 2021; 22:1671. [PMID: 33562339 PMCID: PMC7915709 DOI: 10.3390/ijms22041671] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.
Collapse
Affiliation(s)
- Nathanael Yates
- The Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia;
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alistair J. Gunn
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Simerdeep K. Dhillon
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| | - Joanne O. Davidson
- The Department of Physiology, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.); (S.K.D.)
| |
Collapse
|
22
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neuroprotective magnesium sulfate administration increases maternal Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammation Index. Arch Gynecol Obstet 2020; 303:1433-1437. [PMID: 33222038 DOI: 10.1007/s00404-020-05866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE We aimed to analyze the linear changes of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Immune-Inflammation Index (SII) levels in pregnant women who administrated magnesium sulfate for fetal neuroprotection. METHODS This retrospective study included 63 pregnant women who underwent neuroprotective magnesium sulfate administration during January 2015 and July 2020. Women with co-existing diseases or obstetric complications such as preeclampsia, gestational diabetes mellitus, suspicion of chorioamnionitis etc. excluded. The laboratory test results were obtained for each participant. Three results were compared; (1) Before magnesium sulfate-0th hour, (2) 6 h and (3) 12 h after starting loading dose. RESULTS The mean NLR was 7.18 ± 5.14 in patients before treatment. The mean NLR increased to 10.09 ± 4.77 and 10.04 ± 4.35 at 6th and 12th hour of magnesium sulfate treatment. The mean PLR was also increased after starting neuroprotective magnesium sulfate (170.35 ± 89.09 at the beginning; 209.85 ± 88.77 at 6th hour and 209.24 ± 76.66 at 12th hour). The mean SII was found to be increased from 1783.33 ± 1367.29 to 2517.15 ± 1325.77 with magnesium sulfate treatment. However, no statistically significant difference was observed in terms of SII between 6 and 12th hours of treatment (p = 0.752). Maternal serum magnesium levels at 6th and 12th hour were found to be not correlated with NLR, PLR and SII. CONCLUSION We demonstrated that values of NLR, PLR and SII at 6th hour were all increased after starting magnesium sulfate. Levels of these systemic inflammatory indices were similar at 6th and 12th hour of therapy.
Collapse
|
24
|
Davidson JO, van den Heuij LG, Fraser M, Wassink G, Miller SL, Lim R, Wallace EM, Jenkin G, Gunn AJ, Bennet L. Window of opportunity for human amnion epithelial stem cells to attenuate astrogliosis after umbilical cord occlusion in preterm fetal sheep. Stem Cells Transl Med 2020; 10:427-440. [PMID: 33103374 PMCID: PMC7900589 DOI: 10.1002/sctm.20-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that administration of many types of stem cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic injury, including in the perinatal brain. However, the therapeutic window for single dose treatment is not known. We compared the effects of early and delayed intracerebroventricular administration of hAECs in fetal sheep at 0.7 gestation on brain injury induced by 25 minutes of complete umbilical cord occlusion (UCO) or sham occlusion. Fetuses received either 1 × 106 hAECs or vehicle alone, as an infusion over 1 hour, either 2 or 24 hours after UCO. Fetuses were killed for brain histology at 7 days post-UCO. hAEC infusion at both 2 and 24 hours had dramatic anti-inflammatory and anti-gliotic effects, including significantly attenuating the increase in microglia after UCO in the white and gray matter and the number of astrocytes in the white matter. Both protocols partially improved myelination, but had no effect on total or immature/mature numbers of oligodendrocytes. Neuronal survival in the hippocampus was increased by hAEC infusion at either 2 or 24 hours, whereas only hAECs at 24 hours were associated with improved neuronal survival in the striatum and thalamus. Neither protocol improved recovery of electroencephalographic (EEG) power. These data suggest that a single infusion of hAECs is anti-inflammatory, anti-gliotic, and neuroprotective in preterm fetal sheep when given up to 24 hours after hypoxia-ischemia, but was associated with limited white matter protection after 7 days recovery and no improvement in the recovery of EEG power.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Lotte G van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|